

| an ar                                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Motivation                                                                                                                                                         |
| <ul> <li>3 major risks faced by a pension provider :<br/>interest rate risk, inflation risk and longevity risk.</li> </ul>                                         |
| <ul> <li>Deal with longevity risk by selling the liability via an insurance or reinsurance contract.</li> </ul>                                                    |
| <ul> <li>Pay a fixed amount based on expected mortality rates<br/>in return for a payment based on actual realized<br/>mortality rates (a 'q-forward').</li> </ul> |
| Pricing relies on accurate mortality forecasts.                                                                                                                    |
|                                                                                                                                                                    |
| Forecasting death rates using exogenous determinants                                                                                                               |



MAN MAN



## Data •Mortality Human Mortality Database (Berkeley/Max Planck) males in the US, UK, Japan, Finland, Netherlands and Sweden Estimates 1970-2000 & forecasts, 2001-2009 •Health OECD Health data 2009 Alcohol, Tobacco, Fat, Fruit and vegetable, GDP, Health expenditure



Proportion of variance explained by principal component

| $G_j$                        | A(j)  | M(j)  | <b>R</b> <sup>2</sup> ( <b>j</b> ) | NS(j) | $\hat{\rho}(\mathbf{k})^2$ |  |
|------------------------------|-------|-------|------------------------------------|-------|----------------------------|--|
| G <sub>1</sub> , Alcohol     | 0.968 | 95.5  | 0.025                              | 39.0  | 0.253                      |  |
| G <sub>2</sub> , Tobacco     | 0.968 | 58.6  | 0.034 (-0.091,0.158)               | 28.7  | 0.076 (-0.103, 0.256)      |  |
| G <sub>3</sub> , Fat         | 0.903 | 58.2  | 0.043<br>(-0.097,0.183)            | 22.1  | -                          |  |
| G <sub>4</sub> , Fruit & Veg | 0.935 | 30.4  | 0.151<br>(-0.081,0.383)            | 5.6   | -                          |  |
| G <sub>5</sub> , GDP         | 0.935 | 98.1  | 0.034<br>(-0.091,0.158)            | 28.8  | -                          |  |
| $G_6$ , Health exp           | 0.935 | 143.6 | 0.046                              | 20.6  | -                          |  |

| $G_j$                        | A(j)  | M(j)  | <b>R</b> <sup>2</sup> ( <b>j</b> ) | NS(j) | $\hat{\rho}(\mathbf{k})^2$ |  |
|------------------------------|-------|-------|------------------------------------|-------|----------------------------|--|
| G <sub>1</sub> , Alcohol     | 1.000 | 97.8  | 0.020 (-0.078,0.119)               | 48.0  | 0.180                      |  |
| G2, Tobacco                  | 0.903 | 72.6  | 0.093 (-0.102,0.287)               | 9.8   | -                          |  |
| G <sub>3</sub> , Fat         | 1.000 | 138.5 | 0.016<br>(-0.072,0.104)            | 61.0  | -                          |  |
| G <sub>4</sub> , Fruit & Veg | 0.839 | 55.0  | 0.080<br>(-0.103,0.263)            | 11.5  | -                          |  |
| G <sub>5</sub> , GDP         | 0.968 | 464.4 | 0.002<br>(-0.026,0.029)            | 651.9 | -                          |  |
| $G_6$ , Health exp           | 1.000 | 458.9 | 0.003                              | 314.2 | -                          |  |



|                 | US     | UK     | Japan  | Finland | Nld    |  |
|-----------------|--------|--------|--------|---------|--------|--|
| Lee Carter      | 0.0043 | 0.0051 | 0.0022 | 0.0056  | 0.0079 |  |
| Hyndman Ullah   | 0.0046 | 0.0058 | 0.0033 | 0.0076  | 0.0087 |  |
| Girosi and King | 0.0042 | 0.0075 | 0.0018 | 0.0058  | 0.0081 |  |
| King and Soneji | 0.0041 | 0.0070 | 0.0021 | 0.0053  | 0.0075 |  |

|                    | U.            | S 2000 | UI     | K 2000         | Jap           | an     | Finl   | and    | Nether | lands  |
|--------------------|---------------|--------|--------|----------------|---------------|--------|--------|--------|--------|--------|
|                    | 2001          | 2009   | 2001   | 2009           | 2001          | 2009   | 2001   | 2009   | 2001   | 2009   |
| Lee Carter         | 0.0011        | 0.0071 | 0.0029 | <u>0.005</u> 8 | 0.0036        | 0.0011 | 0.0028 | 0.0057 | 0.0030 | 0.0125 |
| Hyndman<br>Ullah   | <u>0.0010</u> | 0.0076 | 0.0023 | 0.0071         | <u>0.0020</u> | 0.0045 | 0.0045 | 0.0076 | 0.0031 | 0.0135 |
| Girosi and<br>King | 0.0011        | 0.0070 | 0.0044 | 0.0089         | 0.0020        | 0.0012 | 0.0024 | 0.0061 | 0.0033 | 0.0127 |
| King and<br>Soneji | 0.0011        | 0.0069 | 0.0037 | 0.0083         | 0.0026        | 0.0013 | 0.0027 | 0.0053 | 0.0032 | 0.0116 |
|                    |               |        |        |                |               |        |        |        |        |        |



