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Abstract

When deriving a demographic basis from experience data it is useful to know (i) what uncertainty surrounds that

basis, and (ii) the financial impact of that uncertainty. Under the Solvency II regime in the European Union,

insurers must hold capital against a number of risks. One of these is mis-estimation risk, i.e. the uncertainty over

the current rates of mortality and other biometric risks experienced by a portfolio. We propose a general method

for assessing mis-estimation risk, and by way of illustration we look at how mis-estimation risk can be assessed

for a portfolio of pensions in payment from a U.K. pension scheme. We find that the impact of mis-estimation

risk varies according to the risk factors included in a model, and that the inclusion of some necessary risk factors

increases the financial impact of mis-estimation risk. In particular, the inclusion of risk factors which improve

the model’s fit and financial applicability can lead to an increase in the mis-estimation risk. We also find that

a full portfolio valuation is preferable to using model points when assessing mis-estimation risk.
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1 Introduction

1.1 In this paper we will consider mis-estimation risk in setting a demographic basis, i.e. the risk
that the current estimate of biometric risk is incorrect. We will leave to one side the question of projecting
future rates and the uncertainty therein, as this is usually dealt with separately. The methodology in
this paper applies to bases for any demographic risk which can be modelled statistically. However, for
simplicity we will illustrate our points with reference to a single-decrement example, i.e. the mortality
rates for a portfolio of pensions in payment.

1.2 The methodology presented in this paper requires that the basis is derived from the portfolio’s own
experience. There are, of course, other techniques available where the portfolio has insufficient amounts of
its own data. However, techniques which do not use a portfolio’s own experience data introduce basis risk,
i.e. the risk that the rating method fails to capture some portfolio-specific characteristics. As a result it is
usually preferable to use a portfolio’s own experience data wherever it is both available and credible. What
counts as “credible” will be partly quantitative (number of lives and deaths, total exposure time) and partly
qualitative (are the data free of obvious corruption?), so judgement will have to be on a case-by-case basis.
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1.3 When setting a basis using experience analysis, there are two natural questions to ask: “what
other bases could be credibly supported by the data?” and “what would be the financial impact of using
those other bases?”. In this paper we will demonstrate a method for answering both of these questions. Be-
sides the obvious use of such answers in pricing and risk management, some regulatory regimes require that
insurers itemise the capital held against specific risks, including mis-estimation risk. Examples include the
former ICA regime in the U.K. and the Solvency II regime in the EU. Richards et al. (2014) give a stylised
list of sub-risks for longevity, which is reproduced in Table 1. One of these is mis-estimation risk, i.e. the
risk that an insurer has got its current estimate of risk rates wrong. In territories with this kind of itemised
approach, it is implicit that the capital requirements be calibrated probabilistically, i.e. with reference to
some kind of statistical model. The method demonstrated in this paper is based on a well-specified statisti-
cal model. In the U.K. insurers currently use a wide variety of ad hoc methods for assessing mis-estimation
risk, but this paper is not a review or summary of these methods. Instead, this paper proposes an objective
method for calculating an allowance for mis-estimation risk, based on robust statistical foundations.

1.4 At a high level our approach is to use the variance-covariance matrix to explore consistent alterna-
tive parameter vectors. This makes mis-estimation risk synonymous with parameter risk. A full-portfolio
valuation is performed with each new parameter vector, and this gives rise to a distribution of possible
expected portfolio values. We use this distribution to set the allowance for mis-estimation risk, typically by
using a particular quantile such as 99.5% or calculating a contingent tail expectation (CTE). In this paper
we will illustrate our approach to setting the capital for mis-estimation risk with reference to a portfolio
of annuities or pensions in payment. The basic principles also apply to other types of insurance risk.

1.5 Other authors have looked at the subject of mis-estimation risk. For example, Hardy and Panjer
(1998) used a credibility approach based around A/E ratios against a standard table. However, in this
paper we will use a parametric model with risk factors. The conversion of the results into a percentage
of a standard table is covered in Appendix 4.

1.6 The plan of the paper is to first define the components of a longevity-risk module in Section 2. Hav-
ing defined what is and is not covered by mis-estimation risk, we give a short introduction to one-parameter
mortality modelling in Section 3, which includes a demonstration of the key properties of maximum-
likelihood estimates. This is followed in Section 4 by an illustration of how these maximum-likelihood
properties can be used to assess the impact of mis-estimation risk on an insurance liability. Section 4 also
demonstrates how simulation can be used to assess mis-estimation risk in place of an analytical, stress-test
approach. In Section 5 we extend the mortality model to include an arbitrary number of parameters, and in
Section 6 we look at assessing mis-estimation risk for a basic two-parameter model. Section 7 looks at the
benefits of using data which span multiple years, and how these benefits can be more modest than might be
expected where there is a time trend in the basic mortality level. Section 8 considers the minimum require-
ments of a model for financial applications, and the resulting impact on mis-estimation risk. Section 9 con-
siders the impact of portfolio size and some pitfalls to guard against, while Section 10 concludes the paper.

1.7 In this paper we will denote a single parameter by θ and a vector of multiple parameters by
θ. The unknown underlying value of a parameter will be marked with an asterisk (∗), while an estimate
of that parameter will be marked with a circumflex (ˆ). A stressed estimate of a parameter will be
marked with ′. All numerical examples are based on the actual data for a pension scheme in England
& Wales, details of which are given in Appendix 1.

2 Components of longevity risk

2.1 In modern insurance work it is often necessary to quote a single capital amount or percentage
of reserve held in respect of a risk such as longevity. This single figure is usually made up of sub-risks,
such as those itemised in Richards et al. (2014) and reproduced in Table 1.

2.2 Table 1 is not intended to be exhaustive and, depending on the nature of the liabilities, other
longevity-related elements might appear. In a defined-benefit pension scheme, or in a portfolio of
bulk-purchase annuities, there would be uncertainty over the proportion of pensioners who were married,
and whose death might therefore lead to the payment of a spouse’s pension. Similarly, there would be
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Table 1: Sample itemization of the components of longevity risk. A diversifiable risk can be reduced
by growing the size of the portfolio and benefiting from the law of large numbers. Reproduced from
Richards et al. (2014).

Component Diversifiable? Comment

Model risk No It is impossible to know if the selected model is correct. Capital
must be held in respect of the risk that one’s chosen model is
wrong. Model risk applies not only to the projection model, but
also to the risk factors included in a model of current differentials.

Basis risk No Models are sometimes calibrated to population or industry data,
not the data of the portfolio in question. This is particularly the
case for some projection models. However, there are cases where
pension schemes in particular have mortality bases set without
reference to the portfolio’s own experience. Capital must be
held for the risk that the lives in a portfolio are different from
those of the population used to calibrate the model.

Trend risk No Even if the projection model is correct and there is no basis risk,
an adverse trend may result by chance which is nevertheless
fully consistent with the chosen model.

Volatility Yes? Over a one-year time horizon, capital must be held against the
case of unusually light mortality experience from seasonal or
environmental variation, such as an unusually mild winter and
lower-than-normal deaths due to influenza and other infectious
diseases. Note that this risk may not be wholly diversifiable,
as one year’s light mortality experience may equally be the
start of an adverse trend.

Idiosyncratic risk Yes Over a one-year time horizon, capital must be held against
the case of unusually light mortality experience from random
individual variation. See Plat (2011) and Richards & Currie
(2009) for examples.

Mis-estimation risk Yes Uncertainty exists over the portfolio’s actual underlying
mortality rates, since these can only be estimated to a degree
of confidence linked to the scale and richness of the data. This
is the subject of this paper. As our approach involves using
a parametric model, mis-estimation risk here is synonymous
with parameter risk for current mortality rates.

uncertainty over the age of that spouse. Within an active pension scheme there might be risk related to
early retirements, commutation options or death-in-service benefits. These risks might be less important
to a portfolio of individual annuities, but such portfolios would be exposed to additional risk in the
form of anti-selection from policyholder behaviour. An example of this would be the existence of the
enhanced-annuity market in the U.K.

2.3 This paper will only address the mis-estimation component of Table 1, so the figures in Tables 3, 4
and 5 can only be minimum values for the total capital requirement for longevity risk. Other components
will have to be estimated in very different ways: reserving for model risk requires a degree of judgement,
while idiosyncratic risk can best be assessed using simulations of the actual portfolio. For large portfolios
the idiosyncratic risk will often be diversified away almost to zero in the presence of the other components.
In contrast, trend risk and model risk will always remain, regardless of how large the portfolio is.
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3 A one-parameter primer in mortality analysis

3.1 Before we illustrate the full multivariate approach in Section 5, we begin with a one-parameter
primer to establish the basics. This section looks at the model behind the mortality analysis, while
Section 4 looks at how it can be applied to the task of assessing mis-estimation risk. We assume for
simplicity that we have a risk which can be modelled with a single parameter, θ. We further assume
that we have a log-likelihood function, `(θ), which can be differentiated at least twice. ` is maximised

at θ̂, i.e. where Equations 1 and 2 are satisfied:

∂

∂θ
`(θ̂)=0 (1)

∂2

∂θ2
`(θ̂)<0 (2)

3.2 θ̂ is then the maximum-likelihood estimate (MLE) of the unknown true parameter, θ∗. The

maximum-likelihood theorem states that θ̂ has a normal distribution with unknown mean θ∗ and
unknown variance σ2 (Cox and Hinkley, 1996, p296). Since θ̂ is an estimate for θ∗, and since the

curvature in Equation 2 is inversely related to the variance of θ̂, we can use the approximation θ̂∼N(θ̂,

σ̂2), where σ̂2=

[
− ∂2

∂θ2
`(θ̂)

]−1
.

3.3 To illustrate this, consider a simplistic example assuming constant mortality between the ages of

60 and 65. We assume that θ represents the logarithm of the constant force of mortality, i.e. µx=eθ for all
ages x∈ [60,65]. Past experience of the scheme in Appendix 1 observes d=122 deaths out of Ec=16,586.3
life-years lived by 6,439 pensioners between 2007 and end-2012. Assuming a Poisson-distributed number
of deaths, the likelihood function, L, is given in Equation 3:

L(θ|d,Ec)∝ e
−Eceθ(Eceθ)d

d!
(3)

and so the log-likelihood simplifies to Equation 4:

`(θ|d,Ec)=logeL

=−Eceθ+dθ+constant (4)

3.4 Equations 3 and 4 are maximised at θ̂=loge
d

Ec
. A plot of the log-likelihood function is shown

as the solid line in Figure 1, where the function is seen to be maximised at θ̂=loge
122

16586.3
=−4.9123.

The curvature around this value is
∂2

∂θ2
` = −Eceθ, and so the approximate standard error of θ̂ is

σ̂=
√

(Eceθ̂)−1=0.09054. The near-quadratic form of the log-likelihood function is consistent with θ̂

having an approximately Normal distribution with mean θ̂ and variance σ̂2, the log-likelihood for which
is shown as the dashed line in Figure 1. Thus, the log-likelihood gives us an estimate for θ and an idea
of what other estimates would be consistent with the data. We also have a close approximation for the
log-likelihood, which can simplify the generation of likely alternative values that are consistent with the
data. We can now assess the impact of these plausible alternative estimates on the value of a liability,
i.e. to assess mis-estimation risk, which we do in Section 4.
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Figure 1: Log-likelihood in Equation 4 with d=122 and E=16,586.3.
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4 A one-parameter primer in mis-estimation risk

4.1 Whereas θ is the parameter describing the mortality risk in Section 3, actuaries have to value a
monetary liability based on that risk. This can be described as a function of the risk parameter, say a(θ).
a(θ) could be a valuation function for a single policy or, more usefully, the valuation of the liability for
an entire portfolio. The best-estimate of the liability in our simplistic mortality model would therefore
be a(θ̂). However, to allow for mis-estimation risk we would calculate something like a(θ′), where θ′

was a stressed alternative value to θ̂ which was less likely but nevertheless consistent with the observed
data. For example, in Figure 1 an approximate 99.5% stress value for low mortality would be around
θ′=−5.1455 (see ¶4.4 for derivation of θ′).

4.2 We can see from Figure 1 that the log-likelihood for θ is nearly quadratic and thus that θ̂ has

an approximate Normal distribution. This means that we can generate alternative values to θ̂ which
are consistent with the data by drawing values from a Normal distribution with mean θ̂ and variance σ̂2.
In other words, we can generate θ′= θ̂+σ̂Z, where Z represents a value from the cumulative distribution
function for a N(0,1) variable, Φ(). For finding a specific, consistent-but-stressed value for θ′ at a given
p-value, we would calculate either Z=Φ−1(p) or Z=Φ−1(1−p), depending on whether increasing or
decreasing θ raises or lowers the liability function, a(θ).

4.3 To illustrate this, assume that we want to value a temporary pension from age 60 to age 65.

The survival curve for our simple model is given by tp60=e−te
θ
. Ignoring discounting for simplicity, the

valuation function for a continuously paid five-year temporary annuity is given in Equation 5:

a(θ)=
1−e−5eθ

eθ
(5)

4.4 In our example from ¶3.4, the best-estimate liability is a(θ̂)=a(−4.9123)=4.9092. If we then

wanted to find the 99.5th percentile for mis-estimation risk, we would use Z=Φ−1(0.005)=−2.5758
(Lindley and Scott, 1984, p35), as lowering θ increases the liability. The value of the liability allowing

for mis-estimation risk at the 99.5% level is then a(θ̂+σ̂Z)=a(−5.1455)=4.9279, i.e. 0.38% higher
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than the central estimate. Our 99.5% allowance for mis-estimation risk would then be 0.38% of the
best-estimate reserve.

4.5 An implicit assumption in¶4.1 is that a(θ) is a monotonically increasing or decreasing function
of θ (which is the case in Equation 5). If the liability function a(θ) is not simple or neatly behaved,
then we can use simulation to generate values of Z. Specifically, we can repeatedly draw Z from the
N(0,1) distribution, use Z to calculate θ′ and thus a(θ′), then add the value of a(θ′) to a set, S. We can
then calculate the appropriate percentile of S as an estimate for the liability allowing for mis-estimation
risk. A short R script for doing this with our simplistic temporary-annuity example is given below:

set.seed(-1) # Set random-number seed
Z = rnorm(10000) # Generate 10,000 N(0,1) values
thetaprime = -4.9123 + 0.09054*Z # Calculate parameter values
S = (1-exp(-5*exp(thetaprime)))/exp(thetaprime) # Evaluate equation (5)
Q = quantile(S,0.995) # Calculate 99.5th percentile
round(Q, 4) # Display rounded percentile

which gives a value of 4.9275 for the 99.5th percentile, i.e. close to the analytical value in ¶4.3. A more
efficient estimate of the 99.5th percentile can be obtained by using the estimator from Harrell and Davis
(1982), as shown in the R script below:

library(Hmisc) # Library for Harrell-Davis
Q = hdquantile(S, 0.995, se=TRUE, names=FALSE) # Calculate 99.5th percentile
round(Q, 4) # Display rounded percentile

which produces a value of 4.9278 for the 99.5th percentile, i.e. even closer agreement with the analytical
approximation in ¶4.3. In subsequent sections we will see why correlations between parameters mean that,
in most practical situations, we will invariably have to use the simulation approach of ¶4.5. Appendix
3 considers methods for assessing mis-estimation risk which do not require large numbers of simulations.

4.6 In Section 5 we will describe the general, multi-parameter case involving simulation, then in
Section 6 we will return to a simple two-parameter example for illustrative purposes.

5 The multi-parameter case

5.1 We now assume a more realistic case where there are multiple parameters in a vector, θ. As in
Section 3, we have a log-likelihood function, `(θ), which we assume we can differentiate at least twice. The
vector θ is the analogue of the scalar θ in Section 3, while the analogue of σ2 is the variance-covariance
matrix of θ, say V . As in ¶3.2, we have an unknown true parameter vector, θ∗, and an unknown true
variance-covariance matrix, V ∗.

5.2 Unlike in the one-parameter case in ¶4.3, there is no easy analytical option to calculate the
liability value allowing for mis-estimation. This is because the analogue of the scalar σ2 in ¶4.3 is a
matrix, V , i.e. the parameters in θ will have various positive and negative correlations with each other.
A visual example of this is given in Figure 4, where changing the value of the intercept (α0) leads to
a changed value for the slope (β0). Thus, to assess the impact of mis-estimation risk we have to perform
repeated valuations of the entire portfolio using a series of consistent alternative parameter vectors,
analogous to the procedure in ¶4.5. We repeat this process of valuation, which gives rise to a set, S,
of portfolio valuations. S can then be used to set a capital requirement to cover mis-estimation risk.
For example, Solvency II regime in the European Union demands that this calculation takes place at
the 99.5th percentile, and so the capital requirement would be given by Formula 6:(

99.5th percentile of S

mean of S
−1

)
×100% (6)
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5.3 The question then is how we generate those “consistent alternative parameter vectors”. To
do this we use the same result from the theory of maximum likelihood as in ¶3.2, which states that
the joint estimate at the MLE is distributed as a multivariate Normal random variable with mean θ∗

and a variance-covariance matrix, V ∗ (Cox and Hinkley, 1996, p296). As in the one-parameter case,

the true value of θ∗ is unknown, and so we substitute θ̂, the vector of maximum-likelihood estimates.
We now seek a similar substitute for the unknown V ∗.

5.4 In some software packages an estimated variance-covariance matrix is available directly. For
example, in R (R Core Team, 2012) an estimate of V ∗ is returned from using the vcov() function on a
model object. However, actuaries often need to fit models which are unavailable in such software (Richards,
2012), so it is useful to outline the general principle for estimating V ∗ from knowledge of `(θ) alone.

5.5 Let H(θ) be the matrix of second-order partial derivatives of the log-likelihood function, known

to mathematicians as the Hessian (McCullagh and Nelder, 1989, p6). Let I=−H(θ̂), i.e. the negative

Hessian evaluated at the MLE θ̂. I is known to statisticians as the observed information matrix (some-
times also called the observed Fisher information). The diagonal elements of I−1 are the Cramer-Rao
lower bounds for the diagonal elements of V ∗ (Cox and Hinkley, 1996), and for practical purposes we
substitute I−1 for V ∗.

5.6 We thus have a multivariate Normal distribution for the MLE vector with mean θ̂ and

variance-covariance matrix I−1, i.e. MVN(θ̂, I−1) in place of MVN(θ∗, V ∗). We can use this to
simulate consistent vectors of alternative parameters as a means of investigating parameter risk and
thus mis-estimation risk. To do this we calculate the expression in Formula 7:

θ̂+Az (7)

where z is a vector of independent, identically distributed N(0,1) variates with the same length as θ̂.
The matrix A represents the “square root” of I−1, of which there are generally several non-unique
possibilities. However, the variance-covariance matrix I−1 is a non-negative, definite matrix, and it
is positive-definite apart from some trivial cases — see Lindgren (1976, p464) for more details. We
therefore set A to be the Cholesky decomposition of I−1, i.e. A is a lower-triangular matrix such that
AAT =I−1 — see Venables and Ripley (2002, pages 62 and 422). From this we can use Equation 7
to simulate parameter error consistent with the data, and thus use these perturbed parameter vectors
to value the portfolio and explore mis-estimation risk.

5.7 We then only require to calculate (i) the first derivatives of ` for finding the joint maximum-
likelihood estimates, and (ii) the second partial derivatives to calculate I. These derivatives can be
either worked out analytically or else approximated using finite differences. Appendix 2 considers these
two approaches, and finds that analytical derivatives are strongly preferred. We therefore use analytical
derivatives throughout the main body of this paper.

6 A two-parameter case — the importance of acknowledg-
ing correlations

6.1 In Section 3 we had a simple one-parameter model behind the log-likelihood function, while the
liability function in Section 4 was not particularly realistic. In this section we illustrate the calculation
of mis-estimation risk for a pension paid throughout life and calibrate the mortality model using a wider
age range from the pension-scheme data in Appendix 1. Although the mortality model only contains two
parameters, the example is sufficient to demonstrate the critical importance of acknowledging correlations
between parameters when assessing mis-estimation risk.

6.2 We start by building `(θ) using a survival model for the force of mortality, µx, which is defined
in Equation 8:
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µx= lim
h→0+

1

h
Pr(death before age x+h|alive at age x)

= lim
h→0+

hqx
h

(8)

and where the survival probability from age x to age x+t, tpx, is given by Equation 9 for any form of µx:

tpx=exp

(
−
∫ t

0

µx+sds

)
(9)

6.3 By using survival models we will therefore be modelling mortality at the level of the individual,
rather than the group-level modelling of Section 3. For further details of actuarial applications of survival
models to pensioner and annuitant mortality the reader can consult Richards et al. (2013).

6.4 In this section we use a simple, two-parameter Gompertz (1825) model for each life in Equation 10:

µxi =e
α0+β0xi (10)

6.5 The model in Equation 10 is a simple model in age only, i.e. ignoring gender or any of the other
known relevant risk factors (inclusion of other risk factors is considered in Section 8). The results of
fitting the model to the pension-scheme experience data described in Appendix 1 are shown in Table 2,
while Figure 2 shows the essentially quadratic profile of the log-likelihood for the two parameters. Note
that we are applying a deliberately over-simple model to a fraction of the available data in order to
reveal some important basic features. In Section 8 we will make the model more realistic and practical.

Table 2: Summary of simple Gompertz (1825) model fitted to 2012 mortality experience of the pension
scheme described in Appendix 1. Data for ages 60 and over, males and females combined.

Parameter Estimate Standard error Z-value Pr(> |z|) Sig. Lives Deaths

Age (β0) 0.122872 0.00564083 21.78 0 *** 13,085 365
Intercept (α0) -12.972 0.466992 -27.78 0 *** 13,085 365

Note: Parameter significance is labelled according to the same scheme used in R [R Core Team (2012)], i.e. . for 10%,
* for 5%, ** for 1% and *** for 0.1%.

6.6 Figure 3 shows the fitted mortality hazard from Table 2 against the crude mortality hazard
for the pension scheme. We will not get side-tracked with questions of quality of fit or adequacy at this
point, as our aim is to demonstrate mis-estimation risk. However, we note that Section 8 introduces the
concept of a financially suitable model as a critical foundation for assessing mis-estimation risk, together
with a test for determining financial suitability.

6.7 In our model in Table 2 we have the maximum-likelihood estimates α̂0 = −12.972 and

β̂0 = 0.122872. If we define our MLE vector as θ̂= (β̂0,α̂0)
′, then the estimated variance-covariance

matrix using the approach defined in ¶5.4 is as follows:

β̂0 α̂0( )
β̂0 3.18189×10−5 −0.00261762
α̂0 −0.00261762 0.218081
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Figure 2: Log-likelihood profiles for model in Table 2. These profiles demonstrate the quadratic shape
around the MLEs, which is consistent with the multivariate Normal distribution for the estimates used
in Equation 7.
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6.8 The correlation between α̂0 and β̂0 is -99.4% (−99.4% = −0.00261762√
3.18189×10−5×0.218081 × 100% (see

Table 9 for further illustration of this). In other words, if α̂0 is mis-estimated then β̂0 changes in the
opposite direction by an almost perfectly known amount (and vice versa). This is illustrated in Figure 4,
where we stress the intercept by 1.96 standard errors and re-estimate the age slope. Due to the strong
correlation, a change in one parameter is accompanied by an important offsetting change in another. This
is why a simple parallel shift in mortality table is not in general a correct statement of mis-estimation
risk: the level of mortality (as represented by α0) and the increase with age (as represented by β0)
are highly negatively correlated. A downward shift in level would result in an upward shift in the rate
of increase by age, as shown in Figure 4. Mortality levels and rates of change by age are generally
negatively correlated, as demonstrated later in Table 9, and this topic is explored in some detail for
various risk factors in Richards et al. (2013). Appendix 5 considers how to restructure a model to reduce
parameter correlation, but this only works for the very simplest models. It is therefore important that
any assessment of mis-estimation risk should acknowledge these correlations.

6.9 However, there are further consequences of the variance-covariance matrix in ¶6.7, namely that
the impact of mis-estimation risk varies by age. Figure 3 shows the 95% confidence interval for the fitted
mortality hazard, which forms a bowed shape courtesy of the correlation in ¶6.8. Within the model
structure, the relative uncertainty is greatest at the youngest and oldest ends of the age range. The
reason for this is that we are fitting a straight line, which must go through the data in the central age
range. As a consequence, any mis-estimation of α0 will cause a change in the estimation of β0. As with
a child’s see-saw, the change in fit near the centre will be much smaller than at either end. This same
see-saw phenomenon will have major consequences for using multi-year data, as covered in Section 7.

6.10 It is therefore important that any assessment of mis-estimation risk should acknowledge the
age-related distribution of liabilities as well as the parameter correlations. To demonstrate this, assume
that the liability function is for a single annuity at outset age x, i.e. a(θ) is defined as in Equation 11:

a(θ)= āx (11)

=

∫ ∞
0

tpxv(t)dt

where v(t) is the continuous-time discount function. We use a constant net annual discount rate of 1%
in this paper — U.K. government gilts with a maturity of 14–18 years yield around 3% at the time
of writing and the Bank of England has a 2% inflation target. However, it could also be argued that
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Figure 3: loge(crude mortality hazard) and 95% confidence intervals for fitted model for ages 60 and
over. Data and model from Table 2.
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index-linked gilt yields are relevant for valuing pension-scheme cashflows, and the yields for these are all
negative at the time of writing. Using the model in Table 2 and a 1% net discount rate in the liability
function in Equation 11, the procedure described in ¶4.5 yields the mis-estimation capital requirements
shown in Figure 5. The mis-estimation capital required increases rapidly with age, which emphasises
the importance of allowing for the age-related distribution of liabilities. The choice of discount rate
(or yield curve) is obviously also important, as demonstrated in Figure 6 where a lower effective discount
rate leads to a higher mis-estimation capital requirement.

6.11 A selection of the mis-estimation capital requirements from Figure 5 is listed in Table 3. The
average age of the 12,720 survivors at 1st January 2013 was 71.9 years (71.2 years weighted by annualised
pension). Using a single model point would therefore suggest a mis-estimation capital requirement
somewhere in the interval (4.90%, 5.22%).

Table 3: Specimen mis-estimation capital requirements from Figure 5 (95% confidence intervals using
the method of Harrell and Davis (1982), calculated from 10,000 valuations of a single annuity discounted
at a net rate of 1% p.a.).

Annuity Mis-estimation
outset capital
age requirement

69 4.61–4.83%
70 4.76–4.99%
71 4.90–5.22%
72 5.09–5.45%
73 5.33–5.66%
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Figure 4: loge(crude mortality hazard) with best-estimate fit and alternative line with stressed intercept
(α0) and re-estimated age slope (β0). Ages 60 and over, data and model from Table 2
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Figure 5: Mis-estimation risk capital requirement at 99.5% level as percentage of best-estimate reserve
(with 95% confidence interval using Harrell and Davis (1982) estimate).
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Figure 6: Mis-estimation risk capital requirement at 99.5% level as percentage of best-estimate reserve
under various discount rates.
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6.12 However, it is doubtful whether a single model point, or even a handful of model points, can
capture the impact of mis-estimation risk on an entire portfolio. It would obviously be more accurate to
perform an entire portfolio valuation instead. This is relatively straightforward to do, and we therefore
redefine the valuation function as in Equation 12:

a(θ)=
n∑
i=1

wiāxi (12)

for all n survivors in the pension scheme. This automatically allows for not only the age distribution via the
individual ages, xi, but also the liability distribution via the individual pensions, wi. Using the full-portfolio
valuation function in Equation 12 and the procedure in ¶4.5 we get a 95% confidence interval for the
mis-estimation capital of (4.57%, 4.90%). We can see that the range of mis-estimation capital requirements
using the full-portfolio valuation is lower than would be implied by using a specimen model point at the aver-
age age and looking up Table 3. To show the impact of the distribution of the wi, setting all the pensions to
the same value and redoing the full-portfolio valuation with ¶4.5 yields a 95% confidence interval for the mis-
estimation capital range of (4.64%, 5.00%). A full-portfolio valuation of individual liabilities yields a more
accurate value for the mis-estimation capital requirement, which in this case also meant a lower requirement.

6.13 However, the model in Table 2 is implausibly simple: it does not contain enough relevant risk
factors and only uses one year’s experience when more data are available. In Section 8 we will fit models
with more risk factors and consider other mortality laws, but we first need to consider the impact of
using multi-year data.

7 The impact of using multi-year data

7.1 The mis-estimation capital requirements in Figure 5 and Table 3 are based on only a single
year’s mortality experience. In practice, most portfolios have experience data spanning several years,
and this extra data contributes to improved estimation of parameters. This extra data also contributes
to significantly reduced mis-estimation risk, as illustrated by comparing the first two rows in Table 4.
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Table 4: 99.5% mis-estimation capital requirements as percentage of best-estimate reserve.

Mis-estimation capital:
Data (a) Central (b) 95%
range Model estimate interval

2012 only Age 4.73% 4.57–4.90%
2007–2012 Age 2.12% 2.06–2.19%
2007–2012 Age+Time 3.97% 3.83–4.10%

Note: Results for various models and time periods calculated from 10,000 simulations. The 95% confidence intervals
were calculated using the method of Harrell and Davis (1982). Models calibrated using data for ages 60 and over. For
models including a time trend, the rates fitted are for 1st January 2010, i.e. µx,2010.

7.2 However, an implicit assumption in the simple age-only model is that mortality is a stationary
process in time. As many studies have shown, such as Willets (1999), mortality rates of pensioners and
annuitants have been continuously falling for decades. We can allow for the fact that mortality is a
moving target by including a time-trend parameter, δ, as in Equation 13:

µxi,y=eα0+β0xi+δ(y−2000) (13)

where µx,y is the instantaneous force of mortality at exact age x and calendar time y. The offset of -2000
keeps the parameters well-scaled. The δ parameter could obviously be used to project mortality rates
into the future as well as measuring the recent changes in mortality levels. However, we are concerned
in this paper with mis-estimation risk of current rates, so to keep things comparable in Table 4 we
generate static mortality rates as at 1st January 2010, i.e. using Equation 13 the fitted rates used in
the mis-estimation assessment will be µx,2010.

7.3 One consequence of including this time-trend parameter is that it offsets a large part of the
benefit of having the extra data, as shown in the third row of Table 4. This is an example of a
phenomenon which occurs repeatedly with mis-estimation risk: enhancing the model’s fit can lead to
an increase in mis-estimation risk. In the case of Table 4 there is little doubt that the model including
time trend is a better fit: the AIC (Akaike, 1987) is 15801.3 with the time trend and 15808.1 without
it, while the log-likelihood profiles in Figure 7 confirm the validity of including each parameter as none
of their plausible ranges includes zero. However, the better-fitting of the two models results in a higher
mis-estimation capital requirement. Indeed, the inclusion of the time-trend parameter has added back
over two thirds of the reduction in mis-estimation capital requirements from the extra data.

7.4 Since this phenomenon might strike some readers as counter-intuitive, it is worth explaining
it in more detail. At its heart we have the same see-saw phenomenon as in Figure 4, but here operating
in calendar time. The time-trend parameter, δ, will be forced to pass through the “average” level of
mortality across the period of observation, but it will be much less constrained at either end. This was
the case in Figure 4 when looking at the behaviour of β0 in response to changes in α0. Thus, there
is more uncertainty over the level of mortality at either end of the exposure period than there is over
the mid-point of the period. In the presence of a time-varying mortality process, it is this see-saw effect
which is offsetting much of the extra estimating power from using multi-year data.

7.5 This can be thought of more figuratively. Leaving aside the fact that mortality increases with age,
if mortality were a static process in time then more experience data over a longer period of time will validly
reduce mis-estimation risk. If there is no time trend, then the experience data of five years ago (say) will
help inform you about mortality levels now: there is more relevant data on a process which is not changing
in time. This is illustrated by comparing the first two rows of Table 4. However, if there is a time trend, then
the experience data of five years ago is of less use in estimating current levels of mortality. While the time
trend can be estimated, there is still uncertainty over its precise value, and it is this uncertainty which is
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undoing some of the benefit of the multi-year data. This is illustrated by comparing the last two rows of Ta-
ble 4. Thus, where risk levels vary in time, as with pensioner and annuitant mortality, experience data span-
ning multiple years will only yield modest reductions in mis-estimation risk. This is illustrated by compar-
ing the first and last rows of Table 4. Other necessary improvements to the model will also increase the mis-
estimation capital requirements, but for quite different reasons, and we will see why this is so in Section 8.

Figure 7: Log-likelihood profiles for Age+Time model in Table 4. These profiles demonstrate the
quadratic shape around the MLEs, which is consistent with the multivariate Normal distribution for
the estimates in Equation 7.
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8 A minimally acceptable model for financial purposes

8.1 So far we have considered a simple two-parameter Gompertz model, which works well enough
for ages above age 60. However, Figure 9 shows an important amount of unused experience data in the
age range 50–60, while Figure 10 shows that the data in this range will not fit the straight-line Gompertz
assumption on a logarithmic scale. We solve this problem by using the mortality law in Equation 14,
which includes a constant component as per Makeham (1860):

µxi =
eε+eα0+β0xi

1+eα0+β0xi
(14)

As before, we can also define a time-varying version of Equation 14:

µxi,y=
eε+eα0+β0xi+δ(y−2000)

1+eα0+β0xi+δ(y−2000)
(15)

8.2 The models in Equations 14 and 15 do not allow for many risk factors, however. We can extend
our model’s capabilities as follows:

µxi,y=
eε+eα0+

∑
jαjIi,j+β0xi+δ(y−2000)

1+eα0+
∑
jαjIi,j+β0xi+δ(y−2000)

(16)

where αj represents the effect of risk factor j and Ii,j is an indicator function taking the value 1 when life
i possesses risk factor j and 0 otherwise. In this section we will consider gender and pension size-band as
additional risk factors, but there is no practical limit to the number of risk factors which can be considered
when modelling individual-level mortality. The benefits of individual- over group-level modelling are
discussed in Richards et al. (2013).
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8.3 For a model to be useful for actuarial purposes we additionally require that all financially
significant risk factors are included. To test whether a model achieves this we use the process of
bootstrapping described in Richards et al. (2013), i.e. we sample from the data and calculate the ratio of
the actual number of deaths in the sample to the predicted number according to the model. The results
of this are shown for two models in Table 5, where the ratios for the lives column are close to 100%.
This means that both models have a good record in predicting the number of deaths, as one would
expect for models fitted by the method of maximum likelihood. However, we can see that the model
in the first row has a poor record when the ratio is weighted by pension size. This is because those with
larger pensions have a lower mortality rate, thus leading the first model to over-state pension-weighted
mortality. The first model in Table 5 is therefore unacceptable for financial purposes.

Table 5: Bootstrapping results for two alternative models.

Median bootstrap 95% interval
ratio weighted by: for mis-estimation

Model (i) Lives (ii) Amounts risk capital

Age+Gender+Makeham+Time 99.8% 91.7% 3.75–3.96%
Age+Gender+Makeham+Time+Size 99.8% 98.8% 4.40–4.68%

Note: Calibrated to 2007–2012 mortality experience of pension scheme described in Appendix 1 (ages 50 and over).
Bootstrap sample size is 1,000 (sampling with replacement) and 1,000 samples are taken. Mortality rates are as at 1st

January 2013, i.e. we are using µx,2013 without projection. Model notation follows that of Baker and Nelder (1978).

8.4 The second row in Table 5 shows that the addition of a three-level risk factor for pension size
makes a material improvement in the amounts-weighted bootstrap ratio. Although the median bootstrap
ratio is not quite as close to 100% as we might like, it is a clear improvement on the first model and
could therefore be regarded as a minimally acceptable model for financial purposes. We can also see
that the inclusion of a necessary risk factor (pension size) has increased the capital requirement for
mis-estimation risk. The reason for this is the concentration of risk demonstrated in Table 11 — the bulk
of the total pension is paid to a small proportion of the overall lives, yet these same lives experience lower
mortality rates, as shown in Table 6. In effect, the liability of the scheme is driven by a much smaller
effective number of lives than a simple headcount would imply, and the mortality level of these lives is
lower. This concentration of risk makes it very important that (i) the model reflects these dynamics, and
(ii) that the mis-estimation valuation function a(θ) reflects the impact of these lives. Using a valuation
function which performs a valuation of the whole portfolio will do this.

Table 6: Summary of Age+Gender+Makeham+Time+Size model using Equation 16.

Parameter Estimate Std. error Z-value Pr(> |z|) Sig. Lives Deaths

Age (β0) 0.148372 0.00534602 27.75 0 *** 15,698 2,076
Gender.M (αmale) 0.479342 0.0603327 7.94 1.94235e-015 *** 5,956 901
Intercept (α0) -14.7313 0.490689 -30.02 0 *** 15,698 2,076
Makeham (ε) -5.41968 0.15372 -35.26 0 *** 15,698 2,076
Size.2 (αSize.2) -0.180133 0.0778913 -2.31 0.0207435 * 3,140 362
Size.3 (αSize.3) -0.313053 0.108229 -2.89 0.00382173 ** 1,567 164
Time (δ) -0.0463558 0.0162836 -2.85 0.00441649 ** 15,698 2,076

Note: Calibrated using experience data for ages 50 and over. Parameter significance is labelled according to the same
scheme used in R [R Core Team (2012)], i.e. . for 10%, * for 5%, ** for 1% and *** for 0.1%.

8.5 In practice an actuary would use a more sophisticated model than the one in Table 6. Risk
factors like gender and pension size would normally be allowed to vary by age, for example, and most
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portfolios have scope for additional rating factors such as early-retirement indicators or postcode-based
profiling — see Richards (2008) for further details.

Figure 8: Log-likelihood function in profile for each of the seven parameters in Table 6, showing the essen-
tially quadratic nature of the function, and thus the validity of the multivariate normal assumption in ¶5.3.
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9 Discussion

9.1 Before using the mis-estimation method described in this paper, it is important that the analyst
check three items. The first requirement is that the independence assumption must hold: data must
be deduplicated and the model must be well specified. Data with duplicates will give a falsely low
estimate of mis-estimation risk, but a bigger risk comes from badly specified models. One example is
the still-encountered practice of chopping up the experience of individuals into non-overlapping annual
pieces and fitting a qx model with a GLM. Such models will understate misestimation risk capital if
applied in the manner described in this paper.

9.2 The second requirement is that the model allows for all financially significant risk factors. A
model which does not contain these will give an erroneously low estimate of mis-estimation risk. This
is because the financial impact of each life is not the same — those with larger pensions have a much
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larger influence than those with smaller pensions. This is compounded by the fact that those with larger
pensions usually live longer, as shown by the lower mortality of the Size.3 group in Table 6. Thus, both
the overall reserves and the associated mis-estimation risk are largely driven by a small proportion of
the portfolio membership. The bootstrapping procedure of ¶8.3 can test whether a model has included
all financially relevant risk factors.

9.3 The third requirement for multi-year data is to check that the model includes a time-trend
parameter, if one is needed. An additional useful check is that the log-likelihood function is approximately
quadratic around each maximum-likelihood estimate, i.e. that the multivariate Normal assumption
behind Formula 7 holds.

9.4 Mis-estimation risk is portfolio-dependent. Different portfolios, and models with different risk
factors, will produce different mis-estimation capital requirements. By and large, the more experience
data there is, the lower the mis-estimation risk will be. We can illustrate this by using a large population
of German pensioners. A comparison of the scale of the data sets is given in Table 7, where the German
data set is a factor of around fifteen times larger.

Table 7: Comparison of U.K. pension scheme from Appendix 1 and a German pensioner population.

Time lived
Data set Years Lives Deaths (years)

U.K. pension scheme from Appendix 1 2007–2012 15,698 2,076 71,162.9
German pensioners from Richards et al. (2013) 2007–2011 244,908 31,546 1,008,739.0

Ratio of German : U.K. metric n/a 15.6 15.2 14.2

9.5 A comparison of Tables 5 and 8 shows that the same minimally acceptable model does a
reasonable — but not perfect — job of explaining financially weighted mortality variation in the U.K.
scheme and amongst the German pensioners. However, although the German data set is around fifteen
times larger, the mis-estimation capital requirement is only reduced by three quarters.

Table 8: Bootstrapping results for German pensioner data.

Median bootstrap 95% interval
ratio weighted by: for mis-estimation

Model (i) Lives (ii) Amounts risk capital

Age+Gender+Makeham+Time+Size 99.4% 98.3% 1.10–1.19%

Note: Calibrated to 2007–2011 mortality experience of pension scheme described in Richards et al. (2013) (ages 50 and
over). Bootstrap sample size is 1,000 (sampling with replacement) and 1,000 samples are taken. Mortality rates are as
at 1st January 2012, i.e. we are using µx,2012 without projection. Model notation follows that of Baker and Nelder (1978).

9.6 More data can come from the portfolio being larger or from a longer exposure period, although
the benefit of multi-year data is tempered when a time trend exists. The mis-estimation capital
requirements also vary according to the discount rate or yield curve, as shown in Figure 6, so such
calculations will need to be regularly updated as the interest-rate environment changes.

9.7 The capital requirements produced by this method should also be taken as a lower bound, and
actuarial judgement will need to be applied as to the extent of any additional allowances which might
be necessary. For example, if a portfolio were growing quickly, a larger addition would be needed than
if the portfolio were growing slowly. A still larger adjustment might be required if the portfolio were
growing due to a new business source. For example, consider a life-office that historically wrote internal
vesting annuities, but then made a decision to write open-market annuities or bulk-purchase annuities.
This would create extra mis-estimation risk which could not be captured in a procedure calibrated using
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only the internal-vesting mortality experience. Such circumstances would require additional capital to
be held for mis-estimation risk, and this can only be determined by actuarial judgment.

9.8 We note also that a matrix of correlations between parameters, C, can be derived from the
variance-covariance matrix, V , by setting ci,j=vi,j/

√
vi,ivj,j, where ci,j and vi,j are the values in row i and

column j of the matrices C and V , respectively. C is symmetric around the leading diagonal, as is V , and
the leading diagonal of C is composed of 1s, as each parameter is perfectly correlated with itself. All entries
in C lie between -1 and +1 (which represent perfect negative and perfect positive correlation, respectively).
An example correlation matrix is given in Table 9, calculated according to the steps outlined above.

Table 9: Percentage correlations between coefficients in the model from Table 6, i.e. ci,j×100%.

Age Gender.M Intercept Makeham Size.2 Size.3 Time

Age 100 23 -94 72 -7 -2 -2
Gender.M 23 100 -26 17 -17 -19 0
Intercept -94 -26 100 -70 5 2 -32
Makeham 72 17 -70 100 -10 -2 -1
Size.2 -7 -17 5 -10 100 13 -1
Size.3 -2 -19 2 -2 13 100 0
Time -2 0 -32 -1 -1 0 100

Note: As with the variance-covariance matrix, the correlation matrix is symmetric about the leading diagonal. The
leading diagonal is 100% because a parameter value is perfectly correlated with itself.

9.9 One item worth noting in Table 9 is that the time-trend parameter has little correlation with
any parameter apart from the Intercept, with which it is negatively correlated. This is different from the
model for the German pensioner data set in Richards et al. (2013), where the time-trend parameter was
not strongly correlated with any of the other parameters. This has potential application to the correlation
matrix used by insurers when allowing for diversification of risks under the Solvency II regime. The corre-
lation between the time-trend parameter and the others could be used to support the assumed correlation
between mis-estimation risk and mortality improvements. This would have to be assessed on a portfolio-by-
portfolio basis, however, and would require actuarial judgement. In the case of this portfolio, however, the
negative correlation between the time trend and the intercept could perhaps be used to justify a negative
correlation between mis-estimation risk and trend risk. If so, this would bring an overall indirect capital
benefit from using multi-year data, despite the modest reduction in mis-estimation capital in Section 7.

10 Conclusions

10.1 Mis-estimation risk for a portfolio can be straightforwardly assessed using the portfolio’s own
experience data and some basic results for maximum-likelihood estimates. An approximation for the
variance-covariance matrix is required, but this can be quickly derived from the log-likelihood function
for any statistical model. Increased portfolio size leads to better estimation and thus lower mis-estimation
capital requirements, but Section 9 shows that there is a diminishing return. Similarly, experience data
spanning multiple years provide only a modest reduction in mis-estimation capital requirements where risk
rates are changing in time, as shown in Section 7. However, larger portfolio size or a longer exposure period
could bring indirect capital benefits from examining the matrix of parameter correlations, as in ¶9.9.

10.2 Parameters estimated from any statistical model are correlated to some extent, and these
correlations need to be acknowledged in assessing mis-estimation risk. Furthermore, uncertainty over fitted
rates varies by age and some of the greatest parameter uncertainty applies to the lives with the largest
concentration of liabilities. The concentration of liabilities in a small subset of lives is one reason why an
improved model fit can lead to higher mis-estimation risk. A full-portfolio valuation using appropriately
perturbed model parameters will therefore allow for all of these aspects when assessing mis-estimation risk.
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11 Appendix 1: Details of scheme used to illustrate results

11.1 The data used to illustrate results in this paper are for a medium-sized, local-authority
pension scheme in England & Wales. The data fields available were as follows: date of birth, gender,
commencement date, total annual pension, end date, postcode, National Insurance (NI) number and
whether the pensioner was a child, retiree or widow(er) (C, R or W). The end date was determined
differently for deaths, temporary pensions and survivors to the extract date. For deaths, the end date was
the date of death. For children’s pensions and trivial commutations, the end date was the date the pension
ceased or was commuted. For other survivors, the end date was the date of extract in early 2013. The
experience data beyond 31st December 2012 were not used to avoid bias from delays in death reporting.

11.2 There were 17,068 benefit records available before deduplication, of which one was rejected
for having an end date inconsistent with the commencement date. Of the remaining 17,067 records,
2,265 were marked as deaths.

11.3 Annuitants and pensioners often have multiple benefit records. It is particularly common
in annuity portfolios for people to have multiple annuities, as demonstrated in Richards (2008). The
phenomenon is less common for pension schemes, but multiple benefit records for the same individual
can still arise. The first scenario is where an individual accrues two or more benefits from separate
periods of service. The second scenario is where an individual receives a pension in respect of their own
service and also a spouse’s pension if they were a widow(er) of a deceased pensioner in the same scheme.
Administratively it is usually easier to handle these multiple benefits separately, even though they are
paid to the same person, and so duplicate records arise.

11.4 It is essential in any statistical model that the assumption of independence is valid, so we
must perform deduplication, i.e. the identification of individuals with multiple benefit records. Following
Richards (2008) we use two different deduplication schemes based on matching individual data items
on each record. Each matching rule forms a deduplication key based on verified data items; if all items
of the deduplication key match, then the two or more matching records are merged and the pension
amounts added together. The details of this procedure are summarised in Table 10. The two records
with conflicting life statuses were rejected, leaving 16,131 records (16,131=17,068−1−934−2).

Table 10: Deduplication results for medium-sized pension scheme in England and Wales.

Duplicates Conflicting
Deduplication key eliminated statuses

Date of birth, gender and postcode 891 2
Date of birth, gender and NI number 43 0

Total 934 2

11.5 The number of duplicates may seem modest in relation to the overall number of records, but it
is important to deduplicate for a number of reasons. For example, if an individual received two pensions
of £4,000 each, this should be recognised as one individual in group S09 in Table 11 and not two records
in group S07. Failure to deduplicate leads to bias in mortality models and to falsely comforting estimates
of parameter variance, and thus under-statement of mis-estimation risk. The resulting data volumes
are shown in Figure 9.

11.6 One issue with pension schemes is that pensions are usually increased from year to year. This
creates a bias problem for cases which terminate early, i.e. deaths and temporary pensions. To put
all pension values on the same approximate financial footing, therefore, the annual pension amounts for
early terminations were revalued by 2.5% per annum to the end of the period of observation (the Retail
Prices Index RPIJ increased by a geometric average of 2.68% over this period, while the Consumer Price
Index CPIH increased by 2.90%). A more accurate approach would have been to establish the actual
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Figure 9: Deaths and time lived at ages 50 and over for 2007–2012, males and females combined.
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Note: In the given age and date range there were 2,076 deaths among 15,698 lives, with a total exposure
time of 71,162.93 years. Exposure time and deaths prior to 1st January 2007 were not used and exposure
times and deaths after 31st December 2012 were discarded to reduce the influence of delays in death reporting.

scheme increases over the period, together with their timing and split between different types of benefits.
However, this level of detail would not have made any material change to the results in this paper.

11.7 Table 11 shows the breakdown of the deduplicated data by revalued annual pension. The pension
scheme shows considerable concentration of risk, as the top 20% of lives account for 58.7% of the total
pension. This phenomenon is common in the U.K., as demonstrated for other portfolios in Richards (2008).

Table 11: Data by pension size-band.

Revalued Percentage
pension p.a. (£) Exposure Pensions of total

SizeBand From... ...to Lives Deaths (years) (£million) scheme pension

S01 0 537.62 1,571 175 6,766.9 0.5 0.7
S02 537.62 954.22 1,570 235 6,989.4 1.2 1.6
S03 954.22 1,397.90 1,570 238 6,902.9 1.8 2.5
S04 1,397.90 1,962.39 1,570 259 7,110.7 2.6 3.5
S05 1,962.39 2,686.70 1,570 227 7,066.5 3.6 4.9
S06 2,686.70 3,616.08 1,570 213 7,083.6 4.9 6.6
S07 3,616.08 4,958.15 1,570 203 7,265.7 6.7 9.0
S08 4,958.15 7,025.51 1,570 178 7,291.6 9.3 12.5
S09 7,025.51 11,564.99 1,570 184 7,287.2 14.0 18.9
S10 11,564.99 75,628.38 1,567 164 7,398.5 29.5 39.8

Total 15,698 2,076 71,162.9 74.1 100.0

Note: Pensions for deaths and early terminations are revalued at 2.5% per annum to the end of 2012.
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11.8 Figure 10 shows the crude mortality hazard on a logarithmic scale for males and females
combined. There is no obvious evidence of a data problem, with the mortality hazard approximately log-
linear above age 60. A further useful check on the validity of the data is to plot the Kaplan-Meier curves
(Kaplan and Meier, 1958). We have encountered other portfolios where there is not a clear separation
between survival curves for males and females. This is sometimes evidence of a data-corruption problem,
which can be related to the processing of benefits for surviving spouses. However, Figure 11 shows that
females have a consistently higher probability of reaching any given age, leading us to conclude that the data
here do not suffer from any obvious corruption. Table 12 contains the mortality ratios for the deduplicated
scheme data, which suggest falling mortality levels with a large degree of volatility in the annual experience.

Figure 10: Crude mortality hazard for males and females combined in medium-sized U.K. pension scheme.
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Note: Data cover ages 50 and over for the period 2007–2012. The crude mortality hazard is the actual number
of deaths in the age interval [x,x+1) divided by the time lived in that interval. The falling mortality rate
over the age range 50–60 is caused by excess mortality from ill-health retirements (the gender mix in this
age range is broadly constant, with females accounting for variable 42–53% of exposure at individual ages).

Table 12: Actual deaths against S2PA without adjustment, weighted by lives and revalued pension.

Weighting Gender 2007 2008 2009 2010 2011 2012

Lives Males 112% 119% 120% 102% 108% 104%
Females 125% 112% 98% 101% 88% 100%

Amounts Males 93% 92% 113% 82% 92% 88%
Females 110% 97% 83% 100% 79% 89%

Note: The denominator of the mortality ratio is calculated by summing µx+1
2
Ec

x+1
2

, where Ec
x+1

2

is the central

exposed-to-risk or time lived at average age x+ 1
2 . µx+1

2
is approximated from the published table by −log(1−qx).

Pensions for deaths and early terminations are revalued at 2.5% per annum to the end of 2012.
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Figure 11: Kaplan-Meier product-limit estimate from age 60 for males and females in medium-sized
U.K. pension scheme.
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Note: The data cover ages 60 and over in the period 2007–2012. The version of the Kaplan-Meier estimate
plotted is that defined in Richards (2012).

12 Appendix 2: Analytical derivatives v. numerical approx-
imations

12.1 When fitting mortality models, the foundation of modern statistical inference is the log-
likelihood function, `. The point at which the log-likelihood has its maximum value gives you the
joint maximum-likelihood estimates of your parameters, while the curvature of the log-likelihood gives
information about the uncertainty of those parameter estimates. The key to both is the calculation of
derivatives: gradients (first derivatives) for maximizing the log-likelihood function and curvature (second
partial derivatives) for estimating the variance-covariance matrix. In each case, we require either the
analytical derivatives themselves, or else numerical approximations of them.

12.2 Numerical approximations to derivatives can be obtained relatively straightforwardly by using
difference quotients. This involves perturbing a parameter by a small value, h say, and then expressing the
change in function value relative to h. For example, a central difference quotient of the single-parameter
log-likelihood function, `(θ), will yield a numerical approximation of the first derivative, as in Equation 17:

∂`

∂θ
≈ δh[`](θ)

h
=
`(θ+h/2)−`(θ−h/2)

h
(17)

and a similar central difference quotient can be used to approximate the second derivative, as in
Equation 18:

∂2`

∂θ2
≈ δ

2
h[`](θ)

h2
=
`(θ+h)−2`(θ)+`(θ−h)

h2
(18)
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12.3 For the multi-parameter case, Equation 17 must be applied to each parameter in turn, with the
other parameters unperturbed. A simple extension of Equation 18 is used for second partial derivatives.
In theory, the smaller the value of h, the closer the numerical approximation will be to the actual
derivative. Such numerical approximations have the advantage that they avoid the need to work out
large numbers of analytical derivatives for each mortality law. However, there are drawbacks in terms
of stability and accuracy, and this is most evident for estimating the curvature. By way of illustration,
Table 13 shows the estimates and approximate standard errors for one of the parameters in a simple
two-parameter Gompertz model using numerical approximations for the derivatives.

Table 13: Estimated value and approximate standard error for the Intercept (α̂0) parameter in the simple
Gompertz model for mortality in Table 2. Numerical approximation is used with varying values of h.

Intercept Standard
h (α̂0) error

10−3 -12.9491 0.502297
10−4 -12.9718 0.467319
10−5 -12.972 0.459947
10−6 -12.972 0.193068
10−7 -12.972 0.020153

12.4 The maximum-likelihood estimate of the Intercept parameter in Table 13 is consistent to five
significant figures for values of h=10−4 and smaller, with a degree of convergence apparently achieved for
values of h=10−5 and smaller. However, there is no such obvious convergence for the approximate standard
error, with the estimate becoming unstable for very small values of h. This is not an isolated result —
similar work with other schemes and other models produces the same finding. Furthermore, although the
value of h=10−4 looks like the best compromise in Table 13, this is not the case for other models and other
data sets. Our conclusion therefore is that while numerical approximations are often fine for finding the
maximum-likelihood estimates, they are not reliable enough for estimating the variance-covariance matrix.

12.5 For reliability one simply has to do the maths and find the expressions for the analytical
derivatives. This has the additional advantage that points of possible arithmetic underflow can be identified
and handled — see Richards (2012) for a list of some problematic expressions and how to cope with them.
Another advantage is that using the analytical derivatives typically results in faster fitting times. Using
analytical derivatives the values for the parameters in Table 13 are -12.972 for the Intercept and 0.467 for
the standard error (see Table 2). From this we can deduce that h=10−4 was indeed the best-performing
approximation step in Table 13. There is of course a degree of irony in having to calculate the analytical
derivatives to find out which numerical approximation performs best — one might as well just use the
analytical derivatives. However, it is useful to be able to do both as a means of checking one’s mathematics.

12.6 The methodology in this paper requires the accurate estimation of the variance-covariance ma-
trix, which we estimate from the inverted matrix of second partial derivatives. The best way to accurately
estimate the latter is to work out the analytical derivatives. This is admittedly more work than using dif-
ference quotients like Equations 17 and 18, but, as demonstrated in Table 13, using analytical derivatives
is the most reliable way to fit the model parameters and to estimate their variance-covariance matrix.
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13 Appendix 3: Number of simulations required

13.1 In the main body of this paper we used 10,000 simulations of Equation 7, followed by
full-portfolio valuations in Section 8. The simulations can be done quickly enough, but the portfolio
valuations which accompany them can be computationally demanding. It is worth commenting on two
practical methods to speed things up.

13.2 The first method is to exploit the fact that each simulation in Equation 7 is independent of
all the others, as are the associated portfolio valuations. We can therefore use parallel processing to
perform the same work in a much shorter period of time. The mis-estimation algorithm in this paper
is highly scaleable, i.e. spreading the work over u CPUs means the work can be done in 1

u
of the elapsed

time. This was the method adopted for this paper, where calculations were spread over seven CPUs.

13.3 The second method is to see whether there is an appropriate distributional assumption which
can be made for the portfolio valuations in S (defined in Formula 6). The number of simulations could
be curtailed if it were found that the values in S followed, say, a Normal distribution, as the mean and
variance could be robustly estimated and all higher-order moments are a function of these. This approach
was considered for Richards et al. (2014), where the much larger number of parameters in projection
models — and the greater variance in the estimates — made an approach like Equation 7 trickier.
However, the distribution of the values in the resulting set S in Richards et al. (2014) was only Normally
distributed for a subset of projection models, so this second method could not be universally used. That
said, the mis-estimation approach in Equation 7 is very different and the number of parameters is much
smaller, so it is worth considering if this second method might apply here.

13.4 The Normal distribution is fully characterised by its mean and variance, i.e. the first two mo-
ments of the distribution. Higher-order moments are merely a function of the first two. In general, if a dis-
tribution has mean µ, then the coefficient of skewness (standardised third moment) is given by Formula 19:

E(s−µ)3

[E(s−µ)2]
3
2

(19)

where E denotes expectation — see Wetherill (1982, p88). Formula 19 is zero for the Normal distribution.
Similarly, adjusting the coefficient of kurtosis (standardised fourth moment) given in Wetherill (1982,
p88) we get Formula 20:

E(s−µ)4

[E(s−µ)2]2
(20)

which is 3 for the Normal distribution. Thus, if the skewness coefficient of the data in S is close to zero
and the kurtosis coefficient of the same data is close to 3, then it would be appropriate to use the Normal
distribution as a means of finding the percentiles of S. The skewness and kurtosis of the valuations in S
for the models used in the main body of the paper are given in Table 14. For comparison we also show
the skewness and kurtosis of 10,000 simulations from the N(0,1) distribution using the R script below:

library(moments) # Load library of statistical functions
set.seed(-1) # Initalise seed for random-number generator
Z = rnorm(10000) # Generate 10,000 N(0,1) variates
skewness(Z) # Caclulate and display coefficient of skewness
kurtosis(Z) # Calculate and display coefficient of kurtosis

13.5 The results in Table 14 show that the portfolio valuations in S have a skewness close to zero
and a kurtosis close to 3. In each case the distribution of S can therefore be closely approximated by
a Normal distribution. Thus, for these models and this particular portfolio at least, one could calculate
the mis-estimation capital requirements from the mean and standard deviation of S, together with the
appropriate value of Φ−1(). Indeed, one could arguably use far fewer than 10,000 simulations, as the mean
and standard deviation of Normally distributed data can be reliably estimated with fewer data points.
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Table 14: Skewness and kurtosis of portfolio valuations.

Model Skewness Kurtosis

Age model for 2012 data 0.03 3.01
Age model for 2007–2012 data 0.04 2.96
Age+Time model for 2007–2012 data 0.01 2.98
Age+Time+Gender+Makeham model for 2007–2012 data -0.01 3.04
Age+Time+Gender+Makeham+Size model for 2007–2012 data 0.01 2.96

Simulated N(0,1) variates 0.03 3.05

Note: There are 10,000 observations in each data set.

14 Appendix 4: Conversion to published tables

14.1 It is one thing to be able to fit a bespoke model with multiple risk factors. However, actuaries
also need to express their bespoke bases in terms of a published table for communication purposes.
Examples include reserving bases, communication with third parties (such as regulators and auditors), and
of course circumstances where one wants to keep one’s bespoke basis private (as in competitive pricing).

14.2 A good way to convert mortality bases is by equating reserves, the so-called “equivalent-annuity
method” — see Willets (1999) and Richards et al. (2013) for examples. This involves solving an equation
where the only difference on each side is the mortality basis being used. For example, two mortality
bases B and T would be deemed equivalent for a given annuity portfolio if Equation 21 held true:

n∑
i=1

wiä
T
xi

=
n∑
i=1

wiä
B
xi

(21)

where wi is the annual pension paid to life i and äxi values an immediate level lifetime annuity paid
to a life aged xi. Without loss of generality we can think of B as the bespoke, multi-factor basis and
T as the much simpler one based on the published table. In the case of gender-differentiated rates in
T , which is usually the norm, the summation in Equation 21 is generally performed separately for males
and females. For example, the equivalent percentages of S2PA (CMI Ltd, 2014) for the model in Table 6
are given in the first row of Table 15, where the values are consistent with the 2012 column of Table 12.

Table 15: Equivalent percentages of S2PA for the model in Table 6.

Percentage of S2PA:
Mortality basis (i) Males (ii) Females

Best-estimate model in Table 6 88.50% 87.19%

95% confidence interval for best-estimate 78.73–99.54% 79.31–96.11%

99.5% stress 75.98% 77.04%

Note: The basic S2PA mortality table is effective for 2007 and is unadjusted for improvements of any kind. Since the
mortality model fits the hazard for 1st January 2013, the table percentages are below 100% because of the improvements
between 2007 and 2013.

14.3 Alternatively, the actuary can solve for a target reserve value, as in Equation 22:

n∑
i=1

wiä
T
xi

=Sp (22)
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where Sp would be the appropriate percentile of the set of mis-estimation valuations carried out with
similar ä functions. For example, an approximate 95% confidence interval for the best-estimate basis
could be obtained by solving for S2.5% and S97.5%. This is done in the second row of Table 15, where we
note that the confidence interval is not symmetric around the best-estimate percentages. One important
point to note is that for gender-differentiated rates we would have to solve Equation 22 separately for
males and females. Alternatively, we could solve for the aggregate male and female reserves combined
and use the same percentage of table for both genders. Bearing in mind the similar percentages for
males and females in Table 15, this would be an option here.

14.4 Finally, we can also express our 99.5% mis-estimation stress in terms of a standard table by

using S99.5% in Equation 22. This is given in the third row of Table 15. One reason for doing this might
be if one needed a rough-and-ready approximation for daily stress-testing.

15 Appendix 5: Orthogonality and parameter correlation

15.1 In ¶6.8 we noted a high correlation between the estimates of the intercept (α̂0) and age

parameter (β̂0). In the case of the simple two-parameter Gompertz model, this is a direct result of the

choice of parameterisation in Equation 10. However, we can attempt to orthogonalise α̂0 and β̂0 by
re-parameterising the model as in Equation 23:

µxi =e
α0+β0(xi−o) (23)

where o is an offset constant. In a model for grouped mortality counts, Cairns et al. (2006) used o= x̄,
i.e. the mean of the age range. However, in Equation 23 setting o to the mid-point of the age range is
not enough to eliminate the correlation between α̂0 and β̂0 — the distribution of time lived and deaths
is not even, as shown in Figure 9. We can calculate the correlation between α̂0 and β̂0 in Equation 23
for various values of o, as shown in Figure 12. We see that o=82 delivers a correlation of -3%, while
a value of o slightly greater than 82 will give zero correlation.

Figure 12: Correlation between α̂0 and β̂0 for various values of offset age, o, in Equation 23. Data
as in Table 2.
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15.2 In practice it would be necessary to determine o afresh for each portfolio (or for each altered age

range for the same portfolio) if one wanted to eliminate the correlation between α̂0 and β̂0 in Equation 23.
This alone might argue for the simplicity of Equation 10. However, the offset o also needs to be changed
whenever the model changes. For example, we can introduce gender as a risk factor as in Equation 24:

µxi =e
α0+αmaleIi,male+β0(xi−o) (24)

where Ii,male is an indicator variable taking the value 1 for males and 0 for females. Table 16 shows

the correlations between the parameters, and the correlation between α̂0 and β̂0 has strengthened due
to the change in model. Furthermore, the correlation between α̂0 and α̂male is large and cannot be easily
eliminated. In fact, setting o=83 reduces the correlation between α̂0 and β̂0 to -1%, but leaves the
correlation between α̂0 and α̂male almost unchanged at -64%. Thus, our mis-estimation methodology
must take account of parameter correlations as they cannot be avoided. We therefore prefer to use the
simpler model structure of Equation 10 without the orthogonalising constant in Equation 23.

Table 16: Percentage correlations (ci,j×100%) between coefficients in Equation 24 with o=82. The
data are the same as in Table 2.

β̂0 α̂male α̂0

β̂0 100 12 -10
α̂male 12 100 -65
α̂0 -10 -65 100

Note: As with the variance-covariance matrix, the correlation matrix is symmetric about the leading diagonal. The
leading diagonal is 100% because a parameter value is perfectly correlated with itself.
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