
A SHORT NOTE ON THE CONSTRUCTION OF LIFE 
TABLES AND MULTIPLE DECREMENT TABLES 

H. R. WATERS, M.A., D.Phil., F.I.A., AND A. D. WILKIE, M.A., F.F.A., 
F.I.A. 

THE purpose of this short note is to explain a simple method of constructing a life 
table, given an explicit function for the force of mortality, µx, for all x. A similar 
method can be applied to the construction of multiple decrement tables, given 
explicit functions for the separate forces of transition, etc, from one ‘active’ 
status (a) to various ‘dead’ statuses (b, c, etc) for all x. 

Although numerical results for the examples discussed in this note could be 
calculated equally well by more direct methods than the ones described herein, 
results for more complicated examples involving multiple status tables, in which 
transition back and forth between statuses is possible, cannot in general be 
calculated by such direct methods, and our methods provide a practical way by 
means of which numerical results for these more complicated cases can be 
calculated. 

The motivation for writing this note is therefore to explain by means of simple 
examples the methodology that has been used for certain more complicated 
cases, such as the models being worked on by the authors for the Permanent 
Health Insurance Subcommittee of the Continuous Mortality Investigation 
Bureau, which will be published when further work is completed, and which have 
been foreshadowed by Waters (1984). The same methodology has also been used 
for a model of marital status and mortality, described in Wilkie (forthcoming), 
and for models to describe mortality and sickness from the disease AIDS, 
described in Wilkie (1987) and by the Institute of Actuaries Working Party on 
AIDS (1987). 

1. LIFE TABLES 

The problem for an ordinary life table can be expressed as an elementary 
problem in numerical analysis. Let us suppose that we know the force of 
mortality, µx, for all x, for a mortality table, and that we wish to calculate 
numerically the value of tpx0 for some initial age x0 and various values of t. 
Throughout this note we shall assume that the initial age x0 is fixed and for the 
typographical convenience we shall denote the probability of survival to age x 
(≥ x0) as pa(x). We shall denote by pd(x) the probability of death before age x for 
an individual who was alive at the initial age x0. We assume that the function µx is 
mathematically suitably well-behaved. The necessary constraints on the form of 
µx are not very severe, the only one of practical importance being that it be 
bounded. 
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For any age x ≥ x0 we therefore have 

pa(x)+pd(x) = 1 

We also know the differential equation: 

(1) 

(2) 

which describes the relationship between µx and lx, of the life table. We re-express 
this as 

(3) 

or 

(4) 

We also know that 

(5) 

and this gives us an initial condition. We now have sufficient information in 
principle to calculate pa(x) for all x ≥ x0. The problem in practice is how to 
calculate numerical values of pa(x), say at regular intervals of x perhaps one year 
apart. 

In numerical analysis terminology this is an ‘initial value’ problem. See, for 
example, Conte and de Boor (1980). 

There are several ways of solving such a problem. The method we use is based 
on ‘predictor/corrector’ methods, but with the advantage that in this simple case 
we only require the ‘predictor’ step, and not the ‘corrector’ step, so that we can go 
directly to a solution for each step, rather than having to use successive 
approximation. 

The key lies in using the mean value theorem, from which we know that 

(6) 

for some y between x and (x + h). We re-express this as 

(7) 

The intuitive interpretation of (7) is of some interest: pa(x + h) is the 
probability of being alive at age (x + h) (conditional always on being alive at x0) 
and this is the probability of being alive at age x, pa(x), minus the probability of 
dying between ages x and (x + h). This probability of dying is h · µy · pa(y) so we 
also have an expression connecting pd(x) and pd(x + h): 

(8) 

We do not know the value of y for which (7) is exactly true, but we can 
approximate the right hand side of (7) in a number of ways in order to complete 
the solution. We could put: 
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so that from (7) and (9A) we have: 

Alternatively we could put: 

and from (7) and (9B) we have: 

Finally we could put: 

and from (7) and (9C) we have: 
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(9A) 

(10A) 

(9B) 

(10B) 

(9C) 

(10C) 

In each case we can now calculate pa(x) recursively using (10A), (10B) or (10C) 
and the initial condition (5), provided that we choose a step size h that is small 
enough. The value of h must be less than 2/µx for all relevant values of x. 

We have calculated pa(x) up to age 110 using each of the three approximations 
for different values of h, in each case using an initial age of 20 and the following 
formula for µx: 

(11) 

with a0 = ·0005 
a1 = – ·0001 
b0 = – 7·6 
b1 = ·09 

This is the first modification of Makeham’s law, and it has the advantage that the 
values of pa(x) can be calculated directly by 

(12) 

where 

(13) 

with t = x – x0, and (for these calculations) x0 = 20. 
Table 1 summarizes the results of these calculations. In each part of Table 1, 

‘A(h)’ refers to the approximate value of pa(x) calculated using (10a), (10b) or 
(10C) and a step size of h, ‘E’ refers to the exact value of pa(x), calculated from 
(12) and (13), and the maxima are taken over integer values of x from 20 to 110. 
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Table 1. Numerical calculation of life table probabilities 
Approximation (A) 

h Max A(h) – E At age Max (A(h) – E)/E At age 
1 1·4 x 10–4 85 7·4 x 10–¹ 110 
1/2 3·6 x 10–5 85 2·4 x 10–¹ 110 
1/4 8·9 x 10–6 85 6·3 x 10–² 110 
1/8 2·2 x 10–6 85 1·6 x 10–² 110 
1/16 5·6 x 10–7 85 4·0 x 10–³ 110 
1/32 1·4 x 10–7 85 1·0 x 10–³ 110 
1/64 3·5 x 10–8 85 2·5 x 10–4 110 
1/128 8·7 x 10–9 85 6·3 x 10–5 110 
1/256 2·2 x 10–9 85 1·6 x 10–5 110 
1/512 5·4 x 10–10 85 3·9 x 10–6 110 

Approximation (B) 
h Max A(h) –E At age Max (A(h) – E)/E At age 
1 2·9 x 10–4 92 8·4 x x10–¹ 110 
1/2 7·2 x 10–5 92 3·0 x10–¹ 110 
1/4 1·8 x 10–5 92 8·2 x 10–² 110 
1/8 4·5 x 10–6 92 2·1 x 10–² 110 
1/16 1·1 x 10–6 92 5·3 x 10–³ 110 
1/32 2·8 x 10–7 92 1·3 x 10–³ 110 
1/64 7·0 x 10–8 92 3·3 x 10–4 110 
1/128 1·8 x 10–8 92 8·2 x 10–5 110 
1/256 4·4 x 10–9 92 2·1 x 10–5 110 
1/512 1·1 x 10–9 92 5·1 x 10–6 110 

Approximation (C) 
h MaxA (h) – E At age Max (A(h) – E)/E At age 
1 4·8 x 10–4 87 8·5 x 10–¹ 110 
1/2 1·2 x 10–4 87 3·1 x 10–¹ 110 
1/4 3·0 x 10–5 87 8·3 x 10–² 110 
1/8 7·6 x 10–6 87 2·1 x 10–² 110 
1/16 1·9 x 10–6 87 5·3 x 10–³ 110 
1/32 4·7 x 10–7 87 1·3 x 10–³ 110 
1/64 1·2 x 10–7 87 3·3 x 10–4 110 
1/128 3·0 x 10–8 87 8·3 x 10–5 110 
1/256 7·4 x 10–9 87 2·1 x 10–5 110 
1/512 1·8 x 10–9 87 5·2 x 10–6 110 

Three comments should be made about the numerical values in Table 1. The 
first is that they show the high accuracy of (10A), (10B) or (10C), in this particular 
example, even for reasonably large step sizes, for example h = 1/8. Even the 
values for h = 1 are accurate up to 3 significant figures at ages up to 95, and only 
diverge at higher ages where the values of µx become relatively large. 

The second is that halving the step size has the effect of dividing both 
the maximum error, max A(h) – E , and the maximum proportionate error, 
max A(h) – E)/E , by a factor of 4; there are good theoretical reasons to support 
this observation, at least in the case of max (A(h) – E . 
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Table 2. Comparison of calculations with successive 
values of h 

Approximation (A) 
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Max A(h)-A(2h) 
h Max A(h)—A(2h) At age A(h) At age 

1/2 
1/4 
1/8 
l/16 
l/32 

1/64 
l/128 
l/256 
1/512 

h 

1/2 
l/4 
1/8 
l/16 
l/32 

l/64 
l/128 
l/256 
l/512 

1.1 x 10-4 85 6.6 x 10-l 
2.7 x 10-5 85 1.9 x 10-l 
6.7 x 10-6 85 4.8 x 10-2 
1.7 x 10-6 85 1.2 x 10-2 
4.2 x 10-7 85 3.0 x 10-3 
1.0 x 10-7 85 7.5 x 10-4 
2.6 x 10-8 85 1.9 x 10-4 
6.5 x 10-9 85 4.7 x 10-5 
1.6 x 10-9 85 1.1 x 10-5 

Approximation (B) 

Max A(h)—A(2h) 
Max A(h)—A(2h) At age A(h) 

2.2 x 10-4 92 7.8 x 10-l 
5.4 x 10-5 92 2.4 x 10-1 
1.4 x 10-5 92 6.2 x l0-2 
3.4 x 10-6 92 1.6 x 10-2 
8.5 x l0-2 92 3.9 x 10-3 
2.1 x 10-7 92 9.9 x 10-4 
5.3 x 10-8 92 2.5 x 10-4 
1.3 x 10-8 92 6.2 x 10-5 
3.3 x 10-9 92 1.5 x 10-5 

Approximation (C) 

110 
110 
110 
110 
110 
110 
110 
110 
110 

At age 

110 
110 
110 
110 
110 
110 
110 
110 
110 

Max A(h)——A(2h) 
h Max A(h)—A(2h) At age A(h) At age 

1/2 3.6 x 10-4 87 7.8 x 10-l 110 
l/4 9.1 x 10-5 87 2.4 x 10-l 110 
1/8 2.3 x 10-5 87 6.3 x 10-2 110 
l/16 5.7 x 10-6 87 1.6 x 10-2 110 
l/32 1.4 x 10-6 87 4.0 x 10-3 110 
1/64 3.5 x l0-7 87 1.0 x 10-3 110 
l/128 8.9 x 10-8 87 2.5 x 10-4 110 
1/256 2.2 x 10-8 87 6.3 x l0-5 110 
1/512 5.5 x 10-9 87 1.6 x 10-5 110 

Thirdly, approximation (A) gives the most accurate answers, whether 
measured by max A(h)—E or by Max (A(h)—E)/E . It can be argued that this 
has some theoretical justification, in that the function · pa(x) (for a normal life 
table) is more nearly linear than either or pa(x) is separately, so that 
approximation (A) is closer than approximation (C). Further the average of the 
function · pa(x) at the end points of the interval (x,x + h) is a closer 
approximation to the mean value than is the function at the mid-point, so that 
(A) is closer than (B). We therefore recommend the use of approximation (A), 
and we have used it in our work elsewhere. 
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In the general case it may not be possible to integrate , explicitly (though it is 
always possible to calculate a definite integral as accurately as desired by one of 
the well known quadrature formulae, such as the trapezium rule or Simpson’s 
rule, applied successively with more frequent steps). If it is desired to calculate 
pa(x) to a particular degree of accuracy, it is possible to repeat the approximate 
method of calculation we have described above with successively reduced values 
for the step size h (e.g. h = l/2, l/4, l/8, . . .), recording the values of pa(x) for 
integral values of x for each value of h, calculating the maximum difference or 
maximum proportionate difference between the values of pa(x) for successive 
values of h, and continuing until the maximum difference is sufficiently small. 

From Table 2 we see that the maximum difference between A(h) and A(2h) is 
approximately one-quarter of the difference between A(2h) and A(4h) at each 
step. 

Table 2 resembles Table 1, but it compares the values of ‘A(h)’ (the 
approximate value of pa(x) calculated using (10A), (10B) or (10C) and the given 
value of(h)) with ‘A(2h)’, the approximate value of pa(x) calculated using a step 
size of 2h (i.e. the preceding line in each part of the table). As in Table 1 maxima 
are taken over integer values of x from 20 to 110. 

Comparison of Table 1 and Table 2 shows how in this particular case the 
remaining maximum error (max A(h)—E ) if calculations stop at a particular 
value of h is about one-third of the maximum difference between the values for h 
and for 2h. For example, using approximation (A), if the calculations for h = l/8 
and h = l/16 are carried out, the maximum difference between the values of pa(x) 
for these two values of h is seen from Table 2(A) to be 1.7 x 10-6 and the 
maximum proportionate error to be 1.2 x l0-2. The maximum error with 
h = l/16 is seen from Table l(A) to be 5.6 x l0-7, and the maximum 
proportionate error to be 4.0 x 10-3, roughly one third in each case of the 
former figures. There are good theoretical reasons to support this observation in 
the general case, not only for the maximum error but also for the error at each 
step. 

This observation leads us to an alternative way of approaching an exact 
answer, by what we prefer to call ‘accelerated convergence’, though Conte and de 
Boor (1980) call it ‘extrapolation to the limit’. The same principle is used in 
Romberg integration. We perform the calculation of estimates of pa(x) for each 
integral value of x twice, first using a step size of 2h and then a step size of h. We 
denote the former estimates by pa(x,2h) and the latter by pa(x,h). We have 
observed that the difference between the estimate pa(x,h) and pa(x) is about one- 
quarter of the difference between pa(x,2h) and pa(x), or approximately 

{pa(x,2h)—pa(x)}=4{pa(x,h)—pa(x)} (14) 

We can therefore put 

pa2(x,h) = pa(x,h)+{pa(x,h)—pa(x,2h)}/3 (15) 

as a potentially good estimate of pa(x). 
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Table 3. Calculation using accelerated convergence 
Approximation (A) 

h Max A2(h)-E At age Max A2(h)-E)/E At age 

1/2 1.1 x 10-7 90 7.0 x 10-2 110 

1/4 6.6 x 10-9 90 4.7 x 10-3 110 

1/8 4.1 x l0-10 90 3.0 x 10-4 110 
l/l6 2.6 x 10-11 90 1.9 x 10-5 110 
l/32 .2 x 10-11 90 1.2 x 10-6 110 

1/64 very small 7.3 x 10-8 110 
l/l28 very small 4.6 x l0-9 110 
l/256 very small 2.8 x 10-l0 110 
l/512 very small 1.3 x 10-11 110 

Approximation (B) 

h Max A2(h)-E At age Max (A2(h)-E)/E At age 

1/2 2.2 x 10-7 94 1.2 x 10-1 110 

l/4 1.3 x 10-8 94 8.7 x l0-3 110 

1/8 8.4 x 10-10 94 5.6 x 10-4 110 
l/l6 5.2 x 10-11 94 3.6 x l0-5 110 
l/32 .3 x 10-11 94 2.2 x 10-6 110 

1/64 very small 1.4 x 10-7 110 
l/l28 very small 8.7 x 10-9 110 
l/256 very small 5.4 x 10-10 110 
l/512 very small 3.0 x 10-11 110 

Approximation (C) 

h Max A2(h)-E At age Max (A2(h)-E)/E At age 

1/2 1.9 x 10-7 101 1.2 x 10-1 110 

l/4 1.2 x 10-8 101 9.0 x 10-3 110 

1/8 7.3 x 10-10 101 5.8 x l0-4 110 
l/l6 4.5 x 10-11 101 3.7 x 10-5 110 
l/32 .3 x 10-11 101 2.3 x l0-6 110 

1/64 very small 1.4 x 10-7 110 
l/l28 very small 9.0 x 10-9 110 
l/256 very small 5.6 x 10-l0 110 
l/512 very small 3.1 x 10-11 110 

Table 3 shows the maximum difference between pa2(x,h) (denoted as ‘A2(h)’) 
and the exact value of pa(x) (denoted as ‘E’), and the maximum proportionate 
difference for different values of h and for the three approximations (A), (B) and 
(C). It can be seen how good the resulting estimates of pa(x) are even with quite 
large values of h. 

It is interesting also that the maximum proportionate error with this method is 
reduced to about one sixteenth of its value when the value of h is halved. This 
leads to a possible second order formula for accelerated convergence, using 
values with step sizes of 4h, 2h and h, denoted by pa(x,4h), pa(x,2h) and pa(x,h) 
respectively, where an even better estimate pa3(x,h) can be obtained from 

pa3(x,h) = pa(x,h) + { 19pa(x,h) - 20pa(x,2h) + pa(x,4h)}/45 (16) 

This formula gives results extremely close to the exact values of pa(x) when quite 
large values of h, such as h = l/4 or l/8, are used. 
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The method of accelerated convergence could be applied in either of two ways. 

(17A) 

(17B) 

(17C) 

In the first way (which we describe as ‘global’) full tables of pa(x,2h) and pa(x,h) 
for integral values of x are calculated using step sizes of 2h and h and pa2(x,h) is 
calculated from these tables. In the second way (which we describe as ‘step by 
step’) the values at each step of pa(x + 2h,2h) and pa(x + 2h,h) are calculated, 
from which pa2(x + 2h,h) is derived; this value is used as the starting point for the 
next step. The results given in Table 3 use the global method, rather than the step 
by step method. The latter is a little more accurate, but requires more 
complicated programming. 

Whether it is worth using either of these more elaborate methods in practice in 
order to achieve any desired accuracy depends on a balance between the relative 
time taken, which may be less than would be required in order to get equal 
accuracy with a smaller value of h, and the additional complexity of program- 
ming. 

2. APPROXIMATIONS FOR q 

Since pa(x + 1)/pa(x) = px = 1 - qx in the usual actuarial notation, the three 
approximations described above lead to three approximations for qx, if the step 
size, h, is taken as 1: 

We leave it to others to prove that the limit ash (h = 1/n with n integral) tends to 
zero of each of the following expressions 

(18A) 

(18B) 

(18C) 

(18) 



Life Tables and Multiple Decrement Tables 

3. MULTIPLE DECREMENT TABLES 
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We now consider the construction of a multiple decrement table, in which a life 
starts at age x0 in an active state ‘a’, which he may leave at any age x( x0) by 
transition to any one of the states b, c, d, . . . (e.g. withdrawal from service, ill- 
health retirement, death, etc., as in a pension fund service table). We assume that 
there are no further transitions out of states b, c, d, . . . ., 

Let us define the probability of a life who was in the active state, a, at x0 being in 
state a, b, c, . . . at age x as pa(x), pb(x), pc(x), . . . Note that 

(19) 
Assume that the transition intensities (forces of transition) from state a to each 

of states b, c,. . . . at age x are denoted by µbx, µcx, . . . and are known for all x. 
Then the differential equations that apply to pa(x), pb(x), pc(x) . . . are 

(20) 

(21b) 

(21c) 

etc. 

These are examples of the Kolmogorov differential equations that apply to all 
discrete space, continuous time, Markov stochastic processes, as described for 
example by Cox and Miller (1965). 

By using approximation (A) from our earlier discussion we obtain the 
following approximate formula for pa(x) 

(22) 

from which we can derive the recursive formula for calculation: 

which, together with the initial condition 

(23) 

(24) 

gives us sufficient information to calculate values of pa(x) at intervals of h from x0 
onwards. We also have 

etc. 

(25b) 

(25c) 
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Formulae (22), (25b), (25c), . . . also have simple intuitive explanations. The 
probability (conditional on being in state a at x0) that the life is in state a at age 
(x + h) is equal to the probability that he was in state a at age x minus the 
probability that he left state a for state b, c, . . . during (x,x + h). The probability 
that he is in state b (c, . . .) at age (x + h) is equal to the probability that he was in 
state b (c, . . .) at age x plus the probability that he entered state b (c, . . .) from 
state a during (x,x + h). The right hand sides of formulae (25b), (25c), . . . give 
these probabilities of entry transitions, and the right hand side of (22) gives the 
probabilities of the corresponding exit transitions. 

Note that the sum of the right hand sides of (22), (25b), (25c), . . . is zero. The 
sum of the left hand sides is 

(26) 

and we see from (19) that each of the expressions in {.} equals 1. Thus the total 
probability that (x) is in some state at (x + h) remains at unity. 

Analogous formulae can be obtained from approximations (B) and (C). 
We have carried out calculations similar to those in Section 1, with a single 

active state (a), and four decrement states (b, c, d, and e). We have used the 
following transition intensities 

µbx = ·0003 

µcx = ·1 exp(-7·6 + ·09t) 

µdx = ·2 exp(-7·6 + ·09t) 

µex = ·0002 - ·0001t + ·7 exp(-7·6 + ·09t) 

with t = x – 20. 
These functions are such that their sum, µbx + µcx + µdx + µex equals µx in our 

first example. The values of pa(x) can thus be calculated exactly, using the same 
formula as before. The results of the approximate calculations of pa(x), using 
approximation (A), for various values of the step size, h, are exactly as shown in 
Table 1 and Table 2. 

Besides the values of pa(x), which in fact can be calculated exactly as in an 
ordinary (single decrement) life table, it is of interest to see the accuracy of the 
values of pb(x), pc(x), . . . and quantities derived from them such as the 
accumulated transitions over one year, which we define as 

db(x) = pb(x + 1) – pb(x) 
dc(x) = pc(x + 1) – pc(x) 

etc. 

which correspond to the quantities (ad)bx, (ad)cx, etc. of classical actuarial theory 
(see e.g. Neill, 1977). We can also define the one-year transition rates 
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Table 4. Comparison of multiple decrement functions 
All on approximation (A) 
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Maximum errors for pb(x), pc(x), pd(x) or pe(x) 
Max A(h) – A(2h) 

h Max (A(h) – A(2h) At age A(h) At age 

1/2 
1/4 
1/8 
1/16 
1/32 
1/64 
1/128 
1/256 
1/512 

h 

1/2 1·4 x 10–5 de 90 4·9 x 10–¹ de 109 
1/4 3·4 x 10–6 de 90 1·3 x 10–¹ de 109 
1/8 
1/16 
1/32 
1/64 
1/128 
1/256 
1/512 

6·8 x 10–5 pe 85 2·7 x 10–³ 
1·7 x 10–5 pe 85 6·8 x 
4·2 x 10–6 pe 

10–4 
85 1·7 x 10–4 

1·1 x 10–6 pe 85 4·3 x 10–5 
2·6 x 10–7 pe 85 1·1 x 10–5 
6·6 x 10–8 pe 85 2·7 x 10–6 
1·7 x 10–8 pe 85 6·7 x 10–7 
4·1 x 10–9 pe 85 1·7 x 10–7 
1·0 x 10–9 pe 85 4·2 x 10–8 

Maximum errors for db(x), dc(x), dd(x) or de(x) 
Max A(h) – A(2h) 

Max A(h)– A(2h) At age A(h) 

pe 
pe 
pe 
pe 
pe 
pe 
pe 
pe 
pe 

41 
41 
41 
41 
41 
41 
41 
41 
41 

At age 

8·5 x 10–7 de 90 3·2 x 10–² de 109 
2·1 x 10–7 de 90 8·1 x 10–³ de 109 
5·3 x 10–8 de 90 2·0 x 10–³ de 109 
1·3 x 10–8 de 90 5·1 x 10–4 de 109 
3·3 x 10–8 de 90 1·3 x 10–4 de 109 
8·3 x 10–10 de 90 3·2 x 10–5 de 109 
2·1 x 10–10 de 90 7·9 x 10–6 de 109 

Maximum errors for qb(x), qc(x), qd(x) or qe(x) 

h MaxlA(h) – A(2h)( 
1/2 3·9 x 10–² 
1/4 7·8 x 10–³ 
1/8 1·9 x 10–³ 
1/16 4·6 x 10–4 
1/32 1·1 x 10–4 
1/64 2·8 x 10–5 
1/128 7·1 x 10–6 
1/256 1·8 x 10–6 
1/512 4·7 x 10–7 

At age 

qe 109 
qe 109 
qe 109 
qe 109 
qe 109 
qe 109 
qe 109 
qe 109 
qe 109 

Max A(h) – A(2h) 
44 

8·8 x 10–² 
1·9 x 10–² 
4·5 x 10–³ 
1·1 x 10–³ 
2·8 x 10–4 
7·1 x 10–5 
1·9 x 10–5 
9·1 x 10–6 
1·1 x 10–5 

etc. 

At age 
qb 109 
qb 109 
qb 109 
qb 109 
qb 109 
qb 109 
qb 109 
qb 109 
qb 109 

which are the ‘dependent probabilities’ of classical actuarial theory, (aq)bx, (aq)cx, 
etc. 

We cannot calculate the exact values of these quantities explicitly (in our 
particular example), but we can use a comparison between the values calculated 
with successive values of h as a guide. 
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Table 4 shows the maximum differences and the maximum proportionate 
differences between the values of pb(x), pc(x), etc., calculated using the given 
value of h and a value of h twice that size, i.e. the preceding value in the table, and 
the corresponding values of db(x), dc(x), etc., and of qb(x), qc(x), etc. 

One can observe that the maximum differences reduce by a factor of four when 
h is halved; that the maximum differences and maximum proportionate 
differences for pb(x) etc. and db(x) etc. are smaller than those for pa(x) (shown in 
Table 2(A)); that the maximum differences for qb(x) etc. (which are derived as 
ratios of numbers) are considerably larger than for the p’s and d’s; that the 
maximum proportionate differences for the p’s and d’s also reduce by a factor of 
four when h is halved; but that the maximum proportionate difference for the q’s 
becomes erratic with very low values of h. This last feature may possibly be 
because the results are affected by the inaccuracy of the numbers held in the 
computer, which are recorded to about 14 significant decimal digits, but which 
necessarily lose some of that accuracy when numbers are differenced or divided. 

The method of accelerated convergence could be used for a multiple decrement 
table too, but it is necessary to be careful in order to preserve the additive 
property of formula (19). Provided that values of pa(x), pb(x), pc(x), . . . are used 
for the estimation of more exact values there should be no problem, but it would 
be inappropriate to use for example qb(x) etc. for the estimation. 
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