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Setting Benchmarks for Asset Model Percentiles 
 
This note describes some possible methods for setting numerical standards for 
stochastic asset models used in capital assessments for life, health and general 
insurers. 
 
The Purpose of Setting Standards 
 
The purpose for setting standards is to enable meaningful comparison between capital 
disclosures for different insurers.  
 
Consider the following example of two insurers: 
 
Insurer “A” discloses 

- economic capital requirements of £100m 
- based on a 0.5% ruin probability 
- measured over 1 year 
- using a market-calibrated Hull-White model 

   
Insurer “B” discloses 

- economic capital requirements of £100m 
- based on 10% ruin probability 
- with a 30 year run-off period, testing future solvency at 5 year intervals 
- using a historically calibrated Wilkie model 

 
Users of this information can reasonably ask which insurer has applied the more 
stringent capital test. Ideally, analysts would wish to re-run insurer “B” using the 
model belonging to model “A”, and vice versa. This is unlikely to be possible, give 
that the data and the models may be proprietary. 
 
Setting standards for capital models is inherently more difficult than setting standards 
for market consistent valuations. Differences in market consistent valuation models 
arise chiefly from different choices of calibration assets. Standardisation of calibration 
assets goes a long way towards achieving comparable results. On the other hand, two 
insurers with exactly the same business and identical stochastic models could still 
disclose different capital requirements by choosing different percentiles, different 
time horizons or different solvency testing frequencies. 
 
The definition of default is also contentious. The simplest model is that default occurs 
when liabilities exceed assets. In company law, this is the point at which control 
theoretically passes from shareholders to bondholders. However, in the insurance 
industry the regulator plays a greater role. The degree of regulator intervention is 
likely to increase well before technical insolvency. If shareholders are averse to losing 
control of a business, then the modelled ruin even could arguably relate to a failure to 
meet regulatory solvency margins, rather than technical insolvency. 
 
There is another argument which works in the opposite direction. Many insurers’ 
share price contain a franchise value element which is not captured in their accounting 
net assets. Shareholders can realise this franchise value by financial restructuring, by 
injecting more equity or by selling the business to a third party, rather than by 
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exercising the option to default. This is why the financial services industry has seen 
few bond defaults, but many ailing companies are refinanced or taken over by 
stronger peers. There is an argument that if an insurer targets a default probability of 
(for example) 0.5%, they should be permitted to disregard potential ruin scenarios in 
which a private third party comes to the rescue, provided policyholders do not lose 
out in this event. 
 
 
Standardising Model Parameters or Model Output 
 
A framework for comparing outputs from different models can use three elements 
(i) restriction on the range of permitted models, for example by standardised 
parameters or standard tests on output reasonableness. The tests can be two-sided or 
one-sided. For example, a two sided test could require equity volatilities lie between 
20% and 25%, while a one-sided test would require only that the volatility was not 
less than 20%. 
(ii) disclosures of sample model output, so that models can be compared. For 
example, insurers might be expected to tabulate sample means and standard 
deviations of equity market levels and interest rates over various horizons. 
Alternatively, combinations of model and capital definitions might be disclosed. For 
example, offices might be required to compute the required capital under their model 
and capital definition for an office who invests 100% in equities to deliver a fixed 
policyholder cash flow in 10 years’ time. 
(iii) algorithms for converting one form of model output for another. For example, we 
might seek algorithms to estimate the 99.5th percentile of a distribution given the 90th 
percentile and some other properties of the distribution. We might also seek 
algorithms to estimate a run probability over 5 years given the result over 1 year. 
These algorithms will inevitably be empirical and valid only for limited purposes. For 
example, there is no mathematical formula for deducing a 99.5th percentile from a 90th 
percentile for arbitrary distributions. All we know is that the 99.5th percentile must be 
the larger figure. However, if we had knowledge of the sort of distributions that arise 
in insurance work then we may be able to build crude comparisons that are valid for a 
limited range of businesses. 
 
There is a trade-off between the emphasis given to the different elements. At one 
extreme, a uniform approach could impose a single model and capital definition on all 
participants, in which case the model disclosures, (ii), would be the same for 
everybody and there would be little need for the algorithms in (iii). At the opposite 
extreme, companies could be given unfettered discretion in model choice, in which 
case the disclosures would need to be extensive and analysts would need to rely on a 
large number of conversion algorithms to make sense of the output. It may be costly 
to develop conversion algorithms which work with sufficient generality. Businesses 
may also resent the cost of producing figures which are required only for comparison 
purposes with peers rather than for the running of the business. Every additional 
restriction on the choice of available models has a benefit of placing fewer demands 
on the conversion algorithms and reducing the number of required outputs for 
comparison purposes.  
 
Random Walk Capital Models 
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The simplest conversion rules arise with capital models based on random walks. We 
assume that solvency is measured in continuous time, and we define a process Xt by 
 
Xt = log{ assets(t) / liabilities(t) } 
 
The insurer is solvent so long as Xt ≥ 0. We can distinguish two definitions of ruin: 
 
The “giant leap” method: Prob{giant leap ruin} = Prob{Xt < 0} 
The “continuous sampling” method: Prob{continuously sampled ruin} = Prob{Xs<0 
for some 0≤s≤t} 
 
We can calculate these probabilities analytically under the special condition that {Xt} 
is a geometric random walk. In these cases, we have the following results: 
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Fitting to Default Statistics 
 
The cumulative probabilities are useful because we can compare these to cumulative 
default frequencies on rated bonds. The S&P European default study tabulates the 
following default probabilities over horizons from 1 to 5 years: 
 
EU Cumulative Average Default Rates (1981-2003)   
 0 1 2 3 4 5
AAA 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
AA 0.00% 0.00% 0.06% 0.13% 0.29% 0.46%
A 0.00% 0.00% 0.00% 0.05% 0.12% 0.28%
BBB 0.00% 0.56% 1.26% 2.20% 2.83% 2.83%
BB 0.00% 1.14% 3.56% 6.75% 7.82% 9.32%
B 0.00% 7.17% 19.22% 27.58% 31.23% 33.60%
CCC 0.00% 60.71% 60.71% 60.71% 60.71% 60.71%

 
Assuming a geometric random walk, we can identify parameters that best fit this 
history. Although these default statistics are real data, they are subject to sampling 
error. For example, the historical statistics show higher defaults for “AA” bonds than 
for “A” bonds. This is probably a statistical fluke; most reasonable models should 
show the reverse. 
 
Let us make the heroic assumption that the bonds of different grades are modelled by 
the same process, that is, with common parameters µ and σ, but represent different 
starting points X0. Possible parameters, fitted by least squares, are tabulated below: 
 X0 mu Sigma 
AA 4.2534 0.4896 1
A 4.6231 0.4896 1
BBB 2.8786 0.4896 1
BB 2.1153 0.4896 1
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The goodness of fit is illustrated in the chart below. Unfortunately, the fit is worst for 
the BBB default statistics, on which the FSA has placed greatest emphasis. 
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Caveats for Comparing Models to Default Statistics 
 
There are a number of reasons why we would not expect model output to replicate 
historic default statistics for similarly rated entities. These include: 
 

 Differences in default probability for different entities with the same rating. 
Credit rating models are typically based on financial ratios, combined with a 
subjective element. Stochastic models have not played any part in the historic 
ratings, although some agencies are considering the use of such information in 
future. Therefore, it is wrong to suppose that the default probability is a 
function of the rating grade alone. The historic default rate is an estimate of 
the average default probability for all issued bonds with a given grade. There 
is no reason why a specific modelled firm or industry should not have a higher 
or lower default probability than the average. 

 The default event as modelled is not the default event captured in the statistics. 
The modelled default event in most stochastic models is assets falling below 
liabilities, but policyholders do not necessarily lose out in this event, for 
example if a third party acquirer comes to the rescue. 

 Bottom up estimates of the parameters µ and σ may not reflect all the risks that 
actually cause companies to fail. For example, companies may fail due to 
fraudulent or incompetent management, but that same management is unlikely 
to allow for those contingencies in their stochastic model. 

 As previously noted, historic default statistics are subject to sampling error, 
and do not necessarily represent the true default probability. For example, in 
the last 20 years, no European AAA bond has defaulted, but few analysts 
would deduce that AAA bonds can never default. 
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Disclosing Parameters or Model Output 
 
There are at least three levels of possible disclosures around asset model assumptions. 
 
The first level disclosure is the chosen model parameters. If an analyst had access to 
the model details, then knowledge of the parameters used would (in principle) enable 
the analyst to replicate the model output. To the extent that model structures are 
proprietary, or mathematically advanced, parameter disclosures are of more limited 
use. A modeller can disclose that “ξ = 25” but this is only helpful if the user of the 
disclosures can understand how this parameter is used within a model. 
 
The second level disclosure is sets of asset model output statistics. Common 
disclosures include means and standard deviations. These statistics are tabulated, for a 
range of models, by Lee and Wilkie (2002). In the context of solvency tests, adverse 
percentiles may be of more relevance. See for example [can anyone find chapter and 
verse on the Canadian regs?] 
 
A third level disclosure is output of required capital for a number of standard 
situations. This would include the firms’ own definition of required capital, and could 
allow some trade-off between model choice and capital definition. For example, some 
firms might choose mean reverting equity models while others use a random walk 
approach. These results could still be consistent provided that the mean reverting 
firms used a more extreme percentile in their capital assessment. 
 
To illustrate this, we consider a simple case of equity mismatch risk. An equity return 
index, measured in excess of the risk free rate, is modelled as a geometric random 
walk with geometric risk premium of 4% per annum and annual volatility of 20%. 
This equates to an arithmetic risk premium of 6% per annum. 
 
The first level disclosure is a description of the model and parameter tabulation 
µ = 0.02 
σ = 0.20 
 
The second level disclosure looks at percentiles of an equity total return index, in this 
case measured relative to a cash total return index. These are as follows: 
horizon 1 2 5 10 20 50
percentile       

0.1% 0.5610 0.4520 0.3067 0.2113 0.1403 0.0935
0.5% 0.6218 0.5228 0.3860 0.2926 0.2223 0.1934
1.0% 0.6536 0.5610 0.4315 0.3426 0.2778 0.2753
2.0% 0.6902 0.6060 0.4875 0.4070 0.3545 0.4048
5.0% 0.7490 0.6803 0.5853 0.5271 0.5111 0.7217

10.0% 0.8055 0.7539 0.6886 0.6633 0.7073 1.2064
 
The third level disclosure looks at the amount of capital required to support an equity 
investment over a fixed horizon, to meet a fixed cash flow. The required capital is 
measured in excess of the present value of the liability as calculated at the risk-free 
rate – in other words, exp(X0)-1 in our above notation. Using great leap probabilities, 
the required capital would be: 
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horizon 1 2 5 10 20 50
percentile capital required     

99.9% 78% 121% 226% 373% 613% 970%
99.5% 61% 91% 159% 242% 350% 417%
99.0% 53% 78% 132% 192% 260% 263%
98.0% 45% 65% 105% 146% 182% 147%
95.0% 34% 47% 71% 90% 96% 39%
90.0% 24% 33% 45% 51% 41% -17%

  
The negative capital required on the bottom right is not a misprint. It reflects the fact 
that, if you hold equities for long enough, the probability of underperforming bonds 
gets smaller and smaller.  
 
Using cumulative probabilities, the capital requirements are higher: 
horizon 1 2 5 10 20 50
percentile capital required     

0.1% 86% 136% 263% 458% 827% 1755%
0.5% 69% 106% 194% 316% 518% 925%
1.0% 62% 93% 166% 262% 412% 681%
2.0% 54% 80% 139% 212% 319% 490%
5.0% 43% 63% 105% 152% 215% 300%

10.0% 35% 50% 80% 111% 149% 195%
 
We note that the cumulative ruin probabilities are higher than the great leap ruin 
probabilities. The differences are most noticeable at longer horizons. 
 
Under the cumulative probability methodology, more capital is required the longer a 
firm is supposed to stay solvent. On the other hand, the great leap method produces 
capital requirements which first increase with horizon and then fall again. 
 
It is possible offices might use different methods, not ruin probabilities, to set capital. 
Some may use conditional tail expectations. Others may use methods which trade the 
benefit of higher capital (security for policyholders and, so some degree, 
shareholders) against the cost of holding capital. Offices using dynamic programming 
methods may avoid the need to pick a percentile or a single time horizon. In these 
cases it is difficult to see how tables comparable to the above could be produced. 
 
The statistics above, or figures like them could be used in two ways 

(i) they could form a required disclosure by offices using stochastic models 
(ii) they could be specified by a standards board as minimum standards, so 

that offices could only use models requiring at least the stated amount of 
capital for their capital assessment. 

 
If the main purpose of this exercise is to achieve comparability then the same form of 
output should be required for each office. There is an outstanding question of whether 
an office who has chosen a 5 year horizon should be forced to disclose results on a 1-
year basis merely to facilitate comparisons with other offices. Likewise, should an 
office with a chosen 1-year horizon be expected to comply with standards relating to 
percentiles of 5-year equity returns? 
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Fat Tailed Distributions 
 
The models described so far are based on normal distributions. Observed distributions 
are clearly not normal. For example, the 2004 equity gilt studies tabulates annual log 
equity returns (capital index, in real turns) with (normalised) skewness of -1 and 
kurtosis of 5.5.  
 
There are two popular techniques for capturing fat tailed distributions. One method is 
to use conditionally normal distributions with a stochastic volatility process. The 
Hardy regime-switching model, used in Canada, is an example oft his technique. 
 
The second method is to make direct use of fat tailed distributions in the residuals, 
resulting in Lévy processes. These are also well discussed in the literature (see Carr, 
Geman, Madan & Yor). 
 
Both of these tools have their advocates. The improvement in model fit has to be 
balanced against the need to calibrate additional parameters. There is little doubt that 
in the real world, both stochastic volatility and fat tailed residuals are the norm, but a 
joint calibration of both effects is widely believed to lie beyond what is achievable 
given the data. 
 
[Tabulations of ruin probabilities, on a great leap and a cumulative basis, using these 
two models, to be inserted] 
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