

HERIOT WATT

HERIOT

HERIOT

The Effect of Model Uncertainty on the Pricing of Critical Illness Insurance

George Streftaris

18 November 2014

Funded by the IFoA

Institute and Faculty of Actuaries

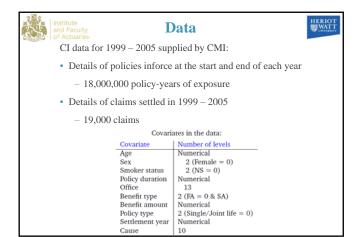
Outline:

- 1. Critical Illness Insurance (CII)
- 2. Data & Problems
- 3. Claim delay distribution modelling
- 4. CI diagnosis rates under uncertainty
- 5. CI pricing under uncertainty

Institute and Facul of Actuari

• Fixed term policy, usually ceasing at age 65

· A fixed sum insured payable on the diagnosis of one of a specified list of illnesses


Critical Illness: Policy description

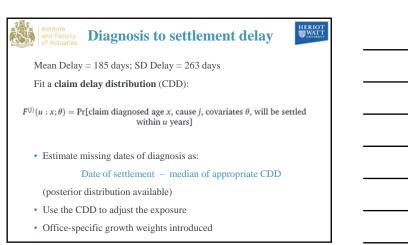
• Benefit type:

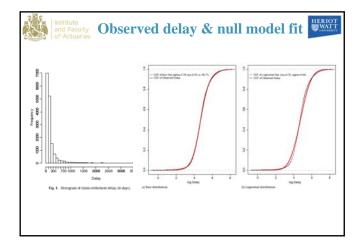
Full acceleration (FA): Death is included as a critical illness (88%) Stand alone (SA): Death is not included as a critical illness (12%)

• Covers:

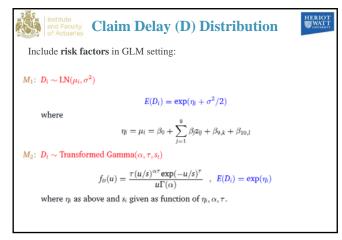
Cancer; Death; Heart attack; Stroke; Multiple Sclerosis; Total & permanent disability; Coronary artery bypass graft; Kidney failure; Major organ transplant; Other.

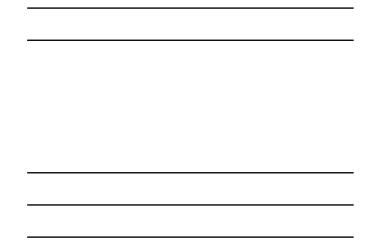
and Faculty of Actuaries	Diseases covered							
Critical illnesses and percentage of claims in 1999 – 2005								
Critical Illness	% claims	Critical Illness	% claims					
Cancer	49.0	Total & permanent disability (TPD)	2.6					
Death	17.6	Coronary artery bypass graft (CABG)	2.1					
Heart attack (HA)	11.6	Kidney failure (KF)	0.6					
Stroke	5.4	Major organ transplant (MOT)	0.2					
Multiple sclerosis (MS)	4.3	Other causes	6.6					
Males	57.3	Non-smokers	73.9					
Females	42.7	Smokers	26.1					

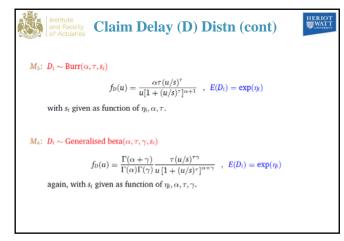

Source: Continuous Mortality Investigation, UK

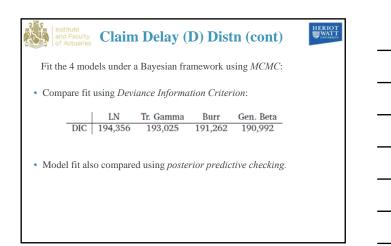

Institute and Facul of Actuari

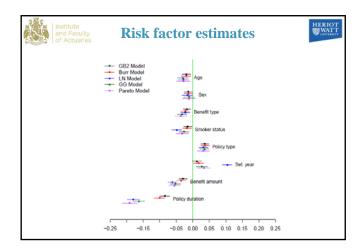
Modelling & estimation

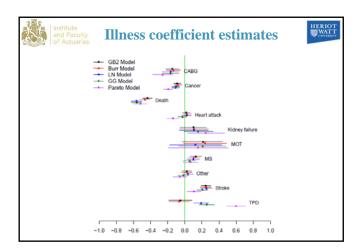


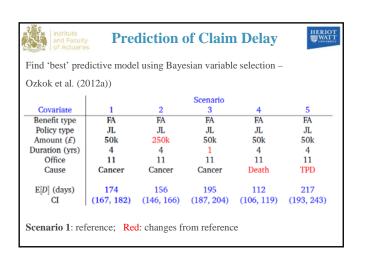

- Estimation & smoothing of CI diagnosis rates
- how do these depend on risk factors?
- Diagnosis is the insured event and there is a delay between diagnosis and settlement
 - diagnosis date often not recorded (18%); need to model it
 - does delay also depend on risk factors?
- The exposure corresponds to claims settled, not to claims diagnosed; need to adjust it
- Premium pricing
- · Also take into account uncertainty

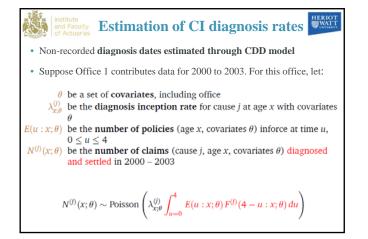


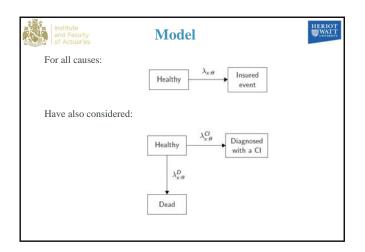


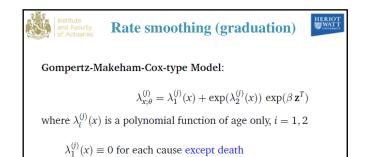


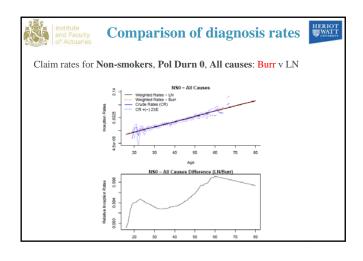


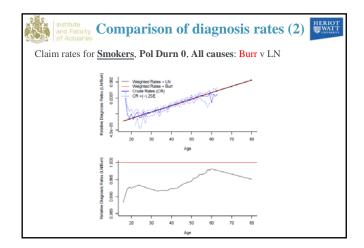




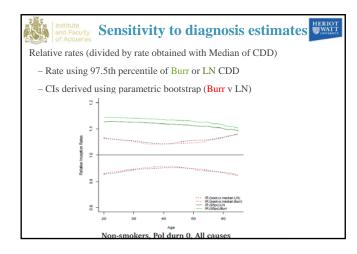


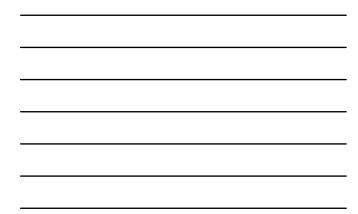


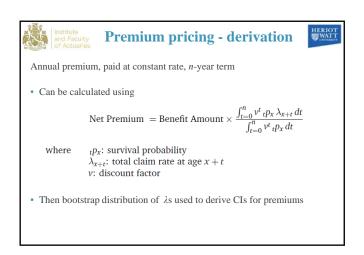


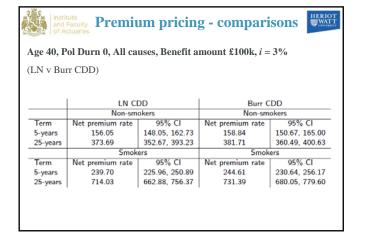


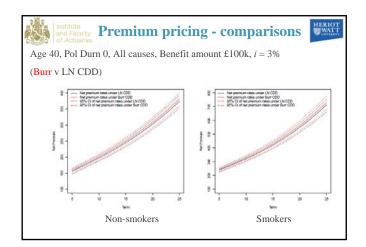
$$\lambda_1^{(j)}(x) \equiv 0 \rightarrow \text{log-linear (Cox-type) model for } \lambda_{x;\theta}^{(j)}$$

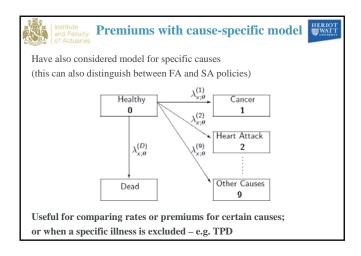

Fit model – perform variable selection using <i>BIC</i>								
Cause Predictive model (covariates)								
CABG	Age	Sex		calcur	Smoker	cortar faces)		
Cancer	Age	Sex	Year		Smoker	Age×Sm		
Death	Age	Sex			Smoker	Age×Sm		
Heart Attack	Age	Sex			Smoker	Age×Sm		
Kidney Fail		Sex			011101101			
MOT								
MS		Sex			Smoker		Pol Durn	
Other	Age	Sex		Office			Benefit type	
Stroke	Age	Sex			Smoker	Age×Sm		
TPD	Age		Year				Pol Durn	
All causes	Age			Office	Smoker	Age×Sm	Pol Durn	

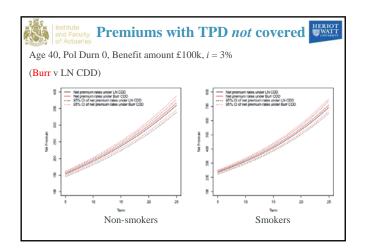


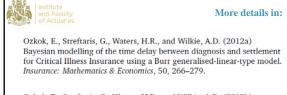












Summary

HERIOT

- Delay between diagnosis and settlement in CII is important (e.g. IBNR, IBNS)
- Have developed **delay model: depends on risk factors**
- Bayesian analysis accounts for non-recorded diagnosis dates
- 4-parameter G.Beta distn fits data best followed by 3-parameter Burr
- CII rates and premiums estimated & smoothed
 - including parameter and model uncertainty
- Estimates of CDD are model-sensitive
- · But claim rates and premiums are not

Ozkok, E., Streftaris, G., Waters, H.R., and Wilkie, A.D. (2012b) Modelling critical illness claim diagnosis rates I: Methodology. Scandinavian Actuarial Journal, doi: 10.1080/03461238.2012.728537

Ozkok, E., Streftaris, G., Waters, H.R., and Wilkie, A.D. (2013) Modelling critical illness claim diagnosis rates II: Results. *Scandinavian Actuarial Journal*, DOI:10.1080/03461238.2012.728538.

Dodd, E., Streftaris, G., Waters, H.R. and Stott, A.D. (2014) The effect of model uncertainty on the pricing of critical illness insurance. To appear in *Annals of Actuarial Science*.