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When looking for the “correct model” we do indeed resemble the proverbial 

blind man in a dark room searching for something that is not there. But that is 

a definition of metaphysics – not something that we are either trained to do or 

is in our job descriptions. To do statistics, we need to simplify and  maybe give 

up on the idea of a “correct model”, even one unknown to us. Simplification is 

necessary to turn our struggle into a scientific study rather than an exercise in 

metaphysics. But  simplification creates its own problems. 
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This is the distribution of annual equity returns FTSE100, based on 30 

observations. The red density is a fitted normal, while the green density is a 

fitted tilted Laplace. An arbitrary change in the starting date of the calculation 

changes the estimated 1:200 drop in asset values from 35% to 50%. 
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Regulation places demands upon us on to control model and estimation error. 

We cannot banish the possibility of model error (an ill-defined idea anyway in 

the context of deep uncertainties). But what we can do is adjust the probability 

distribution – more generally the estimation procedure used –  to control such 

errors. 
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In statistics we can NEVER say that our estimates are accurate. What we can 

say is whether our estimation METHOD and our adjustments for uncertainty 

were good. “Good” here means they usually work - not always. To explain 

what we mean by “they work” and what we mean by “usually” we need to think 

statistically.  
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Bias is a fundamental idea in statistics. Let’s say that we want to estimate a 

“true parameter”. We observe one particular sample of the data and we use 

that to estimate the parameter. But now we have to stop and think. Our sample 

was itself generated by a random process. There could have been different 

samples generated by the same process. Each sample would have given a 

different parameter estimate. This idea is in some way counterintuitive. In 

probability modelling we are used to thinking about alternative futures. In 

statistical inference we need to think about alternative histories. 

 

An estimator is unbiased when the average value of the parameter estimate 

across alternative samples equals the true parameter. This appears a 

desirable property -  but is this the sort of unbiasedness we are really 

interested in? 
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Once we collect data, we can usually find estimators of moments that are 

unbiased or of model parameters or of the required capital (VaR). However 

they can never all be unbiased at the same time – for example, requiring that 

model parameters are unbiased, as usual statistical practice would dictate, 

implies that the capital estimate is actually biased.  

 

We argue that the key quantity to consider is the difference between future 

(post-calibration)  losses, a random quantity, and estimated capital, a quantity 

that can be viewed as random due to its dependence on random sample. This 

difference reflects the exposure to model uncertainty from a solvency 

perspective and this is the quantity we propose to study. 
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Events not in the Data refer to unusual and severe events that may not appear 

in risk calibration data. Parameter uncertainty can be one reason for the 

existence of such events. If they are absent from the observed sample, we 

may under-estimate capital. If they are present, then they are overrepresented 

and may overstate capital. Thus ENIDs can be to an extent characterised by 

thinking of the alternative data we could have seen – a standard thought 

experiment of statistical estimation.  So how are we going to consider ENIDs in 

a VaR estimation context?  
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As a quality criterion,  we require that the probability that Y, the future loss, is 

lower than VaRest, the estimated VaR, is equal to the nominal confidence level 

of the VaR measure, in this case 99%. In the second displayed equation, the 

inequality is thus between two random variables – the randomness of VaRest 

reflects parameter uncertainty. 

Such a requirement for VaR  estimates has been formulated independently by 

Gerrard and Tsanakas (2011) and by Frankland et al (2013). 
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In standard backtesting, historic VaR estimates are compared to realised 

losses, to calculate the historical frequency of violations/exceptions. However, 

a very large volume of data is required to establish with confidence that the 

VaR estimation  approach followed actually under- or over-states VaR.  

 

For the MCBT, a reference model is specified from the outset. The model is 

used to simultaneously simulate past data histories and realisations of sources 

of uncertainty affecting the future loss positions. The two parallel simulation 

histories allow us to model the variability of the VaR estimator and of the future 

loss: therefore it allows us to model the distribution of the Shortfall =  Loss - 

Capital. 
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In a simple illustration, consider a normally distributed loss with parameters 

estimated by MLE. The vertical axis corresponds to the expected frequency of 

exceptions under the reference model – in other words the probability of Loss 

> Capital. The horizontal axis shows the sample size. For small samples, the 

frequency of exceptions is much higher than the nominal level of the VaR 

confidence level. Focusing on p=99%, the difference between the blue curve 

and the horizontal line at 1% reflects exactly Shortfall Bias we are interested 

in. The curve converges to the nominal level p with an increasing sample size, 

but the bias does not quite go away.  

This example is from Gerrard and Tsanakas (2011). 
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Staying within the normal model, we can actually change the capital estimation 

method in order to yield the correct level of exception frequency, that is, to 

make shortfall bias equal to zero. One possibility is to increase the confidence 

level of the VaR estimator, such that VaR is estimated at a higher than nominal 

level. In that case, small data sizes are penalised, as they require a higher 

adjusted confidence level and thus, more capital. Hence an allowance for 

parameter uncertainty produces a very explicit capital add-on. 

 

Note that this adjustment does not guarantee that the estimated capital will 

actually be “right”. When estimating extreme percentiles from small data set 

we are of course very likely to get it “wrong”. What the adjustment introduces 

is unbiasedness: we will get the exception frequency right  on average, across 

alternative data histories and futures.  
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The previous example was based on a very simple model. In fact there is a 

large number of distributions for which such a capital estimation adjustment 

can be carried out; crucially the adjustment then does not depend on the “true” 

parameters of the reference model. Even for distributions where this is not 

possible, well performing adjustments can be carried out using bootstrapping 

or Bayesian procedures.  

 

However, when we don’t actually know what the family of distributions is (e.g. 

Normal, t etc), that is, we move from parameter to model uncertainty, then the 

above approaches don’t work. Model uncertainty is much harder to address. 
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In reality the distribution family used will itself be selected using the observed 

data. A possible way to do this  - and one often used though not necessarily 

endorsed by statistical textbooks - is to proceed sequentially. First a 

distribution family is chosen, parameters are estimated and Goodness-of-Fit 

testing performed. If the distribution is not rejected once sticks with it. If it is 

rejected, one moves to the next distribution. 
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This table summarises the results of a simulation experiment. There are two 
reference models (normal and t(4)) corresponding the two columns, which are used to 
generate data histories and future losses. Three different methods are used for 
estimating 99%-VaR, each corresponding to a row in the table:  

(1) Estimate normal parameters by MLE and use the percentile of a normal 
distribution with those parameters, at adjusted confidence level such that the 
expected frequency of exceptions would be 1%, if the data were normal.  

(2) Estimate normal parameters by MLE and use the 99th percentile of the estimated 
distribution (no adjustment). 

(3) Select a model sequentially as in the previous slide, first fitting a normal, then a 
logistic, then a t(4). As a goodness of fit test, Kolmogorov-Smirnov is used, with 
Lilliefors adjustment (to reflect the impact of parameter estimation on the test’s 
error probabilities) 

 

Cells (1,1) and (2,1) in the table: This shows the effect on shortfall bias (exception 
frequency) of not performing the adjustment for parameter uncertainty. 

Cells (2,1) and (2,2): This shows the further increase in shortfall bias (doubles from 
0.6% to 1.2%) when we have model error.  

Cells (2,2) and (3,2): This shows that using a sequential estimation approach as 
described above does not really help with moderating the effect of model error. 
Because the dataset has few observations, it is difficult to reject any model (the 
KS test has low power). As the first distribution tested is a normal, in nearly all 
scenarios the normal distribution is used to estimate capital: the correct t(4) model 
is almost never selected. 
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In fact the reasoning applied so far can be extended in order to specify quality 

criteria for estimators of other risk measures. To see how this works, consider 

the first displayed equation. This states that the VaR of the shortfall (future loss 

minus random estimated capital) should be zero. This is mathematically 

equivalent to the requirement the expected frequency on non-exceptions is 

99%. Now to move to different risk measure, we need only to change the VaR 

in the first equation into any other risk measure,  e.g. TVaR/Expected Shortfall.  

More detail on this idea can be found in Bignozzi and Tsanakas (2014), where 

methods for adjusting capital estimates to satisfy this criterion are discussed.  
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Here, in with a standard normal reference model, we calculate what multiple of 

sample standard deviation the estimated capital must be, in order to satisfy the 

shortfall unbiasedness condition for either 99.5% VaR (predictive limit 

interpretation) or 99%-Expected  Shortfall / TVaR (construction from Bignozzi 

& Tsanakas (2014) as in the previous slide). Comments: 

(a)   If you haven’t got much data, you need to allow for this by using a larger 

multiple of standard deviation than with a larger data set 

(b)   Might need to increase capital by 40% if you’ve only 10 years data 

(c)   That’s true for VaR as well as TVaR 
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One difficult problem in statistics is to know how many models to consider. If 

you restrict attention to a narrow set of models, you can have easy, stable 

fitting but little chance that your set contains the true model. If you cast your 

net more widely, you have a better chance of containing the true model but 

estimation is unstable; answers change wildly with each new data point. 

The discipline of robust statistics offers us a way out of this dilemma. We 

separate the notion of a *fitting set* - the class of models we fit, from the 

*ambiguity set* - a class of models that might generate the data. We then need 

to investigate what might go wrong when historic data comes from a model in 

the ambiguity set, but we fit a model from the fitting set. Even though we’re 

fitting a wrong model, the answer might be good enough for some purposes. 
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Much of what we’re used to, uses small ambiguity sets. We fit a model, go 

through some form of validation process, and the model, to us, becomes the 

truth. We lose sight of all the other plausible models. 

Even when we follow textbook practice, and estimate parameter errors using 

Fisher information matrices, we’re still kidding ourselves that the data could 

only have come from a model in the fitting set. 

Nassim Taleb – the Black Swan author – sometimes talks about *model 

graveyards*, that is, all the models we considered but didn’t use. We should 

be sceptical of a model that has been cherry picked to give a particular 

conclusion from a large graveyard of less favourable models. Good statistics 

means being honest about the process we have followed. Andreas’ example 

with normal and T4 distributions in slide 20 shows how we need to test the 

whole inference trail, not just the final fitted model. We might need to do a lot 

of digging in the model graveyard. 
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How can we say a fitted model works, when we know the model is wrong? The 

answer is that a model doesn’t have to be perfect; it has to be good enough for 

a particular purpose. If we want to calculate VaR at 99% confidence, we need 

to show that there is at least a 99% chance the VaR will be enough to cover 

next year’s loss. I say *at least* because, for a large ambiguity set and a small 

fitting set, you won’t be able to hit 99% spot on, for all circumstances. 

Robustness demands that we can be at least 99% confident; for some more 

benign models in the ambiguity set, we might be more than 99% confident. 

This one-sided test means that robustness entails some degree of 

conservatism. Maybe we’d prefer a method that’s 99% confident on average, 

but that would require some notion of how likely each model is to be correct, to 

give us weights for the average. Frequentist probability cannot answer this 

question; we can only talk about probability of outcomes given a model. 
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In a Bayesian world, we can talk about the probability of a model being the 

right one. Valeria Bignozzi and Andreas Tsanakas investigated what happens if 

you use Bayesian method, but then tested the approach using our frequentist 

test of counting how often losses exceed required capital. They found good 

performance – but only if your Bayesian average includes the true model. 

The alternative to get a robust method is to take a frequentist approach, but 

tweak it in some way until it passes the tests for a sufficiently broad ambiguity 

set. 
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Here is a worked example I prepared earlier – it can be found in Nicholson and 

Smith (2013). 

Suppose we wanted robust value-at-risk with 98% confidence.  

The green lines on this chart show what happens if your fitting set is a lognormal, 

but the ambiguity set consists of lognormal and generalised Pareto distributions. 

The horizontal axis is distribution shape, with fatter tailed distributions to the right. 

The chart shows firstly that fitting a distribution and reading off the 99.5%-ile does 

*not* give us a 99.5% chance of having enough capital. The discrepancy is 

because the model we have fitted does is not necessarily the same as the one 

that generated the data, because of sampling and mis-specification error. 

However, this *does* show robustness relative to a 98% VaR standard, even if we 

take parameter and mis-specification into account, with some conservatism for 

thinner tailed distributions. 

The chart also shows (blue line) what happens when we fit GPD. Now, the 

lognormal is essentially an arbitrary choice while the GPD might be justified by 

appeal to Extreme Value Theory (the Pickands-Balkema-de Haan Theorem). Our 

results, however, do not support the EVT approach. Scored in terms of 

robustness, fitting GPD is much less robust than fitting lognormal, at least for the 

ambiguity set we have considered. That shouldn’t be a surprise; in the same way 

someone might advocate using normal distributions on the strength of the central 

limit theorem but we all know that using normals lacks robustness to fat tailed 

models in the ambiguity set. 
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This chart shows what can happen with model fitting for different sized data 

sets. 

We know that fitting complex models to small data sets is a recipe for 

instability and a whole host of other problems. The only practical way forward 

is to *use* simple models, even though its obviously possible that a complex 

model might have generated the data. 

There’s a different problem with very large data sets. Whatever model we try 

to fit, we can always find some pattern in the data which the model doesn’t 

capture. There’s an apparent sweet spot in the middle where the data is just 

right, but we won’t find ourselves here except by luck. 

What then can we do about model failure for large data sets? This question is 

not so well addressed in the statistical literature, but we think the concept of 

accounting materiality is helpful here. No model is correct, and we can find 

tests that fail, but the model might still be useful for the intended purpose. For 

example, if we want to set capital at a high level of confidence, we might focus 

on tests in the tail and be prepared to overlook failure of other, less relevant, 

tests. 
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I guess that many of you, like me, would have learned statistics according to 

the methods of great 20th century frequentists: Ronald Fisher, Jerzy Neyman 

and Egon Pearson. We try to do something sensible and logical in our day job, 

but we struggle to articulate what we’re doing in formal statistical terms. 

This struggle is real; the statistical tools we think we’re using were not 

designed for our purposes – Ronald Fisher was mostly interested in improving 

agricultural productivity. We should not be afraid to rebuild foundations that 

work for us, and I expect ambiguity, robustness and test materiality to be 

among the concepts we need. 
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Technical validity is not sufficient for a model to be used, or to be useful. 

In many cases, we also have to comply with social constraints. When a textbook 
states that an estimate is “best”, this assertion is in respect of some, perhaps implicit, 
loss function. There is nothing wrong with replacing that loss function by something 
more relevant for our business. For example we might focus on the average amount 
of capital required, or on the stability of capital estimates, rather than on the expected 
squared deviation of a parameter from its true value. 

Some of our choices are more socially driven than is often acknowledged. 
Benchmarking is rife in our industry; when we don’t know what to do, we take comfort 
from doing the same things as everyone else. We can defend methods as consistent 
with industry best practice even if we can’t prove they work. 

The problem here is not one of ineffective methods, as we have to do the best we 
can, but rather in misrepresenting a social convention as a mathematical theorem. 
For example, we might decide that insurers should hold sufficient capital to withstand 
a mass lapse of 40% of their policies. I can no more prove this is a 99.5%-ile than I 
can prove you should wear a tie to meetings in Staple Inn, or that you should eat with 
a fork in your left hand. These are all social conventions and we do ourselves no 
favours with spurious quasi-statistical justifications. Likewise, the size of the ambiguity 
set is part of the social contract between policyholders and financial services firms. 
You won’t find a theorem proving how big that set should be. 

The terms “technical” and “social validity” were introduced by J. G. March (1994), A 
Primer on Decision Making: How Decisions Happen. A discussion of these concepts 
in the context of capital modelling can be found in Tsanakas (2012), ‘Modelling: The 
Elephant in the Room, Actuary Magazine. 
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