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Abstract 

The development of an economic capital model requires a decision to be made regarding how to aggregate 

capital requirements for the individual risk factors while taking into account the effects of diversification.  

Under the Individual Capital Adequacy Standards (ICAS) framework, UK life insurers have commonly 

adopted a correlation matrix approach due to its simplicity and ease in communication to the stakeholders 

involved, adjusting the result, where appropriate, to allow for non-linear interactions.  The regulatory 

requirements of Solvency II have been one of the principal drivers leading to an increased use of more 

sophisticated aggregation techniques in economic capital models. 

This paper focuses on a simulation based approach to the aggregation of capital requirements using copulas 

and proxy models.  It describes the practical challenges in parameterising a copula including how allowance 

may be made for tail dependence.  It also covers the challenges associated with fitting and validating a 

proxy model.  In particular, the paper outlines how insurers could test, communicate and justify the choices 

made through the use of some examples. 
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1 Introduction 

1.1 Background 

1.1.1 Some UK insurers have been using economic capital models to perform their own assessment of 

the capital required to support their risk exposures and to assist in the management of those risks 

for a number of years.  The implementation on 31 December 2004 of realistic reporting for some 

UK with-profits firms and the Individual Capital Adequacy Standards (ICAS) framework 

introduced a risk sensitive approach to the determination of regulatory capital requirements for UK 

life insurers, supplementing the factor based approach that applied previously under Solvency I.  

1.1.2 One of the most fundamental choices to be made in the construction of any economic capital model 

is how to aggregate together the capital requirements for the individual risk factors and take account 

of the effects of diversification.  The reported value of the effects of diversification is a balancing 

item. It depends on the final aggregate economic capital requirement and the level of granularity at 

which the standalone capital requirements for initial “pre-diversification” risk factors are presented, 

as well as: assumptions made regarding the dependency between movements in those risk factors; 

the undertaking’s exposures to those risk factors; and how they interact to compound or reduce 

losses.  The reported effect of diversification is therefore, taken in isolation, not necessarily a 

meaningful figure. Nevertheless, starting from the level at which risk factors are typically modelled 

separately, the effects of diversification can be very significant. Under the ICAS framework, the 

effect of diversification was typically one of the largest single items in the build-up of the ICA of 

a typical life insurer, representing a reduction of 40% to 60% of the sum of individual capital 

requirements.  For example, the KPMG Technical Practices survey (2015) indicates that, for the 

majority of firms, the effects of diversification represented a reduction of 41% to 51% in capital 

requirements. The survey covered 29 respondents, all of which were UK life insurers, though not 

all of which applied to use an Internal Model for the calculation of their Solvency Capital 

Requirement (SCR) under Solvency II.  However, this result is consistent with the range quoted in 

other industry surveys whose results are not publicly available. At the time of writing, it is not yet 

clear what level of granularity those firms using an Internal Model to calculate their SCR will use 

for the presentation of the effects of diversification in public reporting.  

1.1.3 A common approach to aggregation under the ICAS framework was to calculate standalone capital 

requirements for individual risk factors by applying stress tests – one for each individual risk factor 

identified by the undertaking.  These individual capital requirements were then combined using a 

correlation matrix to determine an aggregate capital requirement allowing for the effects of 

diversification.  It was not uncommon to adopt a multi-tiered approach to aggregation under which 

subsets of risk factors within one or more categories were first aggregated to the level of that 

category prior to aggregation with the corresponding results for other categories. 

The correlation matrix approach to capital aggregation and its limitations are well known.  In 

particular, it is accurate if: 

 the underlying multivariate distribution of risk factor changes is elliptic (e.g. if they follow 

a Normal, Student’s t or some other elliptic distribution), and 

 the measure of economic capital available responds linearly to shocks in the risk factors 

and the changes in the risk factors do not interact to compound or reduce losses in economic 

capital. 

See, for example, Shaw, Smith and Spivak (2011). 
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1.1.4  It was common practice under the ICAS framework to adjust the result produced by the correlation 

matrix approach to allow for non-linear interactions between risks using a refinement based on a 

scenario. For example, under the assumptions of 1.1.3 it is possible to determine a “most likely” 

scenario which gives rise to a loss equal to the aggregate economic capital requirement.  The 

scenario can be expressed in terms of a closed form formula involving matrix multiplication. The 

standalone stresses to each of the individual risks are scaled by a risk-specific factor (a function of 

the capital requirements for all risks and the entries in the row of the correlation matrix 

corresponding to that specific risk factor).  This scenario is then run through the full actuarial model 

suite (or “heavy model”) in order to determine a scaling factor to be applied to the correlation 

matrix result or to simply replace it.   

1.1.5 Following the implementation of Solvency II on 1 January 2016, all UK insurers which are subject 

to Solvency II regulations must calculate their SCR using a Standard Formula approach, or, subject 

to supervisory approval, use results produced by an Internal Model to substitute all or part of the 

Standard Formula calculation. The Standard Formula approach of Solvency II uses a multi-tiered 

correlation matrix approach for the calculation of the SCR but, unlike under the ICAS framework, 

the stress tests to be applied and the correlation assumptions to be assumed are prescribed. 

1.1.6 In order for an Internal Model to be used in the calculation of the SCR, the Solvency II regulations 

require that the model meets certain minimum standards, which are described in Articles 120 to 

126 of the Solvency II Framework Directive (2009/138/EC). These include standards relating to 

the statistical quality of the model, its calibration, a requirement for independent validation and the 

“use test” i.e. that the model plays in an important role in informing decisions regarding the 

management of risk in the business.  In particular, Article 122(2) requires that the SCR must be 

derived, where practicable, directly from the Probability Distribution Forecast generated by the 

Internal Model.  Article 13(38) of the Directive defines the Probability Distribution Forecast as “a 

mathematical function which assigns to a set of mutually exclusive future events a probability of 

realisation”. This is clarified in Article 228(1) of the Solvency II Delegated Regulations (2015) 

which states that “the exhaustive set of mutually exclusive events … shall contain a sufficient 

number of events to reflect the risk profile of the undertaking”. Article 234(b)(i) adds  “the system 

for measuring diversification takes into account … any non-linear dependence any lack of 

diversification under extreme scenarios”.  (The full text of Articles 228 and 234 is reproduced in 

Appendix B.) Guidelines 24 to 27 of the European Insurance and Occupational Pensions Authority 

(EIOPA) Guidelines on the use of internal models (EIOPA-BoS-14/180) provide further guidance 

on interpretation of “richness of the Probability Distribution Forecast” stressing (inter alia) that 

“the Probability Distribution Forecast should be rich enough to capture all the relevant 

characteristics of [an undertaking’s] risk profile” and ensure the reliability of the estimate of 

adverse quantiles is not impaired, whilst “taking care not to introduce … unfounded richness”. 

1.1.7 Some UK life insurance undertakings have taken the view that, due to the nature of their risk 

exposures and the Solvency II requirements for use of a “full Probability Distribution Forecast”, an 

aggregation approach based on a correlation matrix with scenario based refinements would not be 

adequate to meet the Internal Model standards due to the limitations outlined in 1.1.3.  This has led 

some life insurers that use internal models to use more sophisticated approaches to the aggregation 

of capital requirements.  The most common of these is the so-called “copula + proxy model” 

approach.   
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This approach is comprised of the following two components: 

1.1.7.1 Multivariate Risk Factor model 

This uses simulation techniques to generate a large number of (pseudo1) random scenarios from an 

assumed multivariate distribution of changes in risk factors.  The most common approach is to 

define the distribution of changes in each individual (marginal) risk factor separately (either in the 

form of a parametric distribution or in the form of simulated values) and to “glue” these together 

using a copula which defines the dependency structure. 

1.1.7.2 Proxy model 

For many UK life insurers, it is not currently practical to revalue assets and liabilities in the large 

number of simulated scenarios generated in the previous step.  This is because certain liabilities 

relating to with-profits business (such as the cost of guarantees) are usually valued using stochastic 

techniques.  The resulting nested stochastic valuation is not currently practical due to technological 

limitations.  Instead, a proxy model is used to approximate the profits and losses that would be 

produced by the “heavy” actuarial models in those scenarios.  The proxy model typically consists 

of a number of “proxy functions” which describe the changes in values of assets and liabilities in 

response to changes in the risk factors. The proxy functions are defined at the level of sub-portfolios 

of risks (which collectively cover the whole undertaking) and are calibrated using standard fitting 

techniques such as least squares regression. 

These two components combine to produce a large number of simulated values of profits and losses 

from which the required measure of risk can be deduced. Figure 1-1 provides an illustration of how 

the various components of the “copula + proxy model” approach fit together. 

 

Figure 1-1: Overview of copula + proxy model approach 

1.1.8 The aim of the proxy model is to reflect non-linear responses to changes in risk factors and the 

interaction between changes in risk factors. The copula based risk factor simulation model is aimed 

at producing a full probability distribution forecast by generating a sufficiently large number of 

scenarios (rather than just a small number of stress tests) which more appropriately reflects the 

underlying distribution.  It permits departure from the assumption of an elliptic distribution by 

allowing separate choices of the marginal risk factors and the dependency structure between them 

                                                      
1 Pseudo-random Scenario: Scenario output satisfying many conditions expected from random numbers, 

although the generator operates in a deterministic way. 
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(i.e. the copula).  For example, the copula could be chosen to explicitly include tail dependence 

and, at least in theory, belong to a non-elliptic family.  

1.1.9 The greater complexity of such techniques, the assumptions underlying them and the financial 

significance of those assumptions means that they are likely to come under greater scrutiny from 

the users of the models, such as senior management and the Boards of the undertakings.  Where 

the models are to be used to determine regulatory capital requirements under Solvency II, they will 

also be subject to scrutiny by the supervisory authorities who will expect undertakings to be able 

to produce evidence that the approach meets all the relevant standards of Solvency II. 

1.1.10 Some of the judgements which are likely to come under particular scrutiny include: 

 whether the model which describes the association or dependency between changes in risk 

factors and its calibration is appropriate – in particular, whether individual parameters (e.g. 

correlations) can be justified by reference to expert judgement and relevant data (where 

available) and whether the model and its parameterisation makes adequate allowance for the 

association between extreme changes in the risk factors (“tail dependence”); 

 whether the fitting error resulting from the use of the proxy model is material and whether 

appropriate adjustments are made to mitigate the effects of such errors. 

 

1.2 Objective of the Working Party 

1.2.1 The objective of the Life Aggregation and Simulations Techniques Working Party was to set out 

different techniques by which actuaries and insurers could assess and choose between the range of 

aggregation approaches available.  In particular, the Working Party was asked to focus on how 

insurers could test, communicate and justify those choices to the various stakeholders involved. 

1.2.2 The purpose of this paper is to provide UK life insurance actuaries with some examples of 

techniques which could be used to test and justify recommendations relating to the aggregation 

approach.  Throughout the text we also provide some practical examples of how those techniques 

may be communicated effectively to stakeholders.  (Readers who wish to proceed directly to these 

sections should refer to section 1.3.)  Whilst the techniques involved are more complex than those 

which have been common under the ICAS framework, the Working Party believes that the 

underlying concepts can be explained in a manner which is accessible to financially literate 

stakeholders without going into unnecessary technical detail. We believe that graphical techniques 

can be a powerful tool in explaining and justifying the assumptions made and include some 

examples. We have tried to avoid discussion on the technical details and relative merits of specific 

techniques.  However, we have included technical material or appropriate references where we 

believed this would provide helpful context for the reader. 

1.2.3 The Working Party understands that that the “Copula and Proxy Model” method is the most 

common of the more sophisticated aggregation approaches used in those internal models for whose 

use some UK life insurers received supervisory approval in December 2015. We have therefore 

focused our attention on the challenges faced by actuaries when testing, justifying and 

communicating choices in relation to this particular approach.  We hope the paper will prove useful 

for actuaries involved in the preparation of internal model applications by undertakings seeking 

supervisory approval at a future date. 

1.2.4 The paper contains examples of some techniques which the Working Party understands have been 

effective in practice.  However, these do not necessarily represent a comprehensive set of tools, use 

of which will guarantee success. Other techniques may exist which are equally, if not more, 
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effective. Actuaries should choose techniques which are most appropriate to the specific 

circumstances of the individual undertaking and the users of the model outputs. 

1.2.5 The Prudential Regulation Authority (PRA) provided a summary of some aspects of the 

Quantitative Framework it used when assessing internal model applications during 2015 in two 

executive updates: “Solvency II: internal model and matching adjustment update” dated 9 March 

2015 and “Reflections on the 2015 Solvency II internal model approval process” dated 15 January 

2016.  This letter included an overview of the PRA’s quantitative indicators for dependencies.  

Actuaries involved in the recommendation of a dependency structure and its parameterisation may 

wish to consult this letter for more information regarding the expectations of the UK supervisory 

authorities. 

 

1.3 Structure of the paper 

1.3.1 Section 2 provides an overview of the principal stakeholders, their role and interests and ways in 

which actuaries might approach the communication challenges. 

1.3.2 Section 3 describes how the parameters of a copula may be selected using a combination of expert 

judgement and relevant data (where available). We discuss how the choices may be justified and 

tested, including the use of statistical and graphical techniques.  In particular, we discuss techniques 

by which allowance can be made for tail dependence. We have focussed on the Gaussian and 

Student’s t copula as we understand these are the two copulas which have been included in internal 

models of UK life insurers approved to date. Readers already familiar with the concept of tail 

dependence may wish to proceed directly to section 3.8.  Sections 3.5.1, 3.5.5, 3.6.3, 3.7.1, 3.7.2, 

3.8, 3.9 and 3.10 provides some examples of how the underlying concepts and techniques may be 

communicated, including worked examples based on a specific data set.  Section 3.15 discusses 

“top-down” reasonableness checks. 

1.3.3 Section 4 describes the practical aspects associated with fitting and validating a proxy model. We 

also highlight the key challenges practitioners face in communicating their proxy model results to 

stakeholders such as senior management, and consider how these can be addressed in sections 4.6.9 

and 4.8. 

1.3.4 We have assumed that the reader is familiar with the concepts of copulas and proxy models.  

References to background reading material are provided in the corresponding sections. For the 

purposes of this paper, we have focussed on the calculation of SCR under Solvency II.  The SCR 

is defined as the Value at Risk of Basic Own Funds at a confidence level of 99.5% over a one-year 

time horizon.  The considerations for other measures of economic capital requirements are similar, 

although the tests and standards of Solvency II may not necessarily apply. Readers should take into 

account the specific circumstances when applying any of the techniques discussed in this paper. 
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2 Stakeholders and communication 

In this section we list the principal stakeholders involved in making or reviewing decisions relating to the 

choice of aggregation techniques and the related assumptions, and the implications for communicating and 

justifying recommendations to two sets of key stakeholders: members of the Board and the supervisory 

authorities. Further commentary specific to the dependency structure and proxy models is included in 

sections 3 and 4 respectively. 

 

2.1 Stakeholders 

There are various groups of stakeholders who may be involved in the review of recommendations made 

regarding aggregations techniques (as well as other components of an Internal Model) and their 

implementation into the day to day operation of the Internal Model: 

2.1.1 Boards 

The Board of a company is ultimately responsible for approving the firm’s Internal Model for use.  It needs 

to ensure that on an ongoing basis the design and operations of the Internal Model are fit for purpose; that 

the model appropriately reflects the company’s risk profile; the model meets the relevant tests and standards 

and that the output from the model is credible for use in managing the business and for regulatory purposes. 

2.1.2 Supervisory authorities 

The supervisory authorities will wish to be provided with evidence which demonstrates that the model 

meets all the relevant tests and standards of Solvency II in order that they are able to approve the model for 

use in calculating regulatory capital requirements. 

2.1.3 Risk committees, senior management 

The Board may use the output from reviews by its risk committees to inform its final decision on whether 

to accept the model or to require changes to it.  Senior management will be users of the model in the day to 

day management of risk in the business and have a role in ensuring it is fit for purpose.  Members of senior 

management will also need to have a detailed understanding of the components of the Internal Model used 

in their own areas of the business. Senior management may establish technical committees whose 

membership includes executives from different parts of the business to ensure that recommendations made 

to the Board on the methodology and assumptions used in the model take appropriate account of business 

needs in addition to being technically sound. 

2.1.4 Risk management function 

Under Solvency II, the risk management function is responsible for putting in place an effective risk-

management system to identify, measure, monitor, manage and report on the risks to which a company is 

exposed and their interdependencies. 

Where an Internal Model has been approved by the supervisory authorities for the calculation of the SCR, 

the Solvency II Directive states that the risk management function is responsible for the design and 

implementation of that Internal Model as well as for its testing and validation.  This includes the 

documentation of the Internal Model together with any subsequent changes made to it.  The risk 

management function is also required to analyse the performance of the model and produce corresponding 

reports. These reports include informing the Board about the performance of the model, areas that need 

improvement and providing updates on actions aimed at improvement of previously identified weaknesses. 

The risk management function is also responsible for the policies relating to the governance of the Internal 

Model, including the policy for changes to the Internal Model and the framework for validation of the 

Internal Model. 
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In practice, the risk management function may delegate some of the day to day activities to the actuarial 

function, subject to oversight by the risk management function.  For example, due to the requirement of 

Solvency II for independent validation (see 2.1.6), the design and implementation of the Internal Model 

together with responsibility for maintaining the related documentation is often delegated to the actuarial 

function, with oversight provided by the risk management function.   

The risk management function is responsible for the developing of proposals for the validation framework 

for review, challenge and, ultimately, approval by the Board and for the production of regular validation 

reports to the Board. The resulting validation process will often include a review of the choice of copula 

and its parameterisation by individuals independent of the development of those proposals. It will also 

typically include (i) an assessment of the adequacy of the fit of the proxy model by the risk management 

function or (ii) the definition of a set of tests to be performed by the actuarial function to assess the fit of 

the proxy model and the criteria for any subsequent adjustments to model outputs with a review of the 

outcome by the risk management function. 

2.1.5 Actuarial function 

The actuarial function is often responsible for the design, maintenance, testing and day to day operation of 

the Internal Model under oversight of the risk management function. The actuarial function will have an 

interest not only in ensuring the technical soundness of the model and its compliance with the company’s 

own policies and the relevant regulatory tests and standards but also that it is appropriate for use in the 

business.  This means that the model should not only be suitable for the calculation of regulatory capital 

requirements, but also that it does not contain unnecessary areas of prudence which could lead to 

inappropriate decisions or result in unnecessary constraints on the business.  The actuarial function is 

therefore likely to establish its own “first line” system of review which may include peer review by other 

technical specialists, technical review forums including other finance experts on areas such as asset liability 

management, tax or IFRS reporting, and final review by the Chief Actuary.  The actuarial function will 

therefore be highly interested in both the technical soundness of the model as well as ensuring that the 

outputs it produces provide a realistic measure of the risks. 

The actuarial function may also be responsible for maintaining the documentation of the Internal Model, 

subject to review and approval by the risk management function.  This could include preparing papers 

recommending methodology and assumptions for approval by the Board, together with papers seeking 

approval from the Board for the results of the Internal Model, including the SCR. These papers should 

include an assessment of the strengths and limitations of the Internal Model, a description of the significant 

expert judgements and sensitivities to valid alternative assumptions.  In particular, documentation provided 

to the Board should draw out key judgements relating to the choice of copula, its parameters, how account 

has been taken of tail dependence, the rationale for those judgements, the associated limitations and 

sensitivities to valid alternative judgements. The documentation should also draw the attention of the Board 

to limitations of the proxy model including fitting errors and, where applicable, how these limitations have 

been allowed for through adjustments to the proxy model result together with the rationale for those 

adjustments. These judgements should be communicated in a way which is accessible and engaging and 

which identifies the judgements where the Board can significantly influence the outputs of the model by 

choosing alternative assumptions.   

2.1.6 Independent validation  

The Solvency II regulations require regular validation of the Internal Model, including its specification, 

performance and comparison of its results against actual experience, through a validation process which is 

independent of those responsible for the development and operation of the model.  Responsibility for the 

validation of the model lies with the risk management function. As indicated in 2.1.4, the requirement for 

independence of validation process from those responsible from the development and operation of the 
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Internal Model often means that the latter responsibilities are delegated to the actuarial function under 

oversight of the risk management function.   

Personnel involved in the validation process will be interested in ensuring that the model meets all the 

relevant tests and standards and is suitable for use in managing the business.  Personnel charged with the 

validation process must regularly report on the outcome of their reviews to the Board.  They will therefore 

wish to have a good understanding of the mathematical basis for the model, detailed evidence which 

demonstrates that the model it meets the tests and standards of Solvency II, and that the outputs from the 

model provide a reasonable basis for the measurement and management of risk. They will also be interested 

in understanding the limitations of the model and circumstances under which it may not be effective, 

whether an appropriate range of alternative methods have been considered and how the limitations are 

mitigated.  

2.1.7 Internal audit 

The internal audit function is responsible for the evaluation of the adequacy and effectiveness of the 

company’s internal control system, including whether the actuarial function and risk management function 

have properly performed their respective roles.  The internal audit function may therefore carry out its own 

testing in order to provide assurance to the Board. This could include aspects such as a review of the 

effectiveness of the processes and controls designed to ensure the Internal Model meets the required tests 

and standards, the processes around expert judgement (e.g. the selection of correlation assumptions) and 

whether the process for calibration and adjustment of the output from a proxy model is operated in 

accordance with the approved specification. 

2.1.8 External advisors 

Some firms may seek additional assurance from external advisors regarding the design of the model or the 

underlying assumptions, in particular in specialist areas where the firm feels it does not have sufficient 

expertise internally or where it wishes to obtain additional insight into market practice.   

2.1.9 External auditors 

Where the SCR is calculated using an approved Internal Model, according to PRA Consultation Paper 

CP 43/15 “Solvency II: external audit of the public disclosure requirement” (2015) (the consultation on 

which had not been concluded at the time of writing this paper), the PRA does not intend to require the 

SCR to be subject to external audit.  This avoids duplication of the independent validation and the PRA’s 

own Internal Model approval process. It is for the Boards of such firms to determine the extent of 

involvement of external auditors in review of the SCR.  For example, the Board of some firms may 

determine that no further external assurance is required. Alternatively, a Board may request external 

auditors to perform one of a range of possible assurance exercises: (i) review and comment on specific 

aspects of the SCR calculation; (ii) provide a limited assurance opinion on whether specific items of the 

SCR have been calculated in accordance with a basis of preparation defined by the firm; or (iii) provide a 

reasonable assurance opinion on whether the full SCR calculation has been performed in accordance with 

a basis of preparation defined by the firm.  In each case, the basis of preparation would be the specification 

of the Internal Model approved by the college of supervisors. 

 

2.2 Communication 

There is a wide range of potential audiences for communications related to the judgements involved in the 

aggregation of risks and the Internal Model more widely.  Each of these audiences plays a different role 

and has different interests.  In any form of communication, it is important that the communication has a 

clear purpose, the needs of the audience are taken into account and that essential information is not obscured 
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by material which is not relevant to the decisions being made. The language, style and medium of 

communication should also be appropriate to the needs of the audience.  Some audiences do not require 

technical details, whilst other audiences may be highly interested in the mathematical theory underlying a 

particular model.  Some audiences may prefer detailed written documentation, whilst for others, the 

messages may be more effectively conveyed in the form of pictures or diagrams in a slide pack, for example.  

The structure of any communication is also important. The way any form of communication is organised 

should be logical and provide a clear path through the material presented in support of the 

recommendations. Different approaches are therefore needed when communicating with different 

audiences. It may be appropriate to have several “layers” or “strands” of documentation to meet the needs 

of different audiences. 

The Solvency II regulations provide standards on documentation and the content which must be provided 

to certain stakeholders.  Actuaries should also comply with the relevant professional standards in their 

communications, in particular with the appropriate Technical Actuarial Standards. 

In the remainder of this section, we consider differences in the approach to communication to two key 

groups of stakeholders: members of the Board and the supervisory authorities. 

2.2.1 Board members  

Where the Internal Model is used for calculating the SCR under Solvency II, the Board are collectively 

responsible for ensuring that the Internal Model is fit for purpose and that it meets all the relevant tests and 

standards. They will therefore wish to make sure that it is appropriate for use in the management of risk in 

the business as well as for the production of regulatory capital requirements. 

This does not mean that members of the Board have to be experts in the mathematics and statistics 

underlying the capital models.  Rather they will need to understand at a high level why a particular model 

was selected, what that model does, its key features, its strengths and limitations, the significant judgements 

involved, the related uncertainties and the impacts of reasonable alternative models and assumptions so 

they can exercise review and challenge where appropriate. 

It will therefore be important when explaining recommendations to the Board to focus on the most 

significant areas of judgement and to avoid technical jargon.  Graphical techniques such as scatter plots, 

charts and histograms provide effective tools to explain and motivate choices in a compact way. Simple 

worked examples may also be helpful to illustrate concepts. Boards must ensure that they have sufficient 

understanding of the model, the underlying judgements, their limitations and the sensitivities of the outputs 

to valid alternative in order to form a view on whether the model is fit for purpose. The Board will also 

need to be involved in the design of  the independent validation process and approve it for use to ensure 

that proposals have received an appropriate level of technical challenge. 

In addition to submitting proposals for approval by the Board at a formal meeting, it will be appropriate to 

ensure that the Board is well informed in advance of the meeting.  A series of educational events, exploring 

different aspects of the model, may therefore be useful to allow members to build up an understanding and 

have the opportunity to ask questions prior to making a decision. 

Members of Boards are likely to have diverse backgrounds and experience, as well as differing levels of 

interest in the components of the model.  It may therefore be appropriate to offer one-to-one sessions with 

individual members to provide an opportunity for more detailed exploration of specific areas of interest. 

The membership of a Board also changes over time.  Firms may therefore wish to maintain an appropriate 

suite of educational material which can be used to support new directors or as the basis of regular Board 

“refreshes”. 
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For the purposes of evidencing effective governance by the Board, it will be appropriate to keep a record 

of the review and challenge exercised by the Board and track progress against any actions.  Firms may also 

wish to maintain a log of the educational support provided to members of the Board. 

2.2.2 Supervisory authorities 

Regulators will wish to ensure that the Internal Model meets all the relevant tests and standards of Solvency 

II prior to approval for use to calculate the SCR.  They will therefore expect to be provided with 

documentation which demonstrates that the model meets the requirements of Articles 120-126 of the 

Solvency II Framework Directive (2009/138/EC) together with the related requirements of the Delegated 

Regulations and EIOPA Guidelines.  It may therefore be useful to use a checklist or standard documentation 

template to verify that the documentation to be provided does evidence compliance with all the relevant 

standards. 

The supervisory authorities will want to ensure that the undertaking has a thorough understanding of the 

techniques used (including the mathematical basis), their limitations and what measures the undertaking 

has taken to mitigate those limitations.  This will include evidence of having taken account of relevant data 

and the application of appropriate validation tests, including statistical testing, where relevant. The 

supervisory authorities also have teams of technical specialists whose expertise can be drawn upon to 

review submissions from firms. Therefore, undertakings may expect to have to present detailed technical 

documentation to support their methodology.  

Regulators will also expect undertakings to have identified all the choices made, the potential impact of 

alternatives and understand why an undertaking has chosen to go down one particular route rather than 

another.  This includes the identification of the most significant assumptions (e.g. correlations) and a 

quantification of the impact on the SCR of adopting plausible alternative assumptions.  

The selection of a dependency structure and the approach to calibration and adjustment of a proxy model 

necessarily involve expert judgement.  Undertakings should be able to demonstrate that there is a robust 

and systematic process in place for the selection of those assumptions and their validation, including the 

adjustment of any assumptions or the outputs to allow for limitations of the model (e.g. the lack of tail 

dependence in a Gaussian copula; fitting error in a proxy model). 

The supervisory authorities will also expect users of the outputs of the model to be aware of any significant 

limitations of the model so that appropriate account of these limitations can be taken when making decisions 

informed by the model. They will therefore expect documentation provided to the users to highlight such 

limitations. 

The PRA published some principles on creating good quality documentation in December 2013. The PRA 

has also developed a Quantitative Framework which it has used in its assessment of Internal Model 

applications.  It has released some details of the Quantitative Indicators which form part of that framework 

in two executive director updates dated 9 March 2015 and 15 January 2016.  These updates include an 

outline of some of the factors considered in the PRA’s assessment of dependency structures.  Actuaries 

involved in the development of internal models may wish to refer to these documents to help understand 

the PRA’s expectations.  
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3 Calibration of copulas and allowance for tail dependence 

3.1 Introduction  

Most UK life assurance companies that use internal models to calculate their SCR have chosen to use a 

copula based approach to aggregation according to recent industry surveys (Towers Watson, KPMG, Ernst 

and Young, PwC - all 2015). Of these, the majority have opted for the Gaussian model with a minority 

(three, according to the surveys of Towers Watson and KPMG) adopting a Student’s t copula for all or a 

subset of the risk factors.  

The use of the Gaussian or Student’s t copula is likely to be a result of primarily practical considerations: 

 Scarcity of relevant data to reliably inform the choice of a copula family; 

 Transparency – elliptic copulas such as the Gaussian and Student’s t have a correlation matrix as a 

parameter.  A correlation matrix approach to aggregation was commonly used for the Individual 

Capital Assessment so correlations are likely to be well understood by users of the model; 

 Ease of modelling – these copulas are straightforward to simulate from using spreadsheets or 

statistical packages and come as standard within some proprietary aggregation tools; 

 Ease of parameterisation – the large number of risk factors, particularly for a more complex group 

of companies – combined with the previous factors, leads to a preference for models which are no 

more complex and have as few parameters as is necessary to appropriately reflect the dependencies. 

The choice between a Gaussian or Student’s t copula is likely to be determined by a firm’s prior beliefs 

regarding tail dependence and preference for modelling this explicitly using the Student’s t copula or using 

the simpler Gaussian copula with appropriate adjustments to the correlation parameters to make allowance 

for tail dependence. 

In this section we assume that the choice to use either a Gaussian or a Student’s t copula has already been 

made (i.e. the choice of dependency structure in the box labelled “2” in Figure 1-1).  We focus on techniques 

that may be used to inform and justify the selection of the parameters of these two copulas (i.e. the 

correlations and any other parameters in the box labelled “1” in Figure 1-1). In particular, we consider how 

allowance can be made in the parameterisation, explicitly or implicitly depending on the choice of model, 

for tail dependence.  

We have assumed that the reader is familiar with the basics of copulas.  There are numerous good 

references.  McNeil, Frey & Embrechts (2015); Cherubini, Luciano & Vecchiato (2004), Joubert & Dorey 

(2005), Sweeting and Fotiou (2013) and Shaw, Smith and Spivak (2011) provide accessible accounts in a 

finance context.  Nelsen (1998) and Joe (2015) are standard, but more technical, reference works.  The 

paper by Demarta and McNeil (2005) provides a comprehensive review of the Student’s t copula while the 

paper by Aas (2004) provides a practical introduction to simulation from copulas. 

 

3.2 Overview of section 

In this section, we cover the following: 

1. Bottom-up parameterisation 

a. Use of data to inform the parameterisation 

i. Inspection of the data using graphical techniques – section 3.5.1 

ii. Different time periods – section 3.6.1 

iii. Confidence intervals – section 3.6.2 

b. Parametric fitting techniques 
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 Method of moments type approaches based on first order rank 

statistics – section 3.5.3 

 Maximum Pseudo-Likelihood – section 3.5.4 

c. Allowing for tail dependence  

i. Definition and communication – section 3.7 

ii. Coefficients of finite tail dependence – section 3.8 

iii. Targeting conditional probabilities – section 3.9 

iv. Techniques based on matching high order rank statistics – section 3.10  

d. Overlay of expert judgement and selection of assumptions in the absence of relevant 

data – sections 3.12 and 3.13 

2. Adjustments for internal consistency (positive semi-definiteness) – section 3.14 

3. Top-down validation – section 3.15 

 

We end the section by commenting briefly on techniques for testing the choice of copula. 

Readers who are already familiar with the estimation of correlations and tail dependence may wish to 

proceed directly to section 3.8. 

 

3.3 Relevance of data and statistical techniques  

Given the scarcity of data, even for pairs of market risks, one may suspect it would be a futile exercise to 

apply statistical techniques to whatever data is available in order to inform the choice of assumptions.  

Whilst the uncertainty in parameters derived using data means that the selection of copula parameters 

should never be a purely data driven exercise and therefore necessarily relies on expert judgement, use of 

statistical techniques can help inform the choice of assumptions and support the judgements made. 

The statistical quality standards of Solvency II also indicate that relevant data should be used where 

possible.  For example, Article 231 of the Solvency II Delegated Regulations (2015) states “… no such 

relevant data [is] excluded from the use in the internal model without justification”. Article 234 of the 

Delegated Regulations requires that “the assumptions underlying the system used for measuring 

diversification effects are justified on an empirical basis”. Article 230(2)(c) of the Delegated Regulations 

states “assumptions shall only be considered realistic … where they meet all of the following conditions … 

insurance and reinsurance undertakings establish and maintain a written explanation of the methodology 

used to set those assumptions”. (See Appendix B for the full text of Article 230.) 

The Working Party has interpreted these regulations as requiring an undertaking to have a documented 

process for the selection of the copula parameters that includes an appropriate analysis of the relevant data 

combined with the use of expert judgement.   

 

3.4 Communication and validation 

When explaining statistical concepts to stakeholders as well as the selection and validation of assumptions 

informed by these techniques, members of the Working Party has found that visualisation techniques tend 

to result in the greatest level of engagement.  They can be useful in explaining technical terms in a way 

which is more readily accessible than formulae.  They also provide a compact format for illustrating the 

choices which is straightforward to interpret. Moreover, the effect of a different set of assumptions can be 

illustrated by superimposition on the same chart or even using simple animation techniques (e.g. by flicking 

through a set of slides showing graphically how the output of the model compares to data as the parameters 

of the model are varied).  However, one of the drawbacks of visualisation techniques is that they naturally 
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tend to be useful only in two or three dimensions.  Nevertheless, this limitation is often accepted and 

combined with expert judgement to choose correlation assumptions.    

Where the analysis is less amenable to visualisation (e.g. parametric fitting techniques such as those 

described in section 3.5.5), the level of information required may vary more according to the stakeholder.  

Personnel responsible for independent validation and the supervisory authorities will expect documentation 

to evidence a detailed understanding of the technique, its strengths and its limitations and provide sufficient 

evidence to demonstrate the model and assumptions meet the statistical quality standards of Solvency II.  

The Board is ultimately responsible for the appropriateness of the design and operations of the Internal 

Model.  Therefore, whilst the Board and senior management do not need to be experts on the underlying 

mathematics, they will want to understand at a high level how a copula works; the significant choices and 

judgements involved in selecting and parameterising a copula (such as making allowance for tail 

dependence) and their implications; the impact of alternative but nonetheless reasonable assumptions and 

the process by which those have been validated.  An explanation of a copula in terms of matching ranks of 

values of the marginal distributions according to an algorithm which reflects the dependency structure and 

illustrating this concept by means of scatter plots of the copula may be helpful (see, for example, Simulation 

and Aggregation Techniques Working Party [2015]).  The Board and senior management may also wish to 

see the rationale for certain key assumptions explained at a high level, included the general reasoning and 

economic arguments supporting correlations (see section Error! Reference source not found.) and the 

types of real-life scenarios that can give rise to losses of similar magnitude to the SCR (see section 3.15).  

In order to illustrate how the visualisation and quantitative techniques described in this section may be used 

in the communication and justification of assumptions, we have provided a number of worked examples of 

approaches which we understand have been effective in discussions with some stakeholders.  The majority 

of these examples are based on a set of three risk factors representing monthly increases in equity values 

(EQ), corporate bond spreads (CR) and the first principal component of the UK nominal government bond 

yield curve (PC1).  This data set has been chosen as it represents a set of risk factors to which most life 

assurance undertakings have some exposure and for which the data available is comparatively rich.  A 

description of the data is provided in Appendix A.1. 

Irrespective of the data, it is important that the choice of assumptions can be explained and justified by 

economic arguments or general reasoning.  Such arguments form an important part of the validation of any 

assumption suggested by data and may be more accessible to some stakeholders.   

It is common to build up the parameterisation of a copula using a “bottom-up” approach which considers 

relationships between pairs of risk factors.  It is therefore important that the final set of assumptions is 

coherent and “stacks up” collectively.  We discuss top down validation in section Error! Reference source 

not found. but note here that one of the most significant advantages of a simulation based approach to 

capital aggregation is the ability to identify one or more “real life” individual scenarios giving rise to losses 

of magnitude similar to the SCR.  These scenarios (expressed as changes in risk factors in terms which are 

accessible e.g. increases in life expectancy at specific ages, reductions in interest rate at specific terms) can 

allow stakeholders to form a view of whether the model outcomes are consistent with the risk profile of the 

business and so assist in the validation of assumptions. 

Finally, we observe that in the selection of copula parameters, the boundary between “calibration” and 

“validation” is somewhat blurred.  This is because “calibration” necessarily involves the exercise of 

judgement, so the process of calibration itself involves thinking through the rationale and possible 

alternatives.  For example, one could “calibrate” a correlation using a single statistical process, such as the 

relationship described in Equation 3-1, use the approach described in section 3.8 to “validate” and, if 

appropriate, adjust the original calibration, with an overall sense check using the approach of section 3.15.  

Alternatively, the approach described in section 3.8 could just as well be described as one part of the 

calibration process. 
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3.5 Bottom-up approach to parameter selection 

3.5.1 Data inspection 

A first step in illustrating dependency is through plots of time series and scatter plots.  These relatively 

simple charts are often the simplest and most effective tool in demonstrating evidence of association to 

stakeholders and motivating subsequent choices. 

Scatter plots of the data can assist in: 

 The identification of the presence of a relationship. 

 The nature of that relationship (e.g. the sign and broad magnitude of any correlation, the extent of 

any symmetry or lack of it, and any clustering of extreme values that may indicate the presence of 

tail dependence). 

 Identification of any data points, which could be outliers. 

Charts of both the raw observations and pseudo-observations are useful.  The pseudo-observations (defined 

in Appendix A.2) use a non-parametric transformation of ranks to filter out the marginal distributions and 

can be compared with scatter charts of standard copulas. 

As noted in Shaw, Smith and Spivak (2011), by excluding the time dimension, scatter plots mask temporal 

effects which may be present in the data and which one may wish to take in account when selecting 

assumptions (e.g. trends or a change in regime).   

Figure 3-1 shows a time series plot of equity returns vs. increases in credit spreads.  Figure 3-2 shows scatter 

plots of pairs of increases in value of our three risk factors and the corresponding pseudo-observations. 

 

Figure 3-1: Monthly equity returns and increases in credit spreads over period 31.12.1996 to 31.12.2014 
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Figure 3-2: Equity returns and credit spreads raw and pseudo observations 

Figure 3-1 shows no obvious trend in the relationship between equity returns and credit spreads.  There is 

an obvious anti-symmetry in the “peaks” with increases in credit spreads frequently being mirrored by 

negative equity returns.  The strong negative correlation is also apparent in Figure 3-2. The chart of pseudo 

observations for EQ/CR shows some clustering in the upper left and lower right tails along the “-45% ray” 

– i.e. extreme falls in equity values show a greater tendency to be accompanied by extreme increases in 

credit spreads (and vice versa).  However, it also shows some clustering along the other diagonal (the 

“+45% ray”) giving rise to “star” shape.  This behaviour is typical of a Student’s t copula with a low degrees 

of freedom parameter and indicates the presence of “arachnitude” – see section 3.10.   

From the charts of pseudo-observations, at least visually, the assumption of an elliptic copula for each pair 

does not appear unreasonable. 

3.5.2 Parametric fitting techniques 

There are various statistical techniques for estimation of the copula parameters which extend the Method 

of Moments (MoM) or Maximum Likelihood Estimate (MLE) method that are familiar in fitting models 

for one dimensional random variables.  We describe these techniques briefly here.  Readers are referred to 

standard texts, e.g. Section 7.5 of McNeil, Frey & Embrechts (2015), for further details. 

3.5.3 Methods of Moments type approaches 

These are based on (first order) rank invariants of the copula such as Spearman’s rank correlation or 

Kendall’s tau statistic.   

For the d-dimensional Gaussian copula, one can calculate Spearman’s rank correlation or Kendall’s tau for 

the sample data and invert to solve for the correlation parameter using the formulae below: 

 

𝜌 = 2 sin (
𝜋𝜌𝑆

6
) 

Equation 3-1 

 

𝜌 = sin (
𝜋𝜌𝜏

2
) 

Equation 3-2 
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where, for a given pair of risk factors, 𝜌𝑆 is Spearman’s rank correlation, 𝜌𝜏 is Kendall’s tau statistic and 𝜌 

is the corresponding parameter of the correlation matrix underlying the copula.  The relationship in 

Equation 3-1 is precise only for the Gaussian copula, although in practical situations, it does not appear to 

lead to significantly different conclusions. 

The approach based on the relationship involving Kendall’s tau statistic described by Equation 3-2 (the 

“inverse Kendall’s tau” technique) holds more generally for any elliptic copula such as the Student’s t 

copula.  However, pairwise inversion of the Kendall’s tau statistic using Equation 3-2 may not produce a 

positive semi-definite (PSD) copula correlation matrix. It may therefore be necessary to adjust the resulting 

matrix using techniques such as those described in section 3.14 to obtain a positive semi-definite correlation 

matrix.  This technique also results only in values for the correlation matrix.  Other techniques such as 

maximum likelihood estimation or use of higher order rank statistics such as those described in section 3.10 

must be used to estimate the degrees of freedom (dof) parameter. 

3.5.4 Maximum Likelihood approaches 

There are two slightly different approaches to the estimation of copula parameters using Maximum 

Likelihood techniques: 

(a) Inference from Margins (IFM) approach – see Joe (2015) 
This approach assumes parametric models for each of the distributions of changes in individual risk 

factors as well as for the copula. The usual maximum likelihood approach, given a set of sample 

data for changes in the risk factors, would then be to express the likelihood (or log likelihood) of 

the joint distribution as a function in the parameters of the copula and all the marginal distributions.   

This will generally result in a high dimensional space in which to seek a solution. 

  

The IFM approach splits this optimisation process into two separate steps: 

 

 First, the parameters of each of the one dimensional marginal distributions of changes in 

risk factors are estimated using maximum likelihood. 

 The fitted parameters of the marginal distributions are then kept fixed so that the (log) 

likelihood function is then expressed in terms of the copula parameters only.  The values 

of these parameters are then chosen to maximise the (log) likelihood. 

 

The values of the copula parameters therefore depend on the models and parameters chosen for the 

individual risk factor distributions. 

 

(b) Maximum Pseudo-Likelihood (MPL) – see Genest & Rivest (1993) and McNeil, Frey & 

Embrechts (2015) 
This method avoids making assumptions about the marginal distributions by using non-parametric 

techniques to estimate their distributions. The sample data are replaced by the corresponding 

“pseudo-observations” – see Appendix A.2 for definitions.  The corresponding pseudo-

observations are then used as inputs to the probability density function of the copula when forming 

the (log) likelihood function. The resulting likelihood function then depends only on the parameters 

of the copula and, unlike the IFM approach, not on the assumed models and parameters of the 

marginal distributions.  The copula parameters can then be selected using optimisation techniques. 

 

3.5.5 Worked example 

We have fitted correlation parameters (“Rho”) and degrees of freedom parameters (“Nu”) of the Gaussian 

and Student’s t copulas to our data set using: 

(a) the inverse Kendall’s tau technique to estimate Rho (with MLE to estimate Nu) using the “QRM” 

package in R; 
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(b) the Maximum Pseudo-Likelihood method using the “copula” package of R. 

In both cases, we have fitted to pairs of risk factors as well as the triple.  Table 3-1 to Table 3-4 show the 

results.  

 

Inverse Kendall’s tau 

 EQ/CR CR/PC1 PC1/EQ 

Copula Rho Nu Rho Nu Rho Nu 

Gaussian -46.6%  -29.6%  16.0%  

Student’s t -46.6% 2.60 -29.6% 11.30 16.0% 4.43 
 

Table 3-1: Bivariate 

 
Copula  Correlation matrix Nu 

  EQ CR PC1  

Gaussian 

EQ 100.0%   

 CR -46.6% 100.0%  

PC1 16.0% -29.6% 100.0% 
      

Student's t 

EQ 100.0%   

4.51 CR -48.6% 100.0%  

PC1 16.0% -29.6% 100.0% 

 

Table 3-2: Trivariate 

 

Maximum Pseudo-Likelihood 

 EQ/CR CR/PC1 PC1/EQ 

Copula Rho Nu Rho Nu Rho Nu 

Gaussian -48.8%  -31.8%  16.8%  

Student's t -46.5% 2.60 -31.2% 9.40 16.6% 6.08 
 

Table 3-3: Bivariate – MPL 

 

Copula  Correlation matrix Nu 

  EQ CR PC1  

Gaussian 

EQ 100.0%   

 CR -48.8% 100.0%  

PC1 17.1% -31.8% 100.0% 
      

Student's t 

EQ 100.0%   

4.51 CR -48.6% 100.0%  

PC1 15.0% -28.7% 100.0% 

 

Table 3-4: Trivariate – MPL 
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We note the following: 

 Fitting a Gaussian copula using either technique results in a correlation parameter which is 

appropriate to the full distribution.  The resulting value of the correlation is identical to that fitted 

to a Student’s t model if the inverse Kendall’s tau method is used. It does not differ significantly 

from the corresponding parameter for a Student’s t copula if the MPL approach is used, even where 

the degrees of freedom parameter is low. This suggests that, if using a Gaussian copula, further 

adjustments to the correlations parameter may be required to allow for the effect of tail dependence 

in the extreme tail – see sections 3.8 and 3.9. 

 For example, for EQ/CR, both the MPL and MoM fit for the bivariate t copula produce a degrees 

of freedom parameter of less than 3. However, the correlation parameter of the bivariate Gaussian 

and bivariate Student’s t fitted using the MPL technique only differ by less than 3 percentage points 

(-48.8% compared to -46.5% respectively).   

 Where a Student’s t copula is fitted for each pair of risk factors separately, the degrees of freedom 

parameters for the different pairs vary significantly.  The degrees of freedom parameter in the 

trivariate case (4.51) is in some sense an “average” of the three bivariate values (2.60, 9.40 and 

6.08). 

 

3.6 Estimation of correlation parameters in practice 

In practice, the choice of correlation parameters is not a mechanistic, data driven process. Even where data 

is available (principally for market risks), one has to make a choice of the data set to use: the data series 

itself, the time period used and frequency at which the data is selected. Consideration must also be given to 

consistency with the data used for the calibration of marginal risk distributions.  

In order to analyse correlations, the data for the two risk factors has to be coincident – i.e. the time period 

and sampling frequency used must be identical.  Even for pairs of market risks, the periods for which 

coincident data is available is relatively short.  For example, the FTSE All Share Index began in 1962 and 

one of the most commonly used indices of credit spreads began at the end of 1996. These relatively short 

periods of coincident data will contain limited information about extreme events. 

Different choices of data sets will generally lead to different values. For example, an analysis of the 

correlation between two risk factors will produce differing values over different time periods – see section 

3.6.1. Any estimates produced from a finite data set will also be subject to parameter mis-estimation error.   

Thus, whilst an analysis of the data which is available can assist in informing the choice of a correlation 

parameter, in practice it is essential to overlay this analysis with expert judgement - see section Error! 

Reference source not found..  Where there is no or extremely scanty data available, which is the case for 

most correlations involving non-market risks, it is essential to make use of expert judgement and general 

reasoning in selecting the assumption – see section 3.13. 

3.6.1 Different time periods 

In practice, the correlation between increases in two risk factors varies over time. Judgement is therefore 

required in selecting both the period of time on which the estimate is based and any allowance made for 

any uncertainty in the estimate.  Note that the latter is a margin for prudence in the estimate of the copula 

parameter.  In the case of a Gaussian copula, this differs conceptually from any further allowance which 

may be made to adjust for the absence of tail dependence, although the outcome may be similar.  We discuss 

adjustments to the parameters of a Gaussian copula for tail dependence in sections 3.8 and 3.9. 

Charts of correlations over different time periods may be helpful in illustrating the resulting uncertainty to 

stakeholders in a manner which is compact and amenable to explanation e.g. by pointing out the 
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consequences of certain extreme market events.  Such charts may also help identify any potential trends in 

correlations which the undertaking may wish to take into account when selecting assumptions.   

For example, one might produce a chart showing rank correlations over different windows of time, such as: 

(a) From a varying start date to a fixed end date (e.g. the end of the period for which data is available); 

(b) From a fixed start date (e.g. the start of the period for which data is available) to a varying end date; 

(c) Over a window of fixed length moving through the data period; 

(d) Some other set of time periods chosen to test differences in behaviour. 

Under (c), the length of the window could be selected using judgement as being sufficient to form a view 

on “short-term” correlations and give an idea of how correlations could vary between benign and stressed 

conditions.  The choice of window is a compromise between the length of the window and the uncertainty 

in the resulting estimates.  A longer window will result in a lower sample error but on the other hand may 

not pick up short term behaviour.  Modellers who use this approach may wish to assess the effect of using 

different window lengths, particularly where it is used to inform material assumptions. 

The charts produced may also be enriched by superimposing information about confidence intervals which 

may be derived using techniques such as those described in section 3.6.2. 

3.6.2 Confidence intervals 

It may be useful to illustrate the uncertainty in-sample estimates using confidence intervals.  There are a 

number of techniques available, for example:  

(i) Fisher Z-transform.  This uses asymptotic properties of the distribution of transformed data to 

provide analytic formulae for the upper and lower bounds of a confidence interval.  There are 

various versions of the formulae, which are intended to adjust the result to allow for the finite 

sample size.  

(ii) Bootstrapping. A large number of synthetic data sets is generated by re-sampling the original 

data with replacement. The rank correlation for each of the synthetic data sets is then calculated.  

This process generates a large number of simulated values of the rank correlation from which 

appropriate percentiles may be drawn to determine the confidence interval.  

The paper by Ruscio (2008) provides a useful survey of these approaches.  Functions provided in some 

statistical packages such as R also produce confidence intervals. 

3.6.3 Graphical tools 

Figure 3-3 is an example of a chart of type (a) described in section 3.6.1 for the Spearman’s rank correlation 

of our EQ/CR data set from a varying start date to a fixed end date of 31.12.2014. We have superimposed 

95% confidence intervals produced using both the Fisher Z-transform (described by formula (3) of Ruscio 

(2008)) and bootstrapping techniques (with 1,000 simulations). Visually, in this case, the confidence 

intervals produced by the different techniques are almost indistinguishable. 
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Figure 3-3: Equity returns and credit spreads Spearman rank correlation – chart of type (a) 

Note that this approach provides information only about the rank correlation – a scalar statistic which is 

“global” - rather than relevant to a specific area of the joint distribution such as the tail.  It is therefore more 

useful in informing one’s best estimate view of a correlation.  If it is considered appropriate to include a 

margin for uncertainty in the correlation, one potential approach would be to use the confidence intervals 

as a guide to select a higher or lower value for the correlation, taking into account the exposures in the 

“biting scenario”. (The “biting scenario” is a scenario which, in some sense, represents the average 

simulated scenario which gives rise to losses equal in magnitude to the SCR.  For example, some 

undertakings produce such a scenario by applying a smoothing process to simulated scenarios, the ranks of 

whose corresponding losses lie in a “window” around the SCR.) 

Inspection of rolling short-term correlations such as using charts of type (c) may be useful to inform views 

of correlations in “stressed circumstances” and of any further allowance for tail dependence which may be 

appropriate.  However, we note that the copula used in the calculation of the SCR (and the tail dependence 

embedded within it) is a static quantity. The change in correlation over time is conceptually different to tail 

dependence. 

Figure 3-4 illustrates correlations for a rolling 24 month window for our EQ/CR data set.  It shows the 

correlation reaching almost -75% for periods beginning in 2009 during the financial crisis. 
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Figure 3-4: Equity returns and credit spreads – correlations for rolling 24 month periods, start dates 31.12.1996 to 31.12.2012 

One crude method of allowing for tail dependence would be to select an assumption based on confidence 

intervals or “stressed correlations” informed by charts such as Figure 3-3 or Figure 3-4.  However, as noted, 

these are conceptually different from tail dependence so such an approach would have to be carefully 

justified.  Alternative approaches are discussed in sections 3.8, 3.9 and 3.10. 

3.6.4 Rounding 

To reflect the uncertainty in the chosen parameter values and the use of judgement, as well as for the 

practical reason of avoiding the frequent re-calibration of a large set of parameters, it is a common practice 

to round correlation assumptions according to a convention chosen by the undertaking (e.g. round to integer 

multiples of 10%).  This rounding may lead to internal inconsistencies in the “raw” correlation matrix with 

adjustments required to make it positive semi-definite prior to use in simulation – see section 3.14. 

The rounding convention is itself a choice which should be justified.  A notch size which is too small may 

be spuriously accurate.  On the other hand, a notch size which is too large may provide insufficient 

granularity and could lead to unnecessary prudence or unintended imprudence as well as inconsistencies in 

the raw matrix which require larger adjustments to produce a positive semi-definite matrix. 

 

3.7 Tail dependence 

In this section, we recall the definition of the coefficients of tail dependence and its significance in terms 

of joint and conditional probabilities of the simultaneous occurrence of extreme events in two or more risk 

factors. The latter provide a route to explaining the meaning of tail dependence to stakeholders – see section 

3.7.2. The approach we adopt is based on the coefficient of finite tail dependence.  As we will see in section 

3.8 this function can help to inform the choice of correlation parameters for a Gaussian copula.  Readers 

who are already familiar with these concepts may wish to move directly on to section 3.8. 
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Definition - coefficients of finite tail dependence 

The coefficients of upper or lower finite tail dependence are functions 𝜆𝑈 and 𝜆𝐿  defined for 𝑞 ∈ [0,1] as 

follows: 

 

𝜆𝑈(𝑞) = Pr (𝐹𝑋(𝑋) > 𝑞|𝐹𝑌(𝑌) > 𝑞) =
Pr[𝐹𝑋(𝑋) > 𝑞 AND 𝐹𝑌(𝑌) > 𝑞]

Pr[𝐹𝑌(𝑌) > 𝑞]
 

Equation 3-3 

  
 

𝜆𝐿(𝑞) = Pr ((𝐹𝑋(𝑋) < (1 − 𝑞)|𝐹𝑌(𝑌) < (1 − 𝑞)) =
Pr[𝐹𝑋(𝑋) < (1 − 𝑞) AND 𝐹𝑌(𝑌) < (1 − 𝑞)]

Pr[𝐹𝑌(𝑌) < (1 − 𝑞)]
 

Equation 3-4 

 

i.e. the coefficient of finite upper tail dependence function 𝜆𝑈(𝑞) is the probability that a value of X exceeds 

the qth percentile of X given that a value of Y has been observed which exceeds the qth percentile of Y.  

𝜆𝑈(𝑞) is a measure of the probability that X takes an extreme high value given that Y takes an extreme high 

value. 

Similarly, 𝜆𝐿(𝑞) is the probability that a value of X is less than the (1-q)th percentile of X given that a value 

of Y has been observed that is less than the (1-q)th percentile of Y.  𝜆𝐿(𝑞) is a measure of the probability 

that X takes an extreme low value given that Y takes an extreme low value.  

Note that both 𝜆𝑈(𝑞) and 𝜆𝐿(𝑞) are probabilities (not correlations) and so take values in the interval [0,1]. 

 

Definition - coefficients of tail dependence 

The coefficients of upper and lower tail dependence 𝜆𝑈 and 𝜆𝐿 are limiting values of coefficients of finite 

tail dependence given by: 

𝜆𝑈 =  lim
𝑞→1−

𝜆𝑈(𝑞) 

 

Equation 3-5 

 
 

𝜆𝐿 =  lim
𝑞→1−

𝜆𝐿(𝑞) 

 

Equation 3-6 

We have used a slightly different definition of the coefficients of lower finite tail dependence than the 

conventional one to ensure that, for a radially symmetric copula (such as the Gaussian or Student’s t), values 

of lower and upper finite tail dependence are equal for a given value of 𝑞. This presentation will prove 

convenient in section 3.8 in the application of graphical methods. 

3.7.1 Communicating the concept of tail dependence 

Figure 3-5 shows a graphical method for illustrating the meaning of the coefficient of lower tail dependence.   

In the diagram, the events have been expressed on a quantile (or rank) scale. The coefficient of lower finite 

tail dependence evaluated at q,  𝜆𝐿(𝑞), is the ratio of: 

(i) The proportion (or probability) of events in the square ABCD; to 

(ii) The proportion (or probability) of events in the rectangle AEFD 

The probability of events occurring in the rectangle AEFD is (1 − 𝑞), by definition. 
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As the events become more extreme (i.e. q increases), the square ABCD and the rectangle AEFD shrink.  

The coefficient of tail dependence is the limiting value of the ratio of the proportion of events that occur in 

the shrinking square to the proportion of events that occur in the shrinking rectangle. 

Note that the probability of events occurring in the vertical rectangle ABGH is also by definition (1 − 𝑞).  

The definition of 𝜆𝐿(𝑞) in Equation 3-4 is therefore clearly symmetric in X and Y. 

The coefficient of finite upper tail dependence, 𝜆𝑈(𝑞), may be illustrated in an analogous way. 

 

Figure 3-5: Coefficient of lower (finite) tail dependence 

It is a standard result that the coefficients of tail dependence of a Gaussian copula are zero while those of a 

Student’s t copula are non-zero.  For example, the coefficient of tail dependence of a bivariate Student’s t 

copula with correlation parameter  𝜌 and 𝜈 degrees of freedom is given by: 

 

2𝑡𝜈+1 [−√(𝜈 + 1)(1 − 𝜌) (1 + 𝜌)⁄ ] Equation 3-7 

 

 

where tν+1 is the cumulative distribution function of a standard Student’s t distribution with (ν + 1) degrees 

of freedom – see Equation 7.38 of McNeil, Frey & Embrechts (2015). 

3.7.2 Communicating the implications of tail dependence 

So what does the presence of tail dependence mean in practice? The definition of the coefficient of tail 

dependence in terms of a limiting value makes the concept more difficult to explain to stakeholders.  When 

explaining the implications of tail dependence to stakeholders, it may therefore be more useful to provide 

some simple quantitative indicators of what different copula models and parameters mean for the likelihood 

of “extreme events happening at the same time”, by illustrating the consequences in terms of joint 

exceedance probabilities or conditional probabilities.  As we shall see in section 3.8 the use of conditional 

probabilities in the form of the coefficient of finite tail dependence provides a useful graphical tool to inform 

the selection or validation of parameters. 
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3.7.2.1 Joint exceedance probabilities 

Table 3-5 to Table 3-7 are based on Tables 7.2 and 7.3 of McNeil, Frey & Embrechts (2015), although we 

have chosen parameters more typical of those commonly seen in a life insurance context.  They show: 

 A comparison of joint exceedance probabilities at differing percentiles produced by a bivariate 

Student’s t copula with those produced by a bivariate Gaussian copula for various correlation and 

degrees of freedom parameters. 

 

 Each table shows the probabilities for the Gaussian copula and the factors by which those 

probabilities must be multiplied to obtain the corresponding probabilities for the Student’s t copula.   

For example, assuming a correlation parameter of 50%, the probability that both risk factors exceed 

their “1 in 100 year” values at the same time under a Student’s t copula model with 5 degrees of 

freedom is twice that under a Gaussian copula model. An event with a probability of 0.00129 or 

around 1 in 770 years under the Gaussian copula now has a probability of 1 in 385 years under the 

Student’s t copula. See the highlighted cells in the table. 

 

 Looking at Table 3-5 for a correlation of 0%, the probability of both variables simultaneously 

exceeding their 95th percentiles is 0.25% under a Gaussian model. However, under a Student’s t 

copula with 5 degrees of freedom, the probability increases by a factor of 2.24 to 0.56%.  An event 

with probability less than 1 in 200 under the Gaussian model (1 in 400) has a probability greater 

than 1 in 200 under the Student’s t model (around 1 in 180). 

 

 Table 3-6 and Table 3-7 provide a comparison of joint exceedance probabilities for d-tuples of risk 

factors to illustrate how tail dependence influences behaviour in higher dimensions. The tables 

show the joint exceedance probabilities for the Gaussian copula and corresponding multiples for 

the Student’s t copula with various degrees of freedom. For each copula, the off-diagonal 

correlation parameters are all equal to the value shown. We show values for 2, 5, 10 and 25 

dimensions and at the 75th and 90th percentiles (to illustrate dependence on event severity). 

For example, taking 90th percentile (or “1 in 10 year” events) in each risk factor and assuming a 

correlation parameter of 25%, a simultaneous event in 10 risk factors, each of which is at least as 

severe as a 1 in 10 year event, is 5.7 times more likely if they follow a Student’s t model with 5 

degrees of freedom compared to a Gaussian.  The equivalent multiplier for 2 dimensions is 1.27. 

See the highlighted cells in the table using 25% correlation. 

 

The results illustrate the importance of considering tail dependence and making appropriate adjustments to 

the copula parameters to allow for this.  As we saw in section 3.5.5, the application of standard fitting 

techniques can produce very similar correlation parameters for a Gaussian and Student’s t model.  Yet, as 

shown by Table 3-5 to Table 3-7, the two models can produce very different joint exceedance probabilities 

at extreme percentiles.  When calculating the SCR or using an Internal Model to generate other outputs at 

extreme percentiles, it is therefore essential to consider tail dependence when selecting the parameters of 

the model. The selection of copula parameters necessarily involves expert judgement. We discuss some 

techniques for informing that judgement in the case of the Gaussian and Student’s t copula in sections 3.8, 

3.9 and 3.10. 
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Percentile 75th 90th 

Correlation/

DOF 
2 5 10 30 Gaussian 2 5 10 30 Gaussian 

0% 1.18 1.07 1.04 1.01 0.06250 2.18 1.50 1.25 1.08 0.01000 

25% 1.11 1.04 1.02 1.01 0.08931 1.63 1.27 1.14 1.05 0.01933 

50% 1.06 1.03 1.01 1.00 0.12028 1.34 1.15 1.08 1.03 0.03240 

75% 1.03 1.01 1.01 1.00 0.15932 1.17 1.07 1.04 1.01 0.05124 

95% 1.01 1.00 1.00 1.00 0.20982 1.05 1.02 1.01 1.00 0.07792 

  

 95th 99th 

Correlation/
DOF 

2 5 10 30 Gaussian 2 5 10 30 Gaussian 

0% 3.97 2.24 1.61 1.20 0.00250 18.49 7.47 3.73 1.74 0.00010 

25% 2.38 1.61 1.31 1.10 0.00614 6.31 3.34 2.13 1.35 0.00044 

50% 1.69 1.32 1.16 1.06 0.01219 3.05 2.01 1.52 1.17 0.00129 

75% 1.31 1.15 1.08 1.03 0.02201 1.78 1.41 1.22 1.08 0.00317 

95% 1.09 1.04 1.02 1.01 0.03708 1.20 1.11 1.06 1.02 0.00670 

Table 3-5: Joint exceedance prob. (Gaussian and bivariate Student’s t copula shown as multiples of the Gaussian) 

Correlation 0% 25% 

dim/DOF 2 5 10 30 Gaussian 2 5 10 30 Gaussian 

2 1.18 1.07 1.04 1.01 0.0625 1.11 1.04 1.02 1.01 0.089 

5 3.21 1.83 1.39 1.13 9.77E-04 1.54 1.22 1.11 1.04 0.011 

10 35 9 3.70 1.66 9.54E-07 2.25 1.49 1.24 1.08 1.49E-03 

25 2.23E+05 9061 611 19.2 8.88E-16 4.13 2.08 1.50 1.15 7.00E-05 

 

Correlation 50% 75% 

dim/DOF 2 5 10 30 Gaussian 2 5 10 30 Gaussian 

2 1.06 1.03 1.01 1.00 0.120 1.03 1.01 1.01 1.00 0.159 

5 1.22 1.09 1.04 1.01 0.038 1.09 1.04 1.02 1.01 0.088 

10 1.37 1.15 1.08 1.02 0.015 1.13 1.05 1.03 1.01 0.057 

25 1.63 1.25 1.12 1.04 4.10E-03 1.19 1.08 1.04 1.01 0.033 

Table 3-6: Joint exceedance probabilities at 75th percentile 

Correlation 0% 25% 

dim/DOF 2 5 10 30 Gaussian 2 5 10 30 Gaussian 

2 2.18 1.50 1.25 1.08 0.010 1.63 1.27 1.14 1.05 0.019 

5 69.69 16.22 5.96 2.09 1.00E-05 5.41 2.60 1.74 1.23 8.26E-04 

10 66770 4275 410.92 18.12 1.00E-10 17.92 5.74 2.86 1.50 4.3768E-05 

25 3.76E+14 2.74E+12 1.56E+10 1.38E+06 1.00E-25 96.42 18.88 6.30 2.09 6.5129E-07 

 

Correlation 50% 75% 

dim/DOF 2 5 10 30 Gaussian 2 5 10 30 Gaussian 

2 1.34 1.15 1.08 1.03 0.032 1.17 1.07 1.04 1.01 0.051 

5 2.25 1.52 1.26 1.08 0.006 1.44 1.19 1.10 1.03 0.022 

10 3.40 1.92 1.44 1.14 1.61E-03 1.67 1.28 1.14 1.05 0.012 

25 5.75 2.64 1.74 1.22 2.95E-04 2.00 1.41 1.20 1.07 0.006 

Table 3-7: Joint exceedance probabilities at 90th percentile 
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3.7.2.2 Conditional probabilities 

An alternative approach to illustrating the effects of tail dependence is to show the effects on conditional 

probabilities (i.e. the coefficients of finite tail dependence). For example, Table 3-8 below shows the 

coefficients of finite tail dependence for a bivariate Gaussian copula and bivariate Student’s t copulas with 

5 and 10 degrees of freedom linking random variables X and Y with a common value of 50% for the 

correlation parameter.  It shows that the probability of Y exceeding its 97.5th percentile value given that X 

has exceeded its 97.5th percentile value under the assumption of Student’s t copula with 5 degrees of 

freedom is 156% of that assuming a Gaussian model. 

 Coefficient of finite tail dependence Ratio to Gaussian 

Percentile/DOF 5 10 Gaussian 5 10 Gaussian 

90.0% 0.37279 0.34891 0.32402 1.15 1.08 1.00 

92.5% 0.34854 0.31889 0.28760 1.21 1.11 1.00 

95.0% 0.32125 0.28381 0.24379 1.32 1.16 1.00 

97.5% 0.28774 0.23830 0.18489 1.56 1.29 1.00 

99.0% 0.25943 0.19676 0.12939 2.01 1.52 1.00 

99.5% 0.24538 0.17443 0.09926 2.47 1.76 1.00 

Table 3-8: Coefficients of finite tail dependence (bivariate Gaussian and bivariate Student's t copulas, 5 and 10 dof) 

Note that the ratios of the conditional probabilities of the Student’s t model to the Gaussian model in Table 

3-8 are equal to the corresponding ratios of joint exceedance probabilities in Table 3-5.  This is because in 

the conditional probabilities in numerator and denominator are both obtained by dividing the joint 

exceedance probability by the probability of Y exceeding the corresponding percentile – see Equation 3-3. 

From examining the ratios of joint exceedance probabilities in the tables, it is apparent that, for an equi-

correlation matrix and all other things equal, the amplifying effect of tail dependence increases as: 

 The percentile of the joint event increases (where the joint event is assumed to be a combination of 

equi-probable events in each of the risk factors); 

 The correlation parameter reduces; 

 The degrees of freedom parameter reduces; 

 The number of dimensions increases. 

3.7.2.3 Charts of coefficients of finite tail dependence  

The implications of tail dependence for conditional probabilities can be summarised compactly using 

simple charts showing the value of the coefficients of upper and lower tail dependence 𝜆𝑈 and 𝜆𝐿 as a 

function of the percentile 𝑞.  We will see in section 3.8 that, where a Gaussian model has been chosen, such 

charts can provide a useful tool in explaining to stakeholders the selection of correlation assumptions and 

adjustments made to those parameters to allow for tail dependence. 

Figure 3-6 illustrates the behaviour of the coefficient of finite tail dependence for the bivariate Gaussian 

copula and bivariate Student’s t copulas with 5 and 10 degrees of freedom with correlation parameters of 

25%, 50% and 75%.  (The right hand plot in Figure 3-6 is restricted to events more extreme than the 90th 

percentile.)  As these copulas are radially symmetric, the charts of 𝜆𝑈 and 𝜆𝐿 are coincident. 

The following is apparent from the charts: 

 The correlation parameter is the principal factor that determines conditional probabilities. 

 There is little difference in conditional probabilities in the body of the distribution. 
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 However, differences in the shape of the functions become apparent in tails.  For a given 

correlation, the coefficient of finite tail dependence is greater for a Student’s t copula than for the 

Gaussian copula and increases as the degrees of freedom parameter reduces.   

 The coefficients of finite tail dependence tend to zero for the Gaussian copula but to non-zero 

values for the Student’s t copula. 

  
Figure 3-6: Coefficients of finite tail dependence, rho is correlation (expanded view 90th percentile on the right) 

A coefficient of tail dependence of zero does not imply that extreme changes in one risk are less likely to 

be accompanied by extreme changes in another. In the case of the Gaussian copula, a positive correlation 

assumption between increases in X and increases in Y means that, on average, large increases in Y will 

tend to occur if a large increase in X has occurred.  Recall that the conditional distribution is given by: 

 

𝑌|𝑋 ∼ 𝑁(𝜇𝑌 + 𝜌
𝜎𝑌

𝜎𝑋

(𝑋 − 𝜇𝑋), (1 − 𝜌2) 𝜎𝑌
2) 

Equation 3-8 

 

 

A large value of X results in a large value of the mean of 𝑌|𝑋 and therefore an increased tendency for 𝑌 to 

take large values. 

A coefficient of tail dependence equal to zero also does not necessarily mean that the corresponding pair of 

risk factors are asymptotically “independent in the tail”, even for a Gaussian copula. See, for example, 

section 2.2 of Malevergne & Sornette (2003). 

 

3.8 Selection of correlation assumptions using coefficients of finite tail dependence 

3.8.1 Introduction 

In this section, we present one possible technique that could be used to adjust correlation parameters of a 

Gaussian copula to allow for tail dependence.  The technique is based on work by Venter, (2002, 2003a, 

2003b) and involves comparing the empirical coefficients of finite tail dependence derived from sample 

data (explained in section 3.8.2) with the coefficients of finite tail dependence produced by the proposed 

model and its parameters.  
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The technique uses the charts introduced in section 3.7.2.3 which permits various assumptions to be tested 

against the data and the outcome presented graphically.  This approach may be more accessible to some 

stakeholders, leading to greater engagement in the process of selecting or validating parameters. 

3.8.2 Empirical coefficients of finite tail dependence 

The empirical coefficient of lower finite tail dependence functions is obtained by taking the ratio of the 

number of pseudo-observations in our sample that fall into the shaded square ABCD to the number of 

pseudo-observations that fall into the rectangle AEFD in Figure 3-5.  For example, if we have a sample of 

N observations (𝑋𝑖 , 𝑌𝑖)  𝑖 = 1, … , 𝑁 from (𝑋, 𝑌) with ranks (𝑅𝑖 , 𝑆𝑖)  then the empirical lower tail 

dependence function �̂�𝐿(𝑞) is given by the ratio: 

�̂�𝐿(𝑞) =
# {

𝑅𝑖
𝑁⁄ ≤ (1 − 𝑞) 𝐴𝑁𝐷 

𝑆𝑖
𝑁⁄ ≤ (1 − 𝑞)}

# { 
𝑅𝑖

𝑁⁄ ≤ (1 − 𝑞)}
 

 

Equation 3-9 

where “#” denotes the number of observations which satisfy the condition(s) inside the curly brackets.  This 

is simply the number of actual observations in our sample where the values of both risk factors are less than 

the (1-q)th quantile divided by the number of observations of the first variable (R) which are less than the 

(1-q)th quantile. 

The empirical upper tail dependence function is constructed in an analogous way. 

As an example, if (Xk, Yk) is a specific observation of (-Equity Return, Increase in Credit Spread) with rank 

(Rk, Sk) then the value of the lower tail dependence function at 1-Rk/N is obtained as follows: 

(a) Let A be the number of observations of the (Xi, Yi) whose ranks (Ri, Si) satisfy 𝑅𝑖 ≤ 𝑅𝑘  𝐴𝑁𝐷 𝑆𝑖 ≤
𝑆𝑘. 

(b) Let B be the number of observations of the (Xi, Yi) whose ranks (Ri, Si) satisfy 𝑅𝑖 ≤ 𝑅𝑘  . 
(c) The value of the empirical lower tail dependence function is given by A/B. 

 

In practice, we can choose the labels i so that the Ri are ordered in non-decreasing rank (i.e. assuming there 

are no ties, R1 =1, R2=2 etc.). 

The algorithm above then simplifies so that the value of the lower tail dependence function at the point 1-

k/N is then obtained as follows: 

(a) A = number of observations where 𝑖 ≤ 𝑘 𝐴𝑁𝐷 𝑆𝑖 ≤ 𝑘.  

(b) B = k 

 

 i.e.  

�̂�𝐿 (1 −
𝑘

𝑁
) =

#{𝑆𝑖 ≤ 𝑘, 𝑖 = 1, … , 𝑘}

𝑘
 

 

 

Equation 3-10 

3.8.3 Overview of approach 

The approach proceeds as follows: 

(i) Select a pair of risk factors and corresponding sample data. 
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(ii) For the chosen set of sample data (with N observations, say) chart the empirical coefficient of 

finite upper and lower tail dependence functions �̂�𝑈(𝑞) and �̂�𝐿(𝑞).  This data remains fixed in 

the following stages. 

(iii) Choose a copula model and a parameterisation. (In practice, the approach described here is 

more likely to be used in parameterising a Gaussian copula, although it may prove useful in 

validating the parameters of a Student’s t copula.) 

(iv) Superimpose the coefficients of finite upper and lower tail dependence 𝜆𝑈(𝑞) and 𝜆𝐿(𝑞)  of the 

proposed model on the chart. 

(v) Generate an envelope of confidence intervals for the values of the empirical tail dependence 

functions �̂�𝑈(𝑞) and �̂�𝐿(𝑞) assuming the dependency structure follows the proposed model. 

Confidence intervals can be produced using bootstrapping techniques – see Efron and 

Tibshirani (1994) for example.  

(vi) Compare the coefficients of finite tail dependence for the assumed model (and the envelope of 

confidence intervals around them) with the empirical coefficients of finite tail dependence 

derived from the sample data.  If the empirical values lie outside the confidence intervals, this 

may indicate a poor model fit. 

(vii) Adjust the parameterisation and/or model chosen in (ii) until an acceptable fit is found. 

In adjusting the model in step (vii) above, one may specify a quantitative criterion to be met.  For example, 

one might choose the model to target the empirical conditional probability at a chosen percentile. This 

percentile may be chosen based on the biting scenario.  

Alternatively, taking into account the limited volume of data and the uncertainty in the empirical values, 

the targeting may be approximate and based on a visual inspection of the charts at percentiles close to the 

biting scenario.  If a particular rounding convention for correlation parameters has been chosen, one might 

consider the effect of changing correlation parameters in discrete increments. 

Use of charts (for example see Figure 3-7) is also helpful in understanding the consequences of any decision 

on the model for conditional probabilities within the body of the distribution as well as within in the tail.  

For a particular model, it may not be possible to produce simultaneously a fit which is considered 

satisfactory within both the body and the tail.  The choice of parameterisation may therefore depend on the 

purposes for which it is used.  

Note that the Gaussian and Student’s t copula are elliptic and therefore radially symmetric so that the model 

coefficients of finite tail dependence are equal; i.e. 𝜆𝐿(𝑞) = 𝜆𝑈(𝑞) for all q. 

3.8.4 Practical considerations 

The approach assumes that the choice of copula has already been made and is used to adjust a best estimate 

view of the correlation parameters to make an allowance for tail dependence.  Depending on the numbers 

of risk pairs involved, it may not be practical to assess each pair individually.  It may therefore be desirable 

for practical reasons to perform the full analysis only for those pairs of risks where the sensitivity of the 

output to a defined change in the correlation assumption exceeds a certain threshold.   

One option to further reduce the volume of detailed analysis required would be to fit a Student’s t copula 

to each risk pair and perform more detailed analysis if the fitted degrees of freedom parameters falls below 

a specified threshold.. 

A limitation of this approach is that it only considers conditional probabilities based on both risk factors 

simultaneously exceeding their qth percentile – i.e. the percentile is identical for both risk factors.  It 

therefore considers conditional probabilities only along a ray extending from the origin at an angle of 45 

degrees into the “north-east” and “south-west” quadrants.  In order to ensure that the approach looks at the 

appropriate tail, it is necessary to consider the undertaking’s exposure to each risk pair (e.g. by consideration 
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of the biting scenario).  It may be necessary to adjust the data by multiplying one of the risk factors by (-1) 

in order to ensure that the analysis takes into account the direction of changes which are expected to bite. 

3.8.5 Worked example 

We illustrate the technique using our equity and credit spread (EQ/CR) dataset.  We assume that the 

undertaking’s exposure is to a fall in equity values combined with an increase in credit spreads.  We have 

therefore multiplied equity returns by (-1) for the purposes of the analysis.  As noted in section 3.5.4, the 

MPL fit for a bivariate Gaussian is given by 𝜌 = 0.488 and for bivariate Student’s t distribution is given 

by (𝜌, 𝜐) = (0.465, 2.6).  A potential initial candidate model may therefore be a Gaussian copula with 

correlation coefficient 50% (or -50% when we adjust back to our original coordinate system).  This model 

is illustrated in Figure 3-7 which contains the following charts: 

Description Chart 

 

Coefficient of finite tail dependence  

for a bivariate Gaussian copula with a  

correlation of 50% 

 

 

Central solid line 

 

Envelope of: 

upper 97.5%-ile  

and  

lower 2.5%-ile  

confidence levels for the empirical  

coefficient of finite tail dependence for a  

sample size of 216 where the “true”  

underlying copula is a Gaussian copula  

with a correlation of 50% 

 

 

Solid lines lying above and below the solid central line 

 

Empirical coefficients of upper and lower 

tail dependence derived from the  

Equity/Credit data. 

 

 

Empirical coefficient of finite lower tail dependence – 

circles representing negative equity returns combined with 

increases in credit spreads. 

 

Empirical coefficient of finite upper tail dependence – 

crosses representing positive equity returns combined with 

reductions in credit spreads. 

 
Table 3-9: Additional details for figure 3-7 
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Figure 3-7: EQ/CR bivariate Gaussian coefficient = 0.5 

 

Figure 3-7 shows some asymmetry in the tail with the conditional probabilities associated with extreme 

upwards movements in credit spreads and falls in equity values somewhat higher than those corresponding 

to movements in the opposite direction. 

The central solid line in Figure 3-7 tends towards zero. This is consistent with the Gaussian copula having 

a coefficient of tail dependence of zero. 

The confidence intervals expand as events become more extreme, reflecting an increasing funnel of doubt 

as the volume of data in the tails decreases. 

Although the circles of the lower tail do not appear inconsistent with the confidence intervals, they are at 

the boundary, particularly just below the 80th percentile and exceed the boundary around the 90th percentile.  

If a Gaussian copula is to be used, this may suggest use of a stronger correlation assumption if the SCR 

biting scenario includes percentiles of 80th or above in credit spreads and equity risk factors. 
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Figure 3-8 is similar but with the Gaussian copula model replaced by the bivariate Student’s t copula 

estimated using MPL techniques. 

 

Figure 3-8: EQ/CR bivariate Student’s t rho = 0.465, nu = 2.6 

Comparing the two charts, it is apparent that the Student’s t copula produces greater values of conditional 

probabilities in the tail of the distribution and the solid central line no longer converges to a value of zero, 

consistent with a non-zero value for the coefficient of tail dependence. 

The Student’s t copula appears consistent with the sample data across a wider range of percentiles – in 

particular, both in the extreme tail and in the body of the distribution.   

If it has been decided to use a Gaussian copula model, then one may use a correlation assumption estimated 

from data using one of the techniques described in sections 3.5 and 3.6 to assist in informing one’s central 

view of an appropriate assumption.  However, if analysis suggests that the biting scenario is likely to be in 

the tail of the distribution, then it may be considered appropriate, given the low degrees of freedom 

parameter for the fitted Student’s t copula, to make an adjustment to the correlation parameter to allow for 

tail dependence. 

One approach would be to inspect various alternative parameter values – e.g. by “flicking through” a set of 

graphics comparing the coefficients of finite tail dependence for the assumed parameterisation and the 

envelope of confidence intervals around it with the empirical coefficient of finite tail dependence. Figure 

3-9 to Figure 3-11 show how the coefficient of finite tail dependence changes as the correlation assumed 

in the Gaussian copula is strengthened in increments of 10 percentage points.  The coefficients of finite tail 

dependence for the copula model, together with the envelope of confidence intervals, increase, allowing a 

judgement to be made on a parameter value which places the model output in an appropriate place relative 

to the empirical values. 

If one had a view on the percentiles underlying the SCR biting scenario, one could aim to use a correlation 

assumption which produced values of the coefficient of finite tail dependence which were broadly 

consistent with the empirical values in the neighbourhood of that percentile. 
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For example, if the biting scenario involved a combination of equity and credit spread stresses at around 

the 95th percentile, one might judge that a correlation assumption of 60% might undershoot the conditional 

probabilities suggested by the data whilst a correlation assumption of 80% might overshoot.  A correlation 

assumption of 70% might be judged a reasonable compromise. 

 
Figure 3-9: EQ/CR bivariate Gaussian coefficient = 0.6 

 
Figure 3-10: EQ/CR bivariate Gaussian coefficient = 0.7 
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Figure 3-11: EQ/CR bivariate Gaussian coefficient = 0.8 

Alternatively, if there was a desire to retain a model with explicit tail dependence, one could use such plots 

to inform the choice of parameters.  For example, Figure 3-12 illustrates one potential choice of parameters 

for a Student’s t copula which appears to more closely match the lower tail (depicted by circles). 

 

Figure 3-12: EQ/CR bivariate Student’s t rho = 0.6, nu = 3 

 

3.9 Correlation “hardening” 

The approach described in section 3.8 uses inspection to select an adjustment to the central view of a 

correlation of a Gaussian copula to obtain a level of conditional probabilities which is considered 
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appropriate. An alternative approach to determine this “hardening” of the correlation assumption, which 

follows the same underlying concept, but reduces the level of judgement involves targeting of the 

conditional probability for a Gaussian to produce the same value as that for a Student’s t model with a given 

degrees of freedom parameter at a chosen percentile. This approach may be useful where one has calibrated 

a Student’s t copula for each pair of risks, for example using the techniques of section 3.10, but where a 

decision has been to use a Gaussian copula.  Instead of using graphical methods to select appropriate 

adjusted correlation parameters, the “hardening” adjustment is determined with the aid of look-up tables. 

For each degrees of freedom parameter of a bivariate Student’s t copula, a look-up table is produced which 

shows for each correlation parameter of the t copula and each percentile, the correlation parameter of a 

bivariate Gaussian copula which produces the same joint exceedance probability at that percentile.  It is 

straightforward to produce such tables using standard statistical packages such as R. 

If one has a view of an appropriate percentile (e.g. based on knowledge of the biting scenario), a correlation 

parameter (or, equivalent, a “hardening” adjustment) for the Gaussian copula can then be read directly from 

the table. 

By means of illustration, suppose we have determined that a Student’s t copula with 7 degrees of freedom 

is appropriate. Table 3-10 shows, for a given correlation parameter of the t copula, the correlation parameter 

of a Gaussian copula which is required to produce the same joint exceedance probability at various 

percentiles.  Table 3-11 shows the same information but re-expressed as the amount (or “hardening”) that 

must be added to the correlation parameter of the t copula at each percentile to produce the equivalent 

correlation parameter of the Gaussian copula. 

  Percentile 

  99.5% 99.0% 98.0% 97.0% 96.0% 95.0% 94.0% 93.0% 92.0% 91.0% 90.0% 

bivariate 
t(7) copula 
correlation 
parameter 

75.0% 84% 83% 81% 80% 80% 79% 79% 79% 78% 78% 78% 

50.0% 67% 65% 62% 61% 60% 59% 58% 57% 57% 56% 56% 

25.0% 51% 47% 43% 41% 39% 38% 37% 36% 35% 34% 33% 

0.0% 33% 29% 24% 21% 18% 17% 15% 14% 13% 12% 11% 

-25.0% 15% 10% 4% 0% -3% -5% -7% -8% -9% -11% -12% 

-50.0% -5% -11% -17% -21% -24% -27% -29% -31% -32% -33% -35% 

-75.0% -27% -34% -40% -45% -48% -50% -52% -54% -56% -57% -58% 

Table 3-10: Equivalent Gaussian correlation parameter 

  Percentile 

  99.5% 99.0% 98.0% 97.0% 96.0% 95.0% 94.0% 93.0% 92.0% 91.0% 90.0% 

bivariate 
t(7) copula 
correlation 
parameter 

75.0% 9% 8% 6% 5% 5% 4% 4% 4% 3% 3% 3% 

50.0% 17% 15% 12% 11% 10% 9% 8% 7% 7% 6% 6% 

25.0% 26% 22% 18% 16% 14% 13% 12% 11% 10% 9% 8% 

0.0% 33% 29% 24% 21% 18% 17% 15% 14% 13% 12% 11% 

-25.0% 40% 35% 29% 25% 22% 20% 18% 17% 16% 14% 13% 

-50.0% 45% 39% 33% 29% 26% 23% 21% 19% 18% 17% 15% 

-75.0% 48% 41% 35% 30% 27% 25% 23% 21% 19% 18% 17% 

Table 3-11: Addition to correlation parameter of Student’s t copula (“hardening”) 

For example, if one believed that the biting scenario was around a 95th percentile event in both risk factors 

and the correlation parameter of the t copula was +25.0%, one might opt to use a correlation parameter of 

38% in the Gaussian copula (prior to any further adjustments based on expert judgement or for rounding or 

positive definiteness). 
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Figure 3-13: Hardening correlation parameter of a Gaussian copula by targeting conditional probability 

According to the Towers Watson Solvency II Pillar 1 Calibration Survey (2015), companies using a 

Gaussian copula included the following margins over their best estimate correlation assumptions for market 

and non-market risks. 

Margin in correlation assumptions 

over best estimate assumptions  

Market Risks 

(# firms) 

Non-Market Risks 

(# firms) 

> 15% 4 4 

10 - 15% 2 1 

5 - 10% 3 0 

0 -   5%  2 
Table 3-12: Correlation “hardening” applied in practice (Towers Watson Solvency II Pillar Calibration Survey 2015) 

Table 3-12 shows that UK life insurers which use Gaussian copulas are making some significant 

adjustments to the correlation assumptions in order to allow for tail dependence.  These adjustments may 

differ from one undertaking to another depending on their exposures to different risk factors and the 

judgements of their Boards.  As we saw in the EQ/CR example of section 3.8.5, an undertaking with 

significant exposures to increases in credit spreads and falls in equity values may judge that it would be 

appropriate to strengthen the sample correlation assumption derived from its data by 20 to 30 percentage 

points in order to allow for tail dependence. 

 

3.10 Fitting using higher order rank invariants 

3.10.1 Background 

Another approach to copula fitting - see Shaw, Smith and Spivak (2010) -  is conceptually similar to a 

Method of Moments approach in that the parameters of the copula are selected so that certain higher order 

rank invariants of the model are equal to sample values derived from the data. Its main application currently 

is in the case where a Student’s t copula has been chosen for modelling and the correlation matrix and 

degrees of freedom parameter 𝜐 has to be selected, although the approach generalises to other copulas.  

Under the approach set out by Shaw, Smith and Spivak (2010), the correlation matrix and a degrees of 

freedom parameter 𝜐 are selected using an algorithm, which aims to produce a match between certain rank 

invariants of the model and their corresponding sample values. The two rank invariants are the Spearman’s 
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rank correlation – a first order rank statistic – and a higher order rank invariant called “arachnitude”.  The 

latter statistic is so-named as it measures “off diagonal” dependencies that give rise to the “star” shape 

observed in some scatter plots of bivariate Student’s t copula or “spider’s legs” extending into the corners 

of the hypercube [0,1]𝑑 in higher dimensions.   

The rank invariant “arachnitude” is defined in Smith and Sweeting (2011) as:  

𝜌((2𝐹𝑋(𝑋) − 1)2, (2𝐹𝑌(𝑌) − 1)2) where 𝜌 is Pearson’s (linear) correlation.   

The equivalent sample statistic is given by the formula: 

arachnitude =  
45

4𝑁(𝑁2 − 1)(𝑁2 − 4)
[∑(2𝑅𝑘 − 𝑁 − 1)2(2𝑆𝑘 − 𝑁 − 1)2 −

𝑁(𝑁2 − 1)2

9

𝑁

𝑘=1

] Equation 3-11 

 

where the {𝑅𝑖} and {𝑆𝑗} are the ranks of the sample data {𝑥𝑖} and {𝑦𝑗}.  Arachnitude takes values between  

-1 and 1 and is large when extreme high or low values of X tend to coincide with extreme high or low 

values of Y.  It is therefore a measure of dependency along both diagonals rather than just along the 45-

degree line as in the case of tail dependence. 

A summary of the theoretical basis underlying the approach is provided in Appendix A.3.  An outline of 

the calibration approach is provided in section 3.10.2. 

3.10.2 Parameter selection algorithm 

In practice, the copula we wish to parameterise will relate to a d-dimensional distribution (where d ≥ 2) 

such as a set of market risks. We therefore have to solve for 𝑑(𝑑 − 1) 2⁄ + 1 parameters (correlation 

parameters for 𝑑(𝑑 − 1) 2⁄  pairs of risk factors and 1 degrees of freedom parameter). The degrees of 

freedom parameter is common to all pairs of risk factors, which acts as a constraint on the system of 

equations. This means that in practice it is not possible for all combinations of (rank correlation, 

arachnitude) pairs to be “reached” simultaneously by the parameters of a Student’s t copula.  

The most commonly used approach to solving this constrained system of equations is as follows: 

(A) Produce a two dimensional scatter plot showing the sample values of (rank correlation, 

arachnitude) for each risk pair. 

(B) Generate a one dimensional family of curves (parameterised by a single degrees of freedom 

parameter), for which each curve describes arachnitude as a function of rank correlation, using 

the following algorithm: 

(i) Fix a grid of correlation parameters and a grid of degrees of freedom parameters for a 

bivariate Student’s t copula; 

(ii) For each degrees of freedom parameter 𝜐: 

(a) Select a copula correlation parameter 𝜌 from the grid and generate a set of 

simulated values from the bivariate Student’s t copula with parameters 𝜌 and 𝜐.   

(b) Calculate the rank correlation and arachnitude for this set of simulations and plot 

it. 

(c) Loop back to step (a) and select the next correlation parameter from the grid. 

(d) Repeat until all copula correlation parameters have been used. 

(iii) Draw a curve through the plotted (rank correlation, arachnitude) pairs for the given value 

of 𝜐. 

(iv) Repeat (ii) and (iii) for each 𝜐 in the grid. 

(C) The algorithm of step (B) generates a one dimensional family of curves parameterised by 𝜐 

showing the relationship between arachnitude and Spearman’s rank correlation.  Use 
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judgement to choose a value of 𝜐 such that an appropriate balance is obtained between the 

number of sample values of (rank correlation, arachnitude) that lie above the corresponding 

curve and the number that lie below. 

(D) The judgement at step (C) could take into account exposures to each risk.  For example, 𝜐 could 

be chosen so that the resulting curve was closer to those points corresponding to risks for which 

exposures were significant.  

(E) This fixes a degrees of freedom parameter 𝜐 for the d-dimensional Student’s t copula, which is 

common to each risk pair.  For each pair of risk factors, back solve for the correlation parameter 

of the bivariate Student’s t copula with degrees of freedom parameter 𝜐 which gives the 

corresponding Spearman’s rank correlation on the fitted curve (i.e. solve for the correlation 

parameter which produces the (rank correlation, arachnitude) pair resulting from “dropping” 

the sample (rank correlation, arachnitude) vertically onto the fitted curve). As the relationship 

of Equation 3-1 is exact only for a Gaussian copula, the back solving involves numerical 

techniques (e.g. linear interpolation using the grid created in Step B(i)). 

(F) Adjust the correlation matrix obtained in step (E) to make it positive semi-definite (e.g. using 

one of the techniques described in section 3.14). 

The approach is illustrated in Figure 3-14 which is reproduced from Shaw, Smith and Spivak (2010). The 

example is based on monthly total returns for equity indices of 18 different geographies (i.e. 153 distinct 

pairs of risk factors) over the period 31 December 1969 to 31 December 2009 and shows curves of (rank 

correlation, arachnitude) for a constant correlation matrix and varying degrees of freedom parameter 𝜐. For 

this particular data set, it would appear that 𝜐 = 5 provides a reasonable balance between data points that 

lie above and below the curve.  However, a different choice may be appropriate if exposures are 

significantly weighted towards a subset of the risks. 

 

Figure 3-14: Monthly total returns for equity indices of 18 different geographies (i.e. 153 distinct pairs of risk factors) over the 

period 31 December 1969 to 31 December 2009.  (Reproduced from Shaw, Smith and Spivak (2010) with permission). 
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An alternative approach to parameterisation modifies the approach described in this section by fixing the 

copula correlation matrix at the first (rather than final) stage in the process.  This could be done, for example, 

by using the relationship of Equation 3-2 involving Kendall’s tau which is exact for an elliptic copula such 

as a Student’s t.  The resulting matrix is then made positive semi-definite, if required. With the copula 

correlation matrix fixed, one can then produce a family of (rank correlation, arachnitude) curves 

parameterised by the degrees of freedom parameter 𝜐 using the techniques described in Step B(ii) and select 

an appropriate value for 𝜐 as in Step (C). 

 

3.11 Strengths and limitations of calibration techniques 

The Table 3-13 below provides a comparison of the strengths and limitations of some of the techniques for 

informing the parameterisation of copulas discussed in this paper. Ultimately it is a question of judgement, 

taking into account the choice of copula, as to which method is most appropriate. 

Technique Strengths Limitations 

Inverse Kendall’s tau Analytic formula for 

correlation parameters for  

elliptic copulas. 

 

Other techniques (e.g. MPL) need to be used to 

select degrees of freedom parameter of a 

Student’s t.    

An analytic expression – see Equation 3-7 - for 

the coefficient of tail dependence in terms of 

correlations and degrees of freedom parameter 

exists but the estimate of coefficient of tail 

dependence is subject to significant sample error 

due to small sample size. 

Equation 3-7 constrains the parameter values – it 

is not possible to find valid parameters for 

arbitrary values of (tau, coefficient of tail 

dependence). 

 

Needs all data series the same length if using 

Student’s t copula so that can solve for the 

degrees of freedom parameter using MLE 

techniques. 

 

Fitting coefficients of 

(finite) tail dependence 

by inspection 

Can be applied separately 

to pairs of risk factors. 

 

Easy to visualise. 

 

Clear relationship to tail  

dependence. 

 

Straightforward for  

Gaussian model. 

Only looks at conditional probabilities along a 

“45-degree” ray.  This can be mitigated at the 

expense of greater complexity by selecting the 

angle of the ray using different percentiles based 

on exposures (e.g. in the biting scenario). 

 

Subject to sampling error in the tail – judgement 

necessary to select appropriate fit. 

 

Requires knowledge of the exposures in order to 

choose which “45-degree” ray to look along. 

 

Less straightforward for Student’s t model as 

common degrees of freedom parameter 

introduces a constraint – may lead to several 

iterations until a suitable set of correlation and 

degrees of freedom parameter is found. 
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Does not generalise easily to other families of 

copulas.  Tail dependence is not a distinguishing 

feature of different copula families –for example, 

the family of symmetric hyperbolic copulas has 

zero tail dependence - see Chapter 7 of McNeil, 

Frey & Embrechts (2015). 

Matching higher order 

rank invariants 

Can be applied separately 

to pairs of risk factors. 

 

Easy to visualise. 

 

 

Well defined algorithm 

for Student’s t model. 

 

 

Uses properties that  

characterise the entire  

distribution (i.e. the  

Fourier coefficients – see 

Appendix A.3). 

 

Capable of generalisation 

to more complex families 

of copulas. 

Theoretical basis more complex and therefore 

potentially less accessible to some stakeholders. 

 

Approach involves numerical solution for 

parameters using graduated family of curves. 

 

Not all (rank correlation, arachnitude) pairs are 

realisable by a Student’s t copula.  For example, 

if the sample value of arachnitude is small, the 

(rank correlation, arachnitude) may not lie on one 

of the family of curves parameterised by the 

degrees of freedom parameter – see Figure 3-14. 

 

Less directly useful if a Gaussian copula has been 

chosen.  Could be used as an intermediate step to 

select a degrees of freedom parameter, with 

another technique (e.g. matching coefficients of 

finite tail dependence or look-up tables of 

hardening factors) used to calibrate the 

correlation parameters. 

 

Maximum  

Pseudo-Likelihood 

Large-sample efficiency. 

 

Automatically produces  

PSD correlation matrices. 

 

Can be used with any 

family of parametric  

copulas. 

Requires numerical solution of a high-

dimensional optimisation problem. 

 

Small sample behaviour not well understood – 

may suffer from multiple local maxima leading to 

difficulties in convergence. 

 

Needs all data series the same length. 

 
Table 3-13: Comparison of calibration techniques 

 

3.12 Expert judgement overlay 

Copula parameters cannot in practice be selected based solely on an analysis of data due to factors such as: 

 

(i) The period of data available for some risk pairs may be very short and not contain sufficient data 

on extreme events or be dominated by behaviour which may not fully reflect expected future 

relationships (see section 3.6); 

(ii) Analysis of different risk factor pairs over different periods of time may lead to inconsistencies 

between assumptions (see section 3.14). 

It is therefore essential to take into account other factors such as those discussed in section 3.13 to assess 

whether the values suggested by the data are appropriate and to apply expert judgement to adjust those 

values, if appropriate.  
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3.13 Assumptions where data is scarce or non-existent 

The techniques described in sections 3.8 to 3.10 may be useful in informing the selection of an assumption 

where there is a reasonable volume of relevant data.  In practice, this means that they are useful only for 

certain market risks and, even then, it is still necessary to apply expert judgement to assess whether the 

assumptions are reasonable and adjust them where appropriate.  For other types of risk, the selection of an 

assumption is necessarily based on expert judgement alone.  In this section, we provide a summary of some 

of the factors which should be considered (i) when selecting correlation assumptions where there is little or 

no relevant data available; or (ii) where data is available, assessing the reasonableness of the assumption 

suggested by that data and using expert judgement to make adjustments where appropriate. 

Factors which may be taken into account when selecting such assumptions include: 

Causal relationships  

Does a change in one risk factor have a tendency to result in a change in the other (or vice versa)? By what 

mechanisms does a change in one risk factor lead to a change in the other. How strong is that relationship?   

Note that a correlation between changes in two risk factor does not necessarily arise due to a causal 

relationship between the two risk factors, but can also arise because the values of both risk factors are 

influenced by a common underlying risk factor. 

 

Common underlying risk factors 

An association or correlation between increases in one risk factor and increase in another risk factor does 

not necessarily arise due to a direct causal relationship – see, for example, section 6.1 of Shaw, Smith and 

Spivak (2011). For example, there may be a common underlying risk factor that has a tendency to “drive” 

simultaneous changes in two or more of the modelled risk factors.  A large change in this common risk 

factor may tend to give rise to larger changes simultaneously in two or more of the larger risk factors. This 

is the case, for example, for the Student’s t copula, which is an example of a “Normal mixing distribution”.  

Under one representation of this copula, simulated values from a Gaussian copula are scaled by an 

independent (inverse Gamma) risk factor.  This scaling by a common risk factor leads to a greater tendency 

for large values of the risk factors to occur simultaneously and the introduction of tail dependence. See, for 

example, algorithm 6.10 of McNeil, Frey & Embrechts (2015) or algorithm 5.2 of Embrechts, Lindskog & 

McNeil (2003). 

Tail dependence 

Would one expect the relationship between changes in two risk factors to become less diffuse in the tails 

resulting in a greater alignment between the ranks of changes in one risk factor and the other? Here it may 

be useful to imagine the relationship in terms of scatter plots and the extent to which any clustering of 

extreme values could be expected. 

 

Financial significance 

How sensitive are the outputs of the model to changes in the assumption? This may have implications for 

the extent of any prudence which is considered appropriate to reflect uncertainty, the level of detail of the 

analysis and associated documentation and governance. 

 

The above may assist in forming a view about the level of any correlation and the extent of any further 

allowance to be made for tail dependence.  The extent of any additional allowance for tail dependence may 

also be informed by the amounts of any allowances made in calibrations for market risk factors (for 

example, resulting from the approaches described in sections 3.8 and 3.9). 

As for all areas of expert judgement, it is important to set out clearly the rationale for the assumptions, what 

a plausible range for alternative but nonetheless valid alternative assumptions might look like, the 

sensitivity of the model output under these alternative assumptions and the limitations relating to the expert 
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judgements.  A robust governance process should be followed.  It may be useful for the governance to 

involve a number of experts from different areas of the business to ensure that, overall, the assumptions are 

coherent.  The assumptions should also be subject to independent validation by personnel not involved in 

the process of their selection – see section 3.15.  

The paper by Ashcroft et al (2015) provides some suggestions on the process of eliciting expert judgement 

and its validation. 

The PRA has discussed the judgements used in setting its Quantitative Indicators for dependencies in two 

executive director updates dated 9 March 2015 and 15 January 2016. 

3.14 Internal consistency and positive semi-definiteness 

3.14.1 Background 

All valid correlation matrices satisfy an internal consistency condition known as “positive semi-

definiteness” (PSD).  Broadly speaking this means the correlations between all possible n-tuples of 

correlations are consistent.  For example, if the correlation between risk pairs (X, Y) and risk pairs (Y, Z) 

are large and positive, one would expect the correlation between pair (X, Z) to be large and positive – see 

Appendix A2 of Shaw, Smith and Spivak (2011), for more details.  

Mathematically, this means that the eigenvalues of the matrix must all be non-negative. The correlation 

matrix approach applies a formula and will always produce a result when applied to the vector of capital 

requirements corresponding to each of the individual risk factors.  However, if the correlation matrix is not 

PSD, the “sum of squares” approach will produce a zero or negative result when applied to certain capital 

vectors. 

(Note that some copula simulation algorithms such as those based on the Cholesky decomposition as 

described in algorithm 6.10 of McNeil, Frey & Embrechts (2015) will only work if the matrix is strictly 

positive–definite.  This is a stronger condition and requires all the eigenvalues to be strictly positive, or, 

equivalently that the matrix be PSD and all its columns are linearly independent. If the correlation is not 

strictly positive-definitive, then an alternative to the Cholesky decomposition must be used for simulating; 

e.g. techniques based on the decomposition of the correlation matrix in terms of a diagonal matrix of 

eigenvalues and an orthogonal matrix of eigenvectors.) 

Correlation matrices derived from a multivariate dataset where all risks are sampled over an identical period 

of time at coincident dates will always be PSD by construction.  In the context of life assurance, this is 

unlikely to be the case for the following reasons: 

 Where data is available, the period of time over which it is available for all the risk factors under 

consideration is likely to be very short.  This results in the selection of assumptions on a pair-wise 

basis in order to maximise the use of the relevant data for each pair of risk factors. 

 Use of judgement in the selection of assumptions, particularly where there is very scant or no 

relevant data 

 Possible inclusion of additional allowances for tail dependence. 

 Any rounding convention applied when selecting correlations. 

 Any further adjustments which may have been made (e.g. if the assumption suggested by the data 

is not considered to reflect the future relationship). 

3.14.2 Adjustments 

The initial candidate matrix may therefore not be PSD and so requires adjustment prior to use. There are 

several techniques available which vary in complexity. One of the more straightforward techniques involves 
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elimination of negative eigenvalues.  The candidate matrix is first diagonalised using standard eigen-

decomposition techniques of linear algebra.  Any negative or zero eigenvalues appearing along the diagonal 

of the diagonal matrix of eigenvalues are replaced by a small positive value chosen by judgement. The 

resulting matrix is then transformed back to the original coordinate system and the diagonal entries adjusted 

so they are all equal to one.  This process is described in more detail in Algorithm 7.57 of McNeil, Frey & 

Embrechts (2015). 

More sophisticated techniques which seek to find the PSD correlation matrix which is in some sense 

“nearest” to the initial candidate matrix are also available.  These techniques can be modified to apply 

weights to particular columns and rows, which may be useful if one has strong views that those assumptions 

are appropriate, or constrain an existing PSD sub-matrix to remain unchanged. See, for example, Higham 

(2013).  

3.14.3 Validation 

Whichever technique for “PSD-ing” is used, users will need to be satisfied that the resulting matrix remains 

consistent with the views reflected in the selection of the “raw” candidate matrix originally approved.  One 

may do this by inspection or introduce a process based on quantitative acceptance criteria. For example, 

one may inspect a histogram of percentage point increases in correlations or require that a specified 

proportion of changes fall within certain limits.  However, a process based solely on changes to correlation 

assumptions does not take into account the implications for capital requirements.  One may be willing to 

accept a larger movement in a correlation assumption between two insignificant risk factors that has a 

relatively small impact on capital requirements.  One could therefore require that the effect of changes on 

capital requirements produced by a correlation matrix approach did not exceed a certain monetary limit.  

(The correlation matrix approach is used as the formula still produces a result even if the original matrix is 

not PSD).  

If the adjusted matrix does not meet the specified acceptance criteria, one may then have to: (i) seek 

approval to apply the adjusted matrix; (ii) use a more sophisticated adjustment technique, which may not 

be a practical option in the time available; or (iii) find an alternative set of adjustments by inspection, which 

may require a number of iterations.  Failure to produce a suitable PSD matrix may indicate a more 

fundamental inconsistency within the original candidate matrix which requires more detailed investigation.  

It is therefore preferable to perform any adjustments necessary outside the production cycle, e.g. as part of 

the calibration process. 

 

3.15 Top-down validation tests 

Having chosen a copula model (e.g. Gaussian or Student’s t), selection of the parameters is generally a 

bottom-up process.  However, it is important that consideration is given as to whether the resulting 

assumptions are collectively reasonable and appropriate for the purposes for which they are used.  Some 

examples of top-down validation tools are provided below. 

3.15.1 Peer review 

It is good practice for the proposed assumptions to be subject to review by one or more individuals with 

relevant expertise from around the business. Meetings could be held with the purpose to review and 

challenge proposals. These meetings could examine the rationale for particular assumptions, perhaps 

identifying relationships between changes in risk factors which had not been fully considered or whether 

conclusions drawn from analysis of data were reasonable or required further adjustment.  The review should 

also consider whether the assumptions were appropriate on a prospective basis and were not unduly driven 

by historical data, taking into account the scarcity of data, the uncertainty in the analysis and expectations 

regarding the future relationship between changes in risk factors. 
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3.15.2 Independent review 

To mitigate the risk of recommendations made by individuals or an expert judgement panel such as that 

described in 3.15.1 becoming biased by a desire for consensus and dismissing alternative views 

(“groupthink”), it is good practice for proposals to be reviewed by individuals who are independent from 

the formulation of the original proposals and subject to a different reporting line. The idea behind this is 

that the reviewers should be free of any influence from those responsible for development of the model, 

which, in theory, should lead to a more objective review.  The Internal Model requirements of Solvency II 

require such an independent validation process. In some cases, the Board may wish to seek additional 

assurance through an external review of some or all of the assumptions, particularly those which are 

material. 

3.15.3 Sensitivity testing 

Assumption sets underlying the dependency structures used in life company internal models typically have 

high dimensions.  For example, if there are 25 risk factors, the correlation matrix underlying a Gaussian 

copula will have 300 distinct parameters2.  The Towers Watson Risk Calibration Survey (2015) indicates 

that some firms use up to 10,000 correlation parameters. In testing assumptions, it is important to focus on 

those which have the most significant impact on the model output.  These can be identified by testing 

sensitivities to individual assumptions.  In general, a correlation matrix approach may be adequate in 

ranking assumptions for this purpose rather than re-running the full copula + proxy model simulation many 

times. 

When testing sensitivities, one should have regard to the relationships between changes in risk factors.  For 

example, strengthening the correlation between risk factors X and Y may suggest strengthening other 

correlations involving X or Y for reasons of maintaining internal consistency.  A sensitivity to a change in 

one correlation in isolation may not give a reasonable view of the total change if one were to make 

corresponding changes in all related assumptions. 

3.15.4 Scenario analysis 

This involves showing stakeholders the type of real-life situation which could give rise to losses of a 

magnitude similar to the SCR and asking them to form a view on whether that scenario is reasonable, given 

their knowledge of risk profile of the business.  Any unexpected features of the scenario could indicate an 

inappropriate choice of parameters and trigger further investigation. 

For example, one could examine scenarios which, when ranked by losses, lie in a “window” around the 

scenario corresponding to the SCR. Alternatively, one could average out the scenarios in the window, 

perhaps using kernel smoothing techniques which apply different weights to each scenario, to determine a 

“smoothed average” or “biting” scenario which is representative of the scenarios giving rise to losses equal 

to the SCR.  That scenario could then be expressed in terms of the corresponding changes in risk factors 

which would be meaningful to stakeholders; e.g. a fall in equity values by x%, a reduction in the level of 

interest rates of y basis points at term t; an increase in credit spreads on A rated corporate bonds of z basis 

points, an improvement in life expectancy of males aged 65 of w years etc. 

One could then invite stakeholders to assess whether a scenario was reasonable.. For example, if a risk 

factor to which the business had a significant exposure featured relatively weakly in the biting scenario, 

this could prompt questions about whether the strength of the associations between that risk factor and 

others was appropriate.  Alternatively, if a certain risk factor featured relatively strongly in the scenario(s), 

                                                      
2 300 =

25×25−25

2
= 25(25 − 1)/2 (i.e. the number of distinct off-diagonal entries in the symmetric 

matrix) 
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is that result reasonable given exposure to this risk factor and expectations of stakeholders regarding the 

strength of its relationship with other risk factors? 

Conversely, one could ask stakeholders to postulate a scenario involving simultaneous changes in several 

risk factors, evaluate the “heavy” or proxy model on that scenario and determine its corresponding ranking 

or percentile in the overall distribution of losses.  One could then ask stakeholders to form a view on whether 

the ranking of that particular scenario seemed reasonable. 

In practice, it may be very challenging to ask stakeholders to assign a probability to losses under a particular 

scenario.  However, presenting scenarios in terms of “real world” changes in risk factor values which are 

meaningful to the stakeholders such as falls in equity values, increases in interest rates or changes in 

persistency rates can make the calculations feel more “real”, help engage stakeholders in discussing the 

relationships between risks and provide a high level sense check on the results.  Indeed, the ability of a 

simulation based approach to identify a range of scenarios giving losses of magnitude comparable to the 

SCR is one of the main advantages of this approach compared to the correlation matrix approach. 

3.15.5 Industry benchmarking 

Several actuarial consultancies produce annual surveys comparing practices, models and calibrations. The 

validity of analyses based on survey results will necessarily be subject to limitations as they may not always 

compare “like with like”.  For example, companies do not all adopt identical definitions of all risk factors, 

which may lead to different calibrations for models describing changes in similarly named risk factors or 

different correlation assumptions.  Companies with insignificant exposures to a given risk factor may find 

it proportionate to adopt strong assumptions for correlations between that risk factor and other risk factors 

rather than spend resource on detailed analysis, whereas companies with more significant exposures may 

prefer to perform a more detailed analysis in order to avoid excessive prudence.  The actual copula model 

used may also differ between one company and another.  A correlation assumption adopted by a company 

using a Student’s t copula may not be directly comparable with the corresponding assumption of a company 

using a Gaussian copula, particularly if the latter has chosen to adjust the assumption to make an allowance 

for tail dependence. 

Nevertheless, comparisons based on surveys can be useful in highlighting any assumptions which appear 

out of line and help focus validation effort on the rationale for those assumptions. 

 

3.16 Selection of the copula 

We discuss briefly the validation of the choice of copula. Due to the uncertainties arising from lack of 

relevant data and modelling constraints, the selection of a copula model is likely to be driven by practical 

considerations such as the use test and prior beliefs, with appropriate adjustments made to the parameters 

to allow for the limitations of the chosen model. 

The scarcity and, in some cases, absence of relevant data necessarily limits the extent to which standard 

statistical tests may be applied in practice. Nevertheless, one may consider it appropriate, if only to 

demonstrate compliance with the statistical quality standards of Solvency II, to perform some tests to 

validate the choice of copula model.  Such tests fall into two broad categories: 

3.16.1 Goodness of fit tests 

For example, the Table 3-14 provides a list of copula models with some potential tests and further 

references. 
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Model Test / Reference 

Gaussian 

 

Mardia’s test for the multivariate Normal distribution – test data derived by 

applying the inverse distribution function of the standard Normal distribution 

to pseudo-observations derived from the sample data 

 

Makin & Stevenson (2014) 

 

Gaussian 

 

Test of Malevergne & Sornette (2003) 

Student’s t 

 

Test of Kole, Koedijk & Verbeek (2007) 

Any family of copula 

 

“Blanket” tests 

Genest, Rémillard & Beaudoin (2009) 

 
Table 3-14: Copula models and potential tests 

 

The first three tests are restricted to a specific family of copula: the Gaussian or Student’s t.  They each 

involve “dimensional reduction” by condensing the information included in the data into values of one or 

two one-dimensional test statistics whose p-values are then generated assuming the null hypothesis. 

 

The version of Mardia’s test involves first converting the empirical copula into a test observation from a 

multivariate Normal by applying the inverse distribution functions of a standard Normal distribution to each 

marginal of the copula. 

 

The tests of Malevergne and Sornette are based around the squared Mahalanobis distance for each 

observation in the sample.  A variety of test statistics based on the usual Kolmogorov-Smirnov or Anderson-

Darling statistics may be defined and their empirical distributions derived by bootstrapping assuming the 

null hypothesis of the Gaussian copula holds.  

 

The test of Kole, Koedijk and Verbeek extends that of Malevergne and Sornette to a Student’s t copula 

through a modification of the Mahalanobis distance.  

 

The “blanket” tests of Genest, Rémillard & Beaudoin are so named because they can be applied to any 

family of copula.  Instead of using an intermediate statistic to reduce the dimension, the test statistic is 

generated directly from the empirical copula.  Again, various forms of the test statistic may be used, the 

most common being the Cramér von Mises statistic which is a measure of the L2 distance between the 

empirical copula and hypothesised copula.  The distribution of the test statistic and p-values must be 

generated using bootstrapping techniques.  Test functions are available in the “copula” package of R. 

3.16.2 Model filters 

These provide a method for assessing the appropriateness of using a more complex model with additional 

parameters. For example: 

(i) Likelihood ratio tests for nested models; 

(ii) Penalised likelihood functions such as Akaike, Bayesian or other information criteria. 

3.16.3 Usefulness of tests in practices 

In practice, in a life insurance context, a meaningful analysis is possible only for a subset of market risks.  

Even then, the results of the tests are inconclusive – see, for example, Makin & Stevenson (2014).  It is 

possible that such tests may have greater power when applied to larger (and more homogeneous) sample 
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sets such as monthly returns on equity indices for different geographies.  However, for the relatively small 

data sets which are most often used in a life insurance context, we have found that such tests provide little 

useful additional insight. 

We have also found when comparing two versions of the blanket tests to our sample data (the standard 

Cramer von Mises test and the Cramer von Mises test with the Rosenblatt transform – see Genest, Rémillard 

and Beaudoin (2009)), that the “stronger” version of the test based on the Rosenblatt transformed resulted 

in non-rejection of both the Gaussian and Student’s t model whereas the standard version of the test resulted 

in rejection.  We believe this may be due to limitations in deriving the bootstrapped distribution function 

of the test statistic when applied to small samples. 
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4 Proxy Models – Design, Validation and Communication of Results 

4.1 Overview 

In section 1.1 of this paper we outlined some of the drivers for developing more sophisticated capital 

models, and in particular those that use a copula based simulation approach.  This enables firms to generate 

a rich and complete distribution of profit and loss, which can inform regulatory and economic capital 

requirements, and assist firms to understand the nature of the risks that they face and their impact on the 

balance sheet.   

However, such simulation techniques are only useful if we can, with reasonable accuracy, calculate the 

financial impacts on an insurer’s balance sheet over a wide and rich set of points.  For example, for a 

credible distribution of profit and loss, firms would expect to run hundreds of thousands, or even millions 

of samples from the copula distribution.  In most cases, current technology prohibits firms from running 

heavy models at all of the required simulation points.  Because of this, many firms have developed “proxy” 

models, which are used to estimate the relevant financial metrics, such as movement in surplus.   

The technical grounding of this topic was discussed in some detail by Hursey et al (2014), while in this 

paper we address more practical issues such as the choices involved when designing and fitting a proxy 

model. We then discuss validating and communicating the results of proxy models. 

In this section, we provide a brief overview of proxy modelling and highlight some of the challenges 

practitioners have in communicating their results to senior management and other stakeholders. We then 

consider the design, fitting and validation of proxy models, including a discussion of options available to a 

firm in the event its proxy model does not meet its target validation thresholds. Finally, we return to consider 

the communication challenges, and how these can be addressed. 

 

4.2 Background 

As we mentioned above, development of proxy models was initially motivated by the need to calculate a 

balance sheet quickly, partnering copulas in a simulation based approach to calculating capital 

requirements. These techniques therefore have the aim of being able to estimate financial values connected 

to insurance liabilities without needing to perform full heavy model runs.  This has led to their expansion 

into other applications, such as solvency monitoring, where a firm can use its proxy model to calculate the 

impact on its balance sheet of market movements and movements in other risk factors, as well as the 

allowing for new business and run-off of existing business. 

The two most common types of proxy models are proxy functions and replicating portfolios: 

 Proxy functions – This is a general technique where the user runs a number of fitting scenarios which 

are used to express the determinant variable (e.g. profit/loss or asset/liability value) as a function of one 

or more explanatory variables (commonly referred to as risk factors). This is often performed using 

regression techniques or by interpolating between fitting scenarios. 

 Replicating Portfolios – This technique aims to use hypothetical portfolios of assets (or more general 

financial instruments) to replicate the value of the firm’s liabilities and how they move in relation to 

various risk factors.  The financial instruments need not be real in the sense that they are traded in real 

markets i.e. they could be synthetic.  If the replicating financial instruments can be valued analytically, 

then the liabilities can be easily and quickly valued under a wide range of scenarios. 

Whilst these two methods are different in their construct, they both adopt the same principle of representing 

movements in the insurer's balance sheet in terms of a set of simplified basis functions.  In fact, replicating 

portfolios could be seen as a special case of a proxy function, as ultimately with this approach we are trying 

to derive an analytical formula to estimate asset and liability values. 
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In the remainder of this section we focus on proxy functions, as these are the dominant technique adopted 

in industry. However, much of our discussion on the design of proxy models, and of the communication 

and validation of their results is also relevant to users of replicating portfolios. 

As an example, Figure 4-1 shows a hypothetical proxy function showing the movement of an exposure to 

equity values risk. Here the function fitted is a degree 2 polynomial. In this case, we see that the firm incurs 

a loss on that particular line of business when equity values fall. We return to this example in subsequent 

sections. 

 

Figure 4-1: Example equity risk proxy function 

 

4.3 Communication challenges 

In the past, senior management at insurance firms will have been aware that actuaries have developed and 

maintained large calculation models for valuing insurance liabilities.  Governance frameworks and 

standards will have been established to demonstrate to the Board that the models are appropriate for use in 

producing financial statements and solvency assessments, for pricing new products, and for forecasting 

revenue and capital.  These models will have been through thorough testing to validate that the models 

produce results that are consistent with the features of insurance products.  Ultimately it is important that 

enough information be given to the Board so they can get comfort over the appropriateness of model usage 

and their limitations. 

Table 4-1 lists challenges for communicating the use and appropriateness of proxy models to senior 

management. 
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Communication 

Challenge 
Issues 

Additional layer of  

Approximation 

Proxy models introduce an additional layer of approximation into stated 

results.  The actuary can no longer state that the financial result obtained 

is the result of a detailed model calculation. 

 

Understanding the  

potential error around the 

true result 

A proxy model will never replicate a heavy model exactly, and so may 

produce some large errors on particular individual scenarios. However, it 

can still produce sufficiently accurate quantile estimates as long as 

individual errors are free from systematic misstatements. Hursey et al 

(2014) provided empirical evidence of this; however, the authors of this 

paper are not aware of a formal proof. 

 

Communicating that a result from the proxy model is a ‘best-estimate’ 

assessment of the true result is difficult without some presentation of the 

potential error around that result.  However the need to communicate 

uncertainty is not unique to proxy models and is also necessary for the 

heavy model runs themselves which rely on uncertain parameters. 

 

Understanding statistics  

and curve fitting 

Insurance boards will be familiar with the nature of actuarial science, but 

prior to implementation of proxy models, this will have applied when 

setting the assumptions used for valuations, not within the model itself. 

 

Proxy models introduce an element of statistics into the results of the 

model, and a further layer in the approximation process. This arises from: 

 the simulation method used to calculate capital requirements 

 curve fitting to fit proxy functions (or surface fitting to fit interactions 

between risks). 

 

Understanding and validating the effects of diversification therefore 

requires knowledge of how correlations, fat-tailed risk distributions, non-

linear balance sheet responses, including interactions between risks, all 

combine. 

 

Range of model uses Firms are likely to look to use their proxy models to support a wide range 

of calculations and processes – for example economic capital, regulatory 

capital, balance sheet estimation, business forecasting and pricing.  

Whereas a heavy model is designed to project the true cash flows on the 

firm’s policies, and as such should be applicable for any purpose, the proxy 

model may be more or less appropriate for each of these uses.  Senior 

management therefore have more uncertainty about the appropriateness of 

the proxy model for different uses. 

 
Table 4-1: Communication challenges in proxy modelling 

 

4.4 Proxy model design 

Although proxy models could be viewed as a simplistic tool, in reality firms need to design their calculation 

software to fit with its reporting needs and the specific structure of the organisation.  A proxy model that is 

well designed will be able to produce many of the outputs that a firm needs. For example, economic capital 

can be calculated at various levels of the organisation’s hierarchy, and the capital can be allocated lower 
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down if required to individual products or groups of products. Figure 4-2 below illustrates a generic model 

structure.  It shows different levels at which proxy functions could be established, and each level at which 

the firm could calculate profits or losses and would therefore capture diversification between risks at that 

level.   

The design of the model will be different between firms, and even within the same firm there could be more 

than one design to fit different purposes.  Ideally, however, the firm would try to establish a single model 

that fits all of its reporting purposes but in the end this may not be achievable. 

 

Figure 4-2: Proxy model design 

4.4.1 Design considerations 

In the following sub-sections we identify questions that a firm designing its proxy model would consider. 

For each, we outline some of the factors that a firm could take into account when answering these questions. 

4.4.1.1 What metrics does the model need to calculate? 

The metrics on which a firm needs to report, both internally and externally, will affect the design of the 

model.  

It is likely that the proxy model will be used to calculate the SCR, and it may also be used for an approximate 

roll-forward calculation in order to demonstrate continuous solvency monitoring. This can impact the 

hierarchical design of the model, and the level of granularity at which results are required. 

There will also be internal reporting requirements, for example Value at risks (VARs) at certain confidence 

levels for risk appetite monitoring, or deep tail stresses for capital buffer setting.  Again, this may impact 

the granularity required of the model if we are looking to assess results for different products or legal 

entities. 

Does the company need to report on the assets and liabilities separately, or can it combine them in some or 

all circumstances?  Separate asset reporting may be instructive, for example in measuring and managing 

the risk of a credit portfolio.  For many purposes we may be able to combine assets and liabilities, to the 

extent that we are able to fit curves adequately. 

4.4.1.2 What is the structure of the company on which we are reporting? 

The company structure, as illustrated in Figure 4-2, will have a large influence on the design.  Firms will 

usually need to report results externally at legal entity level, and for designated Insurance Groups.  

However, firms may also want to report results at other internal layers, for example by geography or for 

certain holding companies.  
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Firms may also be required to perform calculations at sub-fund level. For example, under Solvency II, most 

with-profits funds and all matching adjustment portfolios are treated as if they were ring-fenced funds, 

where the nature of the fund results in restrictions on the ability of capital resources to absorb losses arising 

in other parts of the business.  The aggregation model must then be set up to be able to calculate results for 

those separate portfolios and reflect the restrictions on loss absorbing capability. 

Finally, firms may have defined business units or product groups at which they manage the business 

commercially.  This may necessitate output at that level of granularity.  However, the greater the level of 

granularity, the more proxy functions that will need to be fitted and validated.  Whilst granularity is required 

to the extent that homogenous assets and liabilities will be easier to fit adequately, too much will require 

excessive fitting and validation.  There may be more approximate ways to allocate results down to more 

granular products, for example defining easily accessible risk drivers to approximate the exposure to risk. 

Generally, a firm will place Groups or Legal Entities at the top of the structure and more granular categories 

at the bottom, for example products or asset portfolios.  It will be necessary to fit proxy functions at the 

lowest level of the hierarchy in order to produce results for that level. 

4.4.1.3 For what other features do we need to account? 

There will be other, more idiosyncratic, features of a firm that need to be reflected in models of its balance 

sheet, such as: 

 Tax 

 Fungibility restrictions 

 Reinsurance 

 Management actions 

 Complex risks, such as operational risk. 

It will be up to an individual firm to determine appropriate methodology for these modelling features, taking 

into account their materiality. In particular, it may decide to allow for them explicitly in the design of the 

proxy model. However, it may be more appropriate to fit proxy functions to exposures net of these features, 

or to allow for as an adjustment to the result produced by the proxy model.   

4.4.2 Summary of proxy model design 

The above considerations will influence the design of the proxy model. In summary, a firm designing its 

proxy model will need to decide: 

 The hierarchical structure of the model, which will determine at what levels we may be able to 

simulate and order losses and thus calculate diversified results. 

 The lowest level of the hierarchy at which proxy functions are fitted. This sets the most granular 

level at which results can be analysed (for example product groups, legal entities). 

 How to reflect any constraints to the diversification that can be achieved, for example due to ring-

fencing restrictions. 

 Where and how the tax impacts on profits and losses can be calculated. 

 The risk factors to be used in the model, and to which products/entities these apply. 

Where firms are using third party software supplied by an external vendor, there may be constraints imposed 

by that software, for example a limited range of mathematical functions (as well as statistical distributions 

and copulas) that can be used.  However, a firm will still need to ensure that the proxy model provides a 

materially accurate representation of their business. 

Note that the above design decisions have not yet considered the methodology for fitting proxy functions.  

We discuss this in the next section. 
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4.5 Proxy model fitting 

4.5.1 Objectives for model fitting 

We now consider the choices around how to fit the model.  Firstly, we define a possible range of objectives 

of the fitting process. 

 Well Fitted: The model must fit the firm’s heavy models well, over an appropriately wide range 

of scenarios.  This may focus on achieving strong fit at particular points or scenarios, for example 

around the 99.5th percentile VaR to meet solvency capital requirements, or at other points as used 

by the business for risk measurement.  However, it is a requirement of Solvency II that firms 

produce a full Probability Distribution Forecast so it will be necessary to achieve a strong fit across 

a range of quantiles.  Testing of this accuracy objective is part of the model validation process. 

 Parsimonious: The model should not be more complicated than is necessary.  The fitting approach 

should not lead us to implement proxy functions that are more complex than is required.  For 

example, higher order polynomial coefficients and joint terms should only be included if they 

materially improve the fit of the model.  Testing of the parsimony objective is inherent in some 

mathematical fitting approaches – for example Akaike’s or Bayes’ Information criterion (section 

4.5.3).  Some firms use a bespoke information criterion to select the model.  If firms are using 

expert judgement to determine the structural form of the proxy functions, it would be more difficult 

to prove the satisfaction of this objective. 

 Avoid over-fitting: This would normally be defined as an approach that overly focuses on fitting 

to the sample observations. In applications where observations include large statistically random 

errors, this means over-fitting to those errors (i.e. fitting to the “noise” rather than the “signal” in 

the data).  This is less likely to be relevant in insurance applications, where the asset and liability 

calculations are either deterministic or based on stochastic models with sufficiently many 

simulations to ensure convergence.  However, over-fitting in the context of proxy models would 

mean placing too much emphasis on achieving an accurate fit in the areas that the fitting runs are 

performed.  Further, over-fitting can lead to results in the tails of the distribution that are not 

sensible due to turning points in the proxy function that occur just outside the fitting range.  The 

range of scenarios over which the proxy model is valid should be clearly specified as a limitation 

and a trigger framework produced so that the curve fitting process is repeated where necessary. 

Graphical validation can provide a quick and instructive view of the curves that are fitted (at least 

up to 3 dimensions) so that the behaviour can be sense checked. Charts illustrating the use of 

graphical validation for this purpose are included in section 4.6.3. 

 Practical:  The fitting process also needs to lead to practical proxy functions which satisfy any 

constraints imposed by the simulation software used and can therefore be incorporated into the 

firm's simulation model.  This may preclude certain functional forms or polynomial orders. 

4.5.2 Choice of proxy function form 

Whilst the coefficients are a result of the proxy function fitting, the functional form itself is influenced by 

the approach taken to curve fitting.   

For example, the functional form for a univariate proxy function may consist of the following basis 

functions: 

 Polynomials up to a particular order (x, x2, x3, …) 

 Another function, such as the exponential function. 

The general form of this proxy function, p(x), which explains balance sheet movements under changes in 

risk factor x, is as follows: 
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𝑝(𝑥) = 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 + ⋯ + 𝑏𝑒𝑥 Equation 4-1 

 

Interaction terms can be allowed for similarly, through polynomials or other functions in two or more risks.  

Approaches to choosing functional form can be categorised according to whether they are theory-driven or 

data-driven. 

Adopting a theory-driven approach would mean using the firm’s knowledge about its assets and liabilities, 

and its exposure to risk factors to determine the functional form of the model, or at least to restrict the 

number of possible coefficients of the model through expert judgement.  For example, there may be an 

economic theory or business intuition that the impact of a particular risk factor on a particular metric will 

be linear.  

The other extreme is a data-driven approach, which would be to run a very large range of stresses in the 

heavy models and use mathematical techniques to reduce the proxy functions down to a suitable form.   This 

approach could start with a very large number of possible terms, and the aim of the mathematical technique 

would be to gradually reduce the proxy functions whilst maintaining an adequate level of fit.  Alternatively, 

it could build up the model adding one term at a time. An example of such a technique is stepwise 

regression, which is described in section 4.5.3.2. 

A firm will need to decide the most appropriate method for selecting its proxy function forms and should 

justify and record why it believes the chosen approach is appropriate (as well as what alternatives were 

considered and why these were judged to be less appropriate).  It may also be possible to perform the form 

selection exercise off-cycle (out of the production period), if the exposures modelled are stable over time.  

4.5.3 Fitting tools 

In this sub-section, we provide an overview of some methods that can be used to fit proxy functions.  

4.5.3.1 Regression methods 

A common method to fit proxy functions in practice is Ordinary Least Squares (OLS) regression (due to its 

simplicity, age and estimates having strong statistical properties).  For a given formulaic structure, this 

method chooses the coefficients of proxy function which minimise the sum of squared errors relative to the 

results of heavy models evaluated at fitting scenarios.  As a variant, firms may wish to use a Weighted Least 

Squares approach, which applies a weighting function to the regression to put more/less weight on different 

parts of the fit.   

Hursey et al (2014) provide formulaic detail on these methods, and this is not repeated here. 

4.5.3.2 Stepwise regression 

A common mathematical technique used to determine which terms to include in a regression model is 

stepwise regression. In the context of proxy modelling, it can be used to determine the form of the proxy 

function.  The aim of this technique is to step through different possible forms of the proxy function – 

adding or removing one term (or cross-term) at a time – and assess the fit at each level according to some 

pre-defined statistical criterion.  The steps can either start at a very basic model then build up additional 

terms, or vice-versa.  The stepping through can be automated computationally and so implicitly allows the 

firm to consider a very large range of possible model calibrations and automatically choose the most 

appropriate based on that statistical criteria. 

Different statistical criteria exist for use in a stepwise regression.  The most commonly used in actuarial 

models are the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC).  These are 
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both statistics that aim to assess the trade-off between the complexity of the model and its goodness of fit.  

See chapter 6 of James et al (2015) for further details. 

An alternative to information criteria is to run a set of out-of-sample (OOS) scenarios to discriminate 

between various possible structures in a stepwise regression scheme. These OOS runs would need to be 

independent of those to be used for validation (i.e. it requires additional modelling to be performed during 

the production cycle).  

4.5.3.3 Alternative regression techniques 

There are also alternative techniques, such as ridge regression and lasso regression, which apply a specified 

penalty function to the regression coefficients.  

These techniques can result in an improvement in fit relative to ordinary least squares regression; lasso 

regression sets some coefficients to zero, thereby also selecting the form of proxy function. However this 

can come with an associated increase in bias. For more information see, for example, James et al (2015).  

4.5.3.4 Polynomial interpolation 

It is also possible to calibrate proxy functions by choosing a polynomial which interpolates between a set 

of fitting points. In this case, we would choose a polynomial of degree N to interpolate between N+1 fitting 

points. 

Hursey and Scott (2012) show that there are optimal choices of fitting points for a particular degree of 

univariate polynomial proxy function, and for certain multivariate proxy functions. The points are optimal 

in the sense that they minimise the sum of squared errors between the proxy function and the true liability, 

which is assumed to be a polynomial of one degree higher.  

Further, the optimal fitting points depend only on the fitting range and the degree of polynomial proxy 

function fitted. This technique can therefore be coupled with an off-cycle exercise to determine proxy 

function form, which outputs the minimum number of optimal fitting points to re-calibrate those proxy 

functions on-cycle.  

4.5.3.5 Other interpolation and extrapolation methods 

Another method of fitting a proxy function is to do so empirically by interpolating between (or extrapolating 

from) points in a data set consisting of risk factor values and their impact on the balance sheet. This requires 

the choice of an interpolation method, the simplest of which is linear interpolation.  

Alternative methods include Shepard’s Inverse Distance Weighting and Delaunay triangulation. The 

relative merits of these and other techniques are beyond the scope of this paper. For information on these 

techniques please see Dumitru et al (2013). 

These interpolation methods can be used as a “backup” if it is not possible to achieve an adequate fit for a 

particular proxy function using regression techniques, for example if it introduces unintended turning 

points. 

 

4.6 Validating proxy models 

4.6.1 Introduction 

In section 4.5.1, we set out the objectives for fitting the proxy model.  The key objective is that the model 

is accurate in replicating the results from the heavy models over a defined range of scenarios, and not just 
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in the scenarios used in fitting.  This section considers how insurers can test the proposed model and 

communicate the results of the testing to stakeholders to help justify the choices made. 

4.6.2 Validation scope 

The proxy model is usually part of a firm’s wider economic capital model, which may be used for regulatory 

purposes (e.g. Solvency II Internal Model) or for internal reporting (e.g. Economic Capital model).  

Multiple validation tools exist to validate these models, including back-testing, reverse stress testing and 

statistical testing.  It is important to be clear what exactly is being tested and how the chosen validation tool 

design achieves the test objective. 

Figure 4-3 shows the typical components of a capital model used in producing a Probability Distribution 

Forecast, and where the proxy model validation fits in.  For example, under Solvency II, internal models 

are required to produce a suitably accurate Probability Distribution Forecast which quantifies the movement 

in Own Funds over a full probability distribution.  The focus of this section is on statistical testing to validate 

the proxy model component and if relevant, how it is “rolled forward” prior to generating the Probability 

Distribution Forecast i.e. where the proxy model is initially calibrated prior to the valuation date, and then 

rolled forward to that date.   The approach to roll-forward is discussed in section 4.6.10.  

Hence the scope of this section is validating the components at points labelled (1) and (2) in Figure 4-3. 

 
Figure 4-3: Internal model components and validation points 

 

Validation 

Point 
What is being tested 

Tool 

Ref 
Tool 

1 

How effective is the proxy model at 

replicating the results that would be 

achieved with the heavy model? 

V1.1 Goodness of Fit tests 

V1.2 Visual inspection of fitted curves 

V1.3 Out-of-sample scenarios 

2 
How accurate is the roll-forward 

methodology used? 

V2.1 Out-of-sample scenarios 

V2.2 Full back-test ‘out of cycle’ 

Table 4-2: Proxy model validation points  
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4.6.3 In-sample testing (goodness of fit and visual inspection) 

An element of validation should occur during the fitting process.  After regression is used to fit the curves, 

firms should output a number of fitting statistics to inform how well they have been able to fit the observed 

points.  This is likely to include: 

 R-squared or R – a measure of overall correlation and explanatory power 

 Mean-Squared Error (MSE), or Sum of Squared Error (SSE).  Both measures of the absolute fitting 

error. 

 Maximum (absolute) error 

 Number of points outside a desired range – either an absolute or percentage amount. 

These kinds of statistics are commonly used as part of out-of-sample testing, so are discussed in the next 

section.   Firms are also likely to use visual inspection to assess the fit.  Statistical testing of in-sample 

points has limits on its credibility, because it does not cover the risk of un-modelled points being incorrect.  

If the user has sufficient expertise, graphical inspection can help to identify areas where the fit is 

inappropriate.  For example, the fitted curve may show over-fitting or turning points outside the fitting 

range that we may not expect. 

This is illustrated in Figure 4-4 and Figure 4-5 below, which shows the hypothetical equity risk proxy 

function from Figure 4-1 in section 4.2 fitted using a polynomial of degree 5 (Figure 4-1 showed a 

polynomial of degree 2, and the same fitting points have been used to fit the degree 5 polynomial).  Figure 

4-4 illustrates how over-fitting to fluctuations between fitting points can result in an unintuitive proxy 

function within the fitting range. While Figure 4-5 shows the proxy function over a slightly wider range, 

which shows the effect of the unexpected turning point introduced is to suggest a £4bn loss in the event of 

+140% equity returns. 

 

Figure 4-4: Degree 5 polynomial equity proxy function 

illustrating over-fitting 

 

Figure 4-5: Degree 5 polynomial equity proxy function 

illustrating turning points beyond fitting range 

4.6.4 Out-of-sample testing 

Out-of-sample testing is an example of an effective statistical process for validating the proxy model.   

Scenarios that are not used in fitting are evaluated using the heavy model and compared with the results 

using the proxy model.  The same sorts of fitting statistics can be used as for in-sample testing.  Graphical 

inspection of the fitted curves themselves may have limited use in out-of-sample testing because we are 

generally concerned with looking at multivariate points. 

Out-of-sample testing tests for the impact of the following potential errors in proxy models: 
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Error type Description 

Interpolation error 
Shape between fitting points is inaccurate so that the fitted function does not 

predict the heavy model loss well in scenarios that are not close to a fitted point. 

Extrapolation error 

Behaviour of the fitted function beyond the last fitting point (but within the 

range of simulations) is inaccurate, for example through unintended turning 

points or higher order polynomials increasing excessively at higher levels of the 

relevant risks. 

Interaction error Combinations of risks are not accurately modelled or are not modelled at all. 

Table 4-3: Types of errors encountered in proxy modelling 

Proxy models inherently contain an element of approximation and, as discussed in Hursey et al (2014), 

errors in individual points do not themselves invalidate the model. What is more important is that there is 

no bias in the fitted functions, so that the model does not systematically under- or overstate the result; or 

fail to adequately rank risks.  Proxy model errors when assessing the Probability Distribution Forecast can 

be put into two categories: 

1) Proxy functions are biased so that the magnitude of losses is incorrect, though the ranking may be 

broadly correct, for example where extreme losses are overstated by loss functions but would still 

be extremes in the ranking if the loss functions were accurate; 

2) Proxy functions are biased so that both magnitude and ranking of losses is wrong.  This can arise 

for example due to turning points calculating profits when there should be losses (and vice versa) 

or where interactions are inaccurately modelled such that some combinations of risk have effects 

which are completely unexpected, for example where a fit is accurate for scenarios when two risks 

both increase, but the wrong sign when the risks move in different directions. 

 

In the former case, the model’s ability to rank risk may be appropriate, but the financial outcomes are not.  

For example, Economic Capital may be over or understated. Validation statistics would show that the proxy 

model is systematically over or understating the heavy model evenly across the full Probability Distribution 

Forecast. 

In the latter case, the validation statistics would show errors that are not similar across the full Probability 

Distribution Forecast. 

The reminder of this section focuses on the choices that need to be made when conducting out-of-sample 

testing, and how to communicate the results. 

4.6.5 Choosing scenarios for out-of-sample testing 

4.6.5.1 Number of scenarios 

The Working Party is not aware of any specific approach to deriving a theoretically robust number of 

scenarios to test, for example a formula based on statistical significance.  Such approaches rely on the 

underlying assumption of randomness of errors which does not necessarily apply when replicating an 

underlying model. 

Clearly the more scenarios tested the greater the confidence in the view formed from the tests on whether 

or not the proxy model is a good representation of the underlying heavy models.   

The following principles are relevant in determining a suitable sample size: 
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Principle Number of scenarios expected to increase: 

Materiality for a large fund than for a smaller fund with similar risk profile 

Complexity 

for a complex Group structure with multiple reporting entities, each with a different 

‘critical scenario’ profile. 

for a fund with diverse range of risks and/or complex interactions as a firm will want to 

capture many variations. 

Use 

where the proxy model is used extensively such that a wide range of the Probability 

Distribution Forecast is relevant as opposed to if it is mainly used at the level of the 

99.5th percentile 

Cost / Time 
while the benefit justifies the cost, as out-of-sample testing requires significant effort 

when there is sufficient time, for example ‘out of cycle’ vs ‘in cycle’ 

Table 4-4: Principles to determine the number of out-of-sample scenarios 

A 2014 survey  (Deloitte, 2014) of nine UK firms showed that the number of scenarios tested at the 

calibration date ranged from 20 to 1000 (median 50), with a smaller number of scenarios also tested at the 

validation date. Clearly, time and cost are key limitations and constrain what companies can do; 

technological advances may mitigate this. 

We expect the industry will refine its view of the suitable volume of tests as firms gain further insights from 

the testing they perform. They may then also become more focused in their testing. Until then the approach 

is likely to be driven by the maximum achievable number within reasonable constraints. 

4.6.5.2 Allocation of the scenario budget 

It is important to test the full range of the scenarios across the Probability Distribution Forecast because 

different regions are relevant for different uses of proxy models.   

Because we are looking to test the Probability Distribution Forecast, which is a representation of the full 

distribution of all the risk factors to which a company is exposed, the emphasis should be on testing 

multivariate points covering all risks. This ensures that the points tested can be mapped to the overall 

percentiles (and in fact are likely to be derived from percentile outputs of the model).  This is useful for 

ensuring that interactions between risks are captured. 

Scenarios that consist of a subset of risks can be appropriate when we are looking at a specific section of 

the model (e.g. asset, product or entity), which may be the case if the model is being used for a specific 

purpose, or if there are investigations that need to be performed after issues have been identified with the 

multivariate scenarios. 

Notwithstanding the need to assess the full Probability Distribution Forecast, firms may choose to model a 

higher concentration of points at different percentiles, as ultimately different points will be more relevant 

for different uses of the model. The following table sets out an example target allocation of the number of 

scenarios across percentiles for a reporting entity.  For this purpose, the percentile range has been split into 

6 sections broadly aligned to usage.  The scenarios are allocated across these percentiles in each fund to 

test various uses. 
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Probability Distribution 

Forecast Region 

Broad 

Percentile 

range 

Specific Uses 

Allocation 

of 

scenarios 

SCR/Economic Capital region 99th-99.9th 

i)    SCR calculation 

ii)   Diversified risk levels 

iii)  Risk management prioritisation 

50% 

Mid to High adverse 70th-99th Risk Appetite / Stress and Scenario testing 

(e.g. cover 1-in-5 or 1-in-10 events) 
10%-20% 

Low to Mid adverse 50th-70th Short-term solvency estimates using “roll-

forward techniques”.  Both adverse and 

beneficial movements are relevant. 

10%-20% 
Low to Mid beneficial 30th-50th 

Extreme adverse >99.9th 
If calculating 1-in-200 after a 1-in-X this 

region becomes more relevant. 
5%-10% 

Mid to Extreme beneficial 0-30th Of limited use in practice. 5%-10% 

Table 4-5: Allocation of out-of-sample scenarios 

SCR/Economic Capital: The simulations around the 99.5th percentile are most relevant for calculating the 

aggregate 1-in-200 capital requirement.  The SCR or other Economic Capital measures are typically 

calculated as the 99.5th ranked loss across a large number of simulations.   

The SCR can be under or overstated if there is a systemic error across many scenarios. For example, the 

SCR will be understated if proxy function fitting errors cause losses on simulations ranked at percentiles 

lower than the 99.5th to be understated, where, if the fitting error was not present, those simulations would 

result in a loss greater than the SCR.  The understatement in SCR will depend on the extent of 

understatement in each simulation and how close they are to the 99.5th ranked loss. 

As the 99.5th percentile will not be known until the proxy model has been run, a firm will choose out-of-

sample scenarios using results from previous calibration of the model (which they may roll-forward to the 

current reporting date, as we will touch on in section 4.6.10). 

To test ranking errors, simulations near the 99.5th percentile are important.  The further away from this 

region the greater the error needs to be to influence the ranking, although large errors are still possible 

where turning points exist.  Systemic errors can be detected from anywhere in the range. 

Diversified Risks (or allocated capital):  Diversified losses by risk are referenced for a number of 

purposes, including materiality definitions, risk appetite and prioritisation for risk management.  A typical 

method of calculation is to take the average level of risk across simulations ranked from say 1,000 

simulations around the 99.5th percentile, possibly weighted to give more weight to simulations near the 

99.5th.  The range of (in this example) 1,000 simulations is often known as “critical region” or “smoothing 

window”. 

The accuracy of scenarios across the smoothing window is important to the accuracy of the diversified 

losses, and a firm may therefore wish to ensure these are covered by its out-of-sample testing. 

Short-term solvency estimation: Proxy models are commonly used to estimate changes in the economic 

balance sheet position between full calibrations.  Typically, these are smaller movements that are actually 

experienced, both positive and negative.  Testing scenarios at other percentiles will provide useful 

information on the accuracy of proxy functions in scenarios that might be encountered for this purpose. 
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There is no specific percentile that needs to be focused on for this purpose, but a range of levels close to 

the median (for example between the 30th and 70th percentiles) should be tested.  

Risk appetite limits: Some insurers use proxy models to periodically set the level of capital needed to 

cover SCR after a 1-in-X level event, typically a 1-in-5 (80th percentile), a 1-in-10 (90th percentile) and a 1-

in-25 (96th percentile).  Proxy models are used to estimate the impact of these events on Own Funds and on 

SCR by assessing a 1-in-200 loss after the 1-in-X event. 

Therefore, the adverse range below the 99.5th smoothing window needs to be tested for the Own Funds 

impact.  Scenarios above 99.5th will therefore be relevant to validate the capability of loss functions to 

calculate the SCR after a 1-in-X event. 

Stress and scenario testing (SST): Firms can use proxy models to assess Own Funds and SCR impacts 

after a defined scenario – which may be a 1-in-X scenario generated or a real-life defined scenario such as 

a pandemic.  The testing in regions described for risk appetite setting is also suitable for validating the use 

of a proxy model for SST. 

4.6.5.3 Scenario selection method 

Scenarios may be either selected to target specific combinations of risks or selected non-systematically, 

such as at random or from pre-defined percentiles of the aggregate distribution. 

Examples of the specific selection approach include: 

 Targeting specific key interactions in each fund 

 Targeting outliers e.g. large credit scenarios 

 Targeting known limitations / poor fits 

Systematic approaches have the following challenges/disadvantages: 

 They introduce potential bias towards poor fits.  

 There are many potential permutations of interactions and probability levels that theoretically might 

be relevant.  For example, a test pack for an annuity fund could include various pairs or triples of 

interest rate level, interest rate slope, longevity and credit and then with each at different probability 

levels and directions.  It is difficult to judge the most appropriate and efficient subset of the 

permutations for testing. Over time, repeating the validation on new sets of simulations should 

build up a body of evidence that will test a wide range of these permutations and therefore continue 

to enhance understanding and help further refine the loss functions. 

 It is manually intensive to find simulations that exhibit the required features and it can be the case 

that very few simulations in the relevant region exhibit material occurrence of particular 

interactions targeted. 

4.6.6 Acceptance criteria 

In order to assess whether the proxy model is fit for purpose, there is a need to define what is an acceptable 

deviation from the heavy model results i.e. what dictates a validation “pass” or “fail”. 

The selection of tolerances for this purpose is one of the most important steps in the fitting and validation 

of proxy models. Tolerances determine the level of effort required in terms of the number of valuation 

model runs and the required complexity of the proxy model. In general, the lower the tolerances the higher 

will be the number of scenarios required in fitting and validation.  

Setting arbitrarily tight tolerances may be spurious accuracy that will drive significant additional cost 

without altering management decisions.  Setting tolerances which are too loose may lead to inappropriate 

decisions. 
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4.6.6.1 Setting tolerances 

One way of setting tolerances is a top-down approach starting with management’s acceptability for the level 

of inaccuracy for each use of the proxy model and cascade down to individual scenario level as follows:  

1) Agree the level of accuracy required so that the model ranks risk sufficiently accurately and help 

senior management to make business decisions.  What level of error in the key output e.g. SCR, 

Risk Appetite levels would drive management to alter a decision.  

 This is aligned to the definition of materiality in Article 222 of the Solvency II Delegated 

Regulations (2015). 

 “For the purposes of this Chapter, a change or error in the outputs of the internal model, including 

the Solvency Capital Requirement, or in the data used in the internal model shall be considered 

material where it could influence the decision-making or the judgement of the users of that 

information, including the supervisory authorities.” 

2) At the same time the tolerances should be set in such a manner that the effort required in achieving 

them is (a) proportionate, (b) not unduly onerous to implement, and (c) makes allowance for 

accumulation of errors.  This may lead to a simple high-level percentage or absolute error.  

 

3) Based on this high level tolerance, define the tolerances at lower levels e.g., legal entity level or 

sub-fund level or at individual risk level.  

Tolerances may differ in different regions of the Probability Distribution Forecast reflecting that the SCR / 

diversified risk levels are likely to drive more risk management actions than say errors in very extreme 

scenarios.  However, this may overcomplicate the validation operationally and require more scenarios in 

each region to get a representative view.   

4.6.7 Validation measures 

Firms should consider a range of statistics when analysing their out-of-sample results.  This should be a 

combination of descriptive and analytical statistics, and can include: 

Measures of fit for individual samples: 

 Monetary error (versus heavy model) in relevant currency 

 Percentage error e.g. as percentage of true heavy model result 

Descriptive measures for the full sample set: 

 Number of samples outside a specified range (defined as monetary value) 

 Number of samples outside a specified range (defined as percentage) 

 Number of under- or overstatements 

 Mean Squared Error 

 Mean Absolute Error 

Analytical statistics: 

 R-squared3 (coefficient of determination).  Measures how much of the variation in the heavy model 

result is explained by the proxy model.  A value close to 1 (say greater than 0.99) is expected if the 

proxy model is a good predictor of the heavy model. 

                                                      
3 R2= 1 - Sum of Squared Errors / Total Sum of Squares 



 

66 

 

 R (Pearson Product-Moment Correlation Coefficient).  This measures the linear dependence 

between values from the fitted function and the in-sample modelled values.4 

 Coefficient of Skewness:  This is a measure of the extent to which the errors are biased in either 

direction (over/understatement of heavy model result).  This can tell us at an overall level whether 

the proxy model tends to under or overstate results. 

For the majority of these statistics, we can view the results across the whole loss distribution, or for specific 

regions of interest.  This is particularly pertinent when looking at the skew of the errors.  The skewness 

statistics could be low for the distribution as whole, but may contain clustering of bias at certain points of 

the curve.   This is where graphical inspection of the out-of-sample points can be instructive, since patterns 

in the residuals can be plotted and assessed accordingly. 

4.6.8 How should the errors be investigated? 

Individual errors can flag types of risk combination that are particularly inaccurate e.g. due to a missing or 

inaccurately modelled interaction (for example, this can be identified by plotting out-of-sample error 

against risk factor values and looking for systematic features).  It may be that such combinations are rare 

and therefore the fail is not particularly important or it may be that the error occurs in many simulations 

and therefore causes errors across the Probability Distribution Forecast. 

The cause of the failing individual scenario should be understood (or at least the unique features of the 

scenario compared with the passing scenario should be identified) and the simulation set examined to 

establish how frequent that type of scenario is to determine if further remedial action is justified due to 

pointing to a more systemic issue.  

As well as looking at individual errors, a firm should examine the errors across all scenarios collectively. 

While individual errors may be within tolerances, this analysis could highlight systematic misstatements 

such as bias at a particular part of the loss distribution. For example, a firm could test for whether the 

number of over- or under-statements is statistically significant under the null hypothesis that the number of 

each follows a binomial distribution with an equal probability of over- or under-statement (parameter p = 

0.5).  

4.6.9 Communicating validation results 

The validation results can be communicated in the form of a plot showing the probability level of the chosen 

scenarios and how they relate to uses of the Probability Distribution Forecast. 

 

 

                                                      
4 Note – in this case we can use either R or R2 and not both, since the relationship we are trying to test is 

effectively an X = Y relationship, and there is no intercept in the regression. 
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Figure 4-6: Plot of proxy model losses against heavy model losses 

An example of an effective plot for showing validation results is Figure 4-6 above. This is a scatter plot of 

proxy model result (y-axis) against the heavy model result (x-axis) for a set of out-of-sample scenarios. If 

the proxy model were to produce exactly the same results as the heavy model, all points would fall on the 

dashed line. The plot allows us to compare the proxy model result to the heavy model result at different 

points of the loss distribution, and can be used to identify features visually such as: 

 size and spread of residuals – seen from the vertical distance of a scenario, or cluster of scenarios, 

from the dashed line 

 large individual errors – as shown for two scenarios where the proxy model produces a result which 

is far from that of the heavy model 

 systematic under or overstatements – for example, in the region of the 50th to 80th percentiles above 

where out-of-sample results are clustered above the dashed line, indicating possible systematic 

overstatement of losses in that region. 

This plot can be used to communicate the suitability of the proxy models to the users of the model for each 

of the use types. The plot helps to highlight the percentiles and situations where the fit of the model is good 

and where it is poor/uncertain and the impact that can have on the key output for each model use. This will 

help management understand the limitations of the model and therefore assist the user to adjust use 

accordingly rather than over rely on it where it is less accurate.  

A box-whisker plot, or a histogram of errors, can also provide an informative summary of out-of-sample 

results. 

The graphical plots can also assist in understanding the distribution of residuals across the range of 

percentiles.  This can bring out any issues that are present in certain areas of the curve, but which are lost 
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when statistics are calculated for the full sample set (such as, for example the large individual errors shown 

on Figure 4-6). 

4.6.10 Roll-Forward 

4.6.10.1 Drivers for using roll-forward 

Roll-forward is a fairly common practice used in producing the Probability Distribution Forecast at the 

valuation date in order to meet tight reporting timescales.  It involves fitting the proxy model at an earlier 

date (for example end of Quarter 3) and then adjusting the fitted model to the valuation date (end of Quarter 

4) using approximate scaling factors. This is an important consideration for reporting economic capital for 

multiple reasons including: 

 To inform timely management interventions to manage risks. 

 To meet expectations of the market for external reporting in the case of shareholder owned 

companies. 

 To meet regulatory reporting requirements.   

The required timescales may leave insufficient time to fully calibrate and validate proxy models using asset 

and liability data at the reporting valuation date.  Instead actuaries have developed techniques that are 

designed to provide sufficiently accurate results with less dependency on data at the valuation date by 

“rolling forward” from previously calibrated models. 

Typically, these techniques involve: 

 Calibration off-cycle in advance of the reporting period. 

 Roll-forward methodology to approximate the impact as at the valuation date of experience in the 

period since the calibration. 

 A trigger framework to flag the need to intervene should the approximations exceed tolerance for 

inaccuracy. 

4.6.10.2 Roll-forward methods 

Roll-forward methods include 

 Scaling some proxy functions according to a readily available “carrier” for the movement in risk, 

for example policy counts, sum assured or annuity payments in force – essentially some 

approximate measure that does not involve a heavy model calculation (such as best-estimate 

liability).  Such risk carriers may capture changes in volume or changes in sensitivity or both. This 

may involve scaling proxy functions using a reduced volume of heavy model runs at the valuation 

date. 

 Partial recalibration, for example to focus recalibration on lines of business that are most sensitive 

to risk factors, or recalibrate the most material risk factors only, leaving proxy functions for other 

risks unchanged. 

The choice of roll-forward method for a particular risk depends on:  

 The materiality of the risk. 

 The stability of the exposure to the risk. 

 What circumstances might cause the magnitude of the risk to change materially. 
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4.6.10.3 Validation considerations 

Roll-forward will potentially introduce additional approximation error over the proxy model calibration 

errors discussed earlier.  A firm should ensure that both the calibration and roll-forward are operating 

appropriately; and that the aggregate error is within the firm’s tolerances, described in section 4.6.6.1.  

Firms could perform validation at: 

 The calibration date and then perform an analysis of the movement over the roll-forward period.  

The latter would be considered ‘light’ validation of the roll-forward, and could for example include 

stepping through each change to the proxy functions and risk factors to understand the cause of 

change and assess its reasonableness.  Because this validation is light, it is best suited to more 

benign environments, for example where the exposure to risk is stable, there is a fairly stable mix 

of business, when investment markets have been stable, or if the roll-forward period has been short. 

 The valuation date only.  This will most directly validate the model at the point at which it is being 

used.  However, depending on the timescales for reporting, this may be a significant challenge.  

 Both the calibration date and valuation date.  For example, firms could test intensively at the 

calibration date, and then perform a smaller amount of testing at the valuation date before reporting 

deadlines. 

The relative merits of each approach are discussed below. 

Out-of-sample testing at the date of calibration:  

 A cleaner controlled validation as we do not have roll-forward approximation affecting the 

validation results. 

 The validation can easily be completed on-cycle before results are reported. 

 However, this only the tests the proxy model at the point of calibration.  Roll-forward would need 

to be validated separately; at a minimum an analysis of movement over the period can be used to 

back up the results from the proxy model.  However, in non-benign conditions, or where the roll-

forward period is long, this analysis may be difficult to reconcile.  Therefore, it may be necessary 

to produce some amount of out-of-sample testing at the valuation date. 

Out-of-sample testing at the date of reporting: 

 This most directly validates the specific result reported, and it tests both proxy model calibration 

and roll-forward combined. 

 It will be difficult to complete on-cycle as we cannot start until roll-forward results are available, 

and reporting deadlines may be short. 

 It can be harder to determine root cause of failing scenarios without significant additional work to 

isolate roll-forward errors from proxy model errors. 

Current practice varies across the industry.  Most firms perform a substantial amount of testing at the 

calibration date.  Many firms also perform a smaller amount of testing at the valuation date (Deloitte, 2014). 

An alternative mitigant, for those firms who do not wish to conduct further significant testing at the 

valuation date, would be to investigate and set trigger points.  These trigger points would be designed to set 

limits at which the firm would start to doubt calibration of the proxy functions.  These trigger points could 

relate to a number of things, for example: 

 Large market changes – market movements that are severe enough to cast some doubt as to the 

appropriateness of the proxy functions, particularly for assessing a 1 in 200 level of confidence 
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after the market movement, which may be very deep in the tails of the original calibrated proxy 

function. 

 Business experience – large levels of lapses or new business, in particular if these are concentrated 

on certain products such that scaling of proxy functions may not represent the true movement in 

exposure to risk. 

 Other business activities, such as changes to investment policy, new or altered reinsurance treaties 

or hedging strategies.  The existing proxy functions may not be easily adaptable for these types of 

events. 

There will usually be a degree of subjectivity involved in setting any trigger points, so the firm should be 

realistic in answering the fundamental question of what would invalidate the calibrated proxy model. 

 

4.7 Proxy model fitting: Limitations and acceptance 

When considering limitations in the fit of a proxy model, we should always have in mind the use of the 

model. A fitting issue may invalidate a proxy model’s use for one purpose but it may still be acceptable to 

use it for other calculations.  

The goodness of fit of the proxy models may be limited in a number of different ways. 

 Particular products/risks do not fit well.  This may be acceptable if they are not material. Poor fit 

for individual products may be satisfactory at entity level for an SCR calculation, but the model 

should be rejected for product level reporting.  Also firms should be wary of improving fit in some 

areas but not others, as this can distort the quality of fit higher up the hierarchy. 

 Poor fit at legal entity level could lead to misstated financial results, and must be rectified.  It is 

also likely to imply poor fit at other levels of the aggregation e.g. product level. 

 The quality of fit may differ at different regions of the Probability Distribution Forecast.  If the fit 

at extreme percentiles is poor, it may still be possible to use the model for calculations that involve 

more central percentiles, such as estimating balance sheet movements from short-term changes in 

risk factors.  

 The model may contain over-fitting to particular aspects.  For example, it may include lots of cross-

terms and be calibrated using a high volume of multi-dimensional points, however this may 

compromise fit for univariate risks at important points.  This could cause problems when 

monitoring individual risk exposures.  

The above points need to be taken into account in determining what constitutes model failure.  Indeed, there 

could be many forms of failure, and so it is important to clearly link the nature of the failure to the use of 

the model.  As a result, a proxy model may be accepted for certain uses but not others. 

Section 4.6.6 described the need for a firm to set tolerances for use in validation of their proxy model. If 

these tolerances are not met, the firm will want to try and remedy this, for example increasing the number 

of fitting points or manual intervention in any mathematical fitting exercise.  However, this will take time 

to do and with accelerated reporting cycles it is highly likely that this will not be possible within the 

timescales of results submission. One mitigant of this would be to conduct curve fitting exercises 'off-cycle', 

as described in the roll-forward section, so that such issues can be addressed in advance of the reporting 

cycle.   

It may be the case that the model fails for a particular use, for example the fit may be inadequate around 

the centre of this distribution, but well fit in the tails – perhaps because fitting has concentrated on that area.  

In such a case, the reasonable decision would be to accept the model for use in tail risk calculations, but not 
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more moderate stresses, such as one may apply when performing roll-forward calculations.  Subsequently, 

a firm may then consider recalibrating off-cycle to achieve a better fit in the middle of the distribution. 

 

Note that the reverse would likely present more problems i.e. inadequate tail calculations are likely to cause 

a problem in calculating an SCR in required timeframes.  In such a case, there are a range of options that 

could be considered to deliver a result in the time required and these are discussed in the next section. 

4.7.1 Mitigating a poor proxy model fit 

Above we described ways in which the fit of a proxy function may not meet a firm’s tolerances. We noted 

that it may not be possible to re-perform the fitting process within the reporting cycle. As such, this section 

outlines some ways in which a firm may mitigate a poor fit. 

4.7.1.1 Use a previous calibration 

It may be better to use a previous accepted calibration with roll-forward from that calibration date.  

However, one should be cautious with this as there may have been fundamental changes that have caused 

the failure for the latest calibration.  This would imply that the previous calibration may not be a suitable 

reflection of the risk exposures.  It may alternatively imply that there has been a mistake or otherwise poor 

choice in the latest fitting exercise, and it would be preferable to revert to the previous calibration.  Note 

that it should be possible to only re-use the failing proxy functions, rather than the full set.  Using historical 

calibrations moves us further from the 'live' position, so adequate out-of-sample testing should be performed 

on the 'rolled forward' loss functions (to the extent this is possible in the time provided). 

4.7.1.2 Adjust proxy model results 

One option is to apply an end-piece adjustment to the results of the proxy model to reflect the invalid fit, 

but this should be viewed only as a temporary solution and a firm should seek to rectify the underlying 

cause of poor fit in its subsequent development cycle. 

For example, a firm could adjust the previous calibration and results from that model, as well as use any 

other information available (such as Analysis of Movement or roll-forward information), to form a view on 

what the firm expects the result to be. This may be supplemented by prudent adjustments. 

4.7.1.3 Use out-of-sample results to improve fit 

Where an issue with proxy model fit is identified during in-cycle reporting, it would be desirable to use out-

of-sample results to improve the fit where it is possible to do so, as an alternative to running additional (or 

alternative) fitting scenarios. However, techniques for doing so, of which the Working Party is aware, are 

as follows: 

 Add the out-of-sample scenarios to the fitting set and recalibrate proxy functions.  However, the 

firm would need further out-of-sample points for validation, as using these additional points could 

potentially create new errors in other parts of the proxy model. 

 Include out-of-sample errors as an empirical proxy function (as described in section 4.5.3.2) within 

the proxy model. Evaluating this proxy function would estimate the error in each simulation which 

would be added to the results of the other fitted proxy functions.  This has the advantage of not 

requiring the firm to recalibrate its proxy functions, and hence not distorting areas of the curve 

which may be well fit.  However, the method requires the model to interpolate between the out-of-

sample points in order to estimate the loss for all other points.  Hence it may be a more appropriate 

method in areas where we have a higher concentration of out-of-sample points, for example around 

the 99.5th percentile. 
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 Use out-of-sample results to calibrate adjustments (for example a shift or scaling) to proxy 

functions, and apply these adjustments to the proxy functions used in the simulation. For example, 

if a linear relationship between out-of-sample errors and heavy model losses exists, a firm could fit 

a linear function using regression techniques. This function can then be applied as an adjustment 

to proxy function results in each simulation which reduces the effect of the error on average.  

 The mean error on out-of-sample scenarios in a particular region of the Probability Distribution 

Forecast could be added to estimates of quantiles in that region. For example, the mean error in the 

out-of-sample scenarios in the region of the SCR (i.e. scenarios within a particular percentile 

interval around the 99.5th percentile, for example 99.4th to 99.6th percentiles) could be added to the 

estimate of the SCR which was produced by a simulation approach, as an adjustment for bias in 

proxy functions at that point. 

4.7.1.4 True-up to biting scenario 

For the purposes of calculating Economic or Solvency Capital Requirements using a VaR approach, fitting 

errors could be addressed through a biting scenario run through the heavy models for part or all of the 

relevant business.  In this case, a firm would use their proxy model to determine the combination of risks 

which occur at the biting scenario, and evaluate that scenario in their heavy models. They could then apply 

an adjustment to the proxy model result equal to the difference between the results. In order to do this, a 

firm must be able to justify using the biting-scenario derived by its proxy model, particularly if it has not 

passed validation triggers. However, we note that this can be performed in addition to some of the other 

adjustments above to refine the fit. 

The unsmoothed biting scenario is the single scenario at the percentile of interest in the loss distribution. 

This may contain an extreme adverse stress in one particular risk, which is not representative of the overall 

combination of risks which leads to the capital requirements. This scenario may happen to have a poor fit, 

which is not representative of the quality of fit in the region of the percentile, and so any adjustment for 

fitting errors which is derived by considering the error at this single scenario may not be appropriate. 

It is therefore common to calculate a smoothed biting scenario, for example by averaging risk factors across 

a number of simulations around the percentile of interest. This scenario is more representative of the risks 

which combine to create the capital requirement; however, some risks (for example hedged risks where 

losses occur under both up and down risk factor movements) may average out to zero. This may mean that 

the smoothed scenario doesn’t contain a combination of risks which would result in the capital requirement. 

 

4.8 Addressing the communication challenges 

Section 4.3 outlined some key communication challenges with respect to using proxy models.  The above 

sections have described how proxy models can be designed, fitted and validated.  Building from that, Table 

4-6 below discusses how these communication challenges can be met: 

 

 

 

 

 

 



 

73 

 

Communication 

Challenge 
Response 

Additional layer of  

approximation 

 

It is helpful to provide a clear statement on why a proxy model has been employed, 

including an analysis against potential alternatives, such as model simplification or 

heavy model point grouping. It is also helpful to explain the sources of error this 

adds to the results, for example as set out in section 4.6.4. 

Model validation reports should be produced, which details the validation steps 

taken, and make solid conclusions about the appropriate uses of the model.   

Reporting to senior management should allow for any relevant compliance 

frameworks (such as Technical Actuarial Standards, regulatory reporting 

requirements, and stock market disclosure requirements) in making any limitations 

of the model and their implications clear. 

Understanding the 

potential error  

around the true  

result 

Senior management need to be aware that results from the proxy model will never 

replicate heavy model results exactly and so are subject to some degree of error.   

The potential error range can be indicated through: 

 Listing the main areas of uncertainty and providing sensitivities for 

plausible variations in these. 

 For proxy modelling, showing the validation results visually, for example 

as plots (section 4.6.9) and providing summary statistics. These indicate 

empirically the potential error that proxy modelling is adding. As discussed 

in section 4.3, individual errors in out-of-sample tests do not necessarily 

translate to SCR or quantile errors. It is helpful to provide illustrative 

quantile impacts of potential refinements to proxy functions which improve 

individual scenarios to illustrate this key point. 

We described the importance of agreeing thresholds for use in validating a proxy 

model calibration which will allow decisions on quality of fit to be made 

objectively. Reference to flow charts of the validation process can be useful for 

illustrating to stakeholders the steps performed for validation and any resulting 

actions taken, for example to improve aspects of poor fit. 

In some cases, it may be pertinent to state a potential range of error around a 

financial result in a written report. The firm should use their judgement to take a 

view on this based on the materiality of the potential error and the significance of 

the result in making any business decisions or before disclosing externally. 

Understanding 

statistics 

and curve fitting 

Senior management should be proactive in understanding a proxy model’s results 

and limitations. To facilitate this, they should be given access to specific training 

such that they can improve their understanding of proxy models, and how they 

impact the financial results being calculated. 

Firms should ensure that relevant validation reports, or reports on results, contain 

accessible information in relation to proxy models.  Conclusions drawn from 

statistical analysis should be made very clear. 

Range of proxy  

model uses 

To the extent that the firm intends to use its proxy model for multiple purposes, the 

firm should ensure that the model is validated for each purpose, and that the extent 

of this validation is made clear to senior management.  Areas where the model is 

found to be less accurate in the validation should be made clear to users for each 

potential use if the issues are not remediated before the model is used.  

As the true result will differ to some extent from the proxy result, the firm should 

investigate the differences and incorporate a feedback mechanism into future 

calibrations to continuously improve the model. 
Table 4-6: Communication challenges and responses  
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5 Conclusions 

5.1 One of the most fundamental choices to be made in the construction of any economic capital model 

is how to aggregate together the capital requirements for the individual risk factors and take account of the 

effects of diversification.  The correlation matrix approach to aggregation commonly adopted by UK life 

insurers under the ICAS Framework is unlikely to be adequate for some life insurers to meet the Solvency 

II requirements for use of a “full Probability Distribution Forecast”.  This has led some life insurers to use 

more sophisticated approaches to the aggregation of capital requirements in their Internal Model used to 

calculate the Solvency II SCR such as the “copula + proxy model” approach described in this paper. 

The aim of this paper was to provide UK life insurance actuaries with some examples of techniques which 

could be used to test and justify recommendations relating to the aggregation approach.  The paper includes 

some practical examples of how those techniques may be communicated effectively to stakeholders, but 

ultimately actuaries should choose techniques which are most appropriate to circumstances of the individual 

undertaking and the stakeholders involved.  For some stakeholders, graphical techniques provide a compact 

way of illustrating concepts and discussing alternative assumptions.  Such techniques may prove more 

effective in engaging stakeholders whilst avoiding unnecessary technical detail. 

 

5.2 For most UK life insurers, the limited volume of relevant data and the practicalities of modelling, 

parameterising and using a copula, means that the choice of the copula model has so far been limited in 

practice to the Gaussian or Student’s t model.  Each of these has its limitations for which the undertaking 

will have to allow when parameterising and using the model. For an individual undertaking, the specific 

choice comes down to prior beliefs and preference for modelling tail dependence explicitly or adjusting for 

it by making allowances within the parameterisation.  In section 3.5 we explained how the parameterisation 

of a Gaussian or Student’s t copula could be built up using a “bottom-up” approach.  We discussed several 

different techniques by which data could be used to inform the allowance made for tail dependence and the 

choices illustrated using graphical techniques.  All of these techniques have strengths and limitations. 

Ultimately it is a question of judgment, including the choice of copula, as to which method is most 

appropriate. 

Consideration must also be given to whether the resulting parameters are collectively reasonable and 

appropriate for the purposes for which they are used.  Section 3.15 provided several examples of “top-

down” validation tools such as peer review through expert judgement panels, sensitivity testing, scenario 

analysis and industry benchmarking.   

 

5.3 We briefly discussed the use of goodness of fit tests or model filters to validate the choice of copula 

model in Section 3.16.  Such tests may seem appropriate to demonstrate compliance with the statistical 

quality standards of Solvency II.  However, the lack of relevant data means that, in practice, they are likely 

only to be useful for sets of homogeneous risks where there is a relatively rich set of data (e.g. equity returns 

in different geographies). 

 

5.4 Proxy model designs can be influenced by the hierarchical structure or granularity of the model, 

constraints to diversification, tax impacts and associated risk factors.  Fitting the proxy model includes 

defining the objectives, selecting the form of the proxy function and choosing the fitting method either via 

regression or interpolation.  To validate a proxy model the actuary defines the validation scope and performs 

both in-sample and out-of-sample testing.  Communication of the suitability of the results can be done 

graphically by comparing the proxy model to the heavy model and communication challenges and how 

they can be addressed were presented. 
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5.5 Proxy modelling techniques, including copula-generated scenarios are not new, however they have 

seen a recent resurgence in their use in insurance, having been used previously in the banking industry as 

well as other non-financial applications. Advances in computing power also made it more feasible.  The 

method is relatively simple to develop and a number of providers market standard or tailored products to 

insurers. Of course, as we have seen, simulation techniques still present limitations, however they address 

some of the key limitations of the Correlation Matrix approach. Crucially they can produce a continuous 

Aggregate Loss Distribution of losses and they can point to a combination of risks that result in a certain 

amount of loss, relatively easily (sometimes referred to as “what-if” scenarios).  Finally, they should also 

aid in meeting “use-test” requirements of Solvency II. 

Simulation techniques also make more transparent the assumptions made implicitly in a Correlation Matrix 

approach and provide the user with greater flexibility to depart from them. Of course, simulation techniques 

in this area are relatively new in the industry, so probably no standard market practice has been established 

in a number of areas, but as its use continues to grow the costs of the copula+proxy model approach may 

fall over time. 
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A. Appendix  

A.1. Date used in illustrations 

Table A-1 shows the data set used in illustrations of statistical techniques. 

Risk Factor Data series Start Date End Date 

Equity (EQ) FTAS 30.04.1962 31.12.2014 

Credit (CR) 
Well-known proprietary index of 

option adjusted corporate bond spreads 
31.12.1996 31.12.2014 

Interest Rates 

GBP PC1 – first 

principal component 

of the UK gilt curve 

Derived from gilt curve spot rates 

obtained from Bank of England website 
31.12.1996 31.12.2014 

Table A-1: Assumptions and time periods used for the risk factors in our data set 

All analysis has been based on monthly increase in each risk factor during the period 31.12.1996 to 

31.12.2014 (i.e. 216 data points).   

 

A.2. Definition: Pseudo-observations 

Given a set of N observations of a 1-dimensional random variable {𝐗𝟏, … , 𝐗𝐍}, the set of pseudo-

observations {𝐘𝟏, … , 𝐘𝐍} is defined by setting 𝐘𝐢 =
𝟏

𝐍+𝟏
rank(𝐗𝐢) for 𝐢 = 𝟏, … , 𝐍. 

In other words, the pseudo-observations are the ranks of the random variables, scaled so that they take 

values in the interval (0, 1). 

It is usual to divide by (N+1) rather than N to obtain values which lie strictly between 0 and 1.  This 

avoids singularities when using pseudo-observations in certain applications (e.g. Maximum Likelihood 

Estimation). 

Where a random variable X takes vector values, the pseudo-observations are obtained by applying the 

transformation separately for each coordinate. 

 

A.3. Theoretical basis for approach based on higher rank invariants 

The approach of Shaw, Smith and Spivak (2010) is based on a Fourier expansion of the copula density 

function in terms of (shifted) Legendre polynomials.  In two dimensions, this takes the form: 

𝑐(𝑢, 𝑣) = ∑ ∑ 𝑟𝑖,𝑗�̃�𝑖(𝑢)∞
𝑗=0

∞
𝑖=0 �̃�𝑗(𝑣) for 0 ≤ 𝑢, 𝑣 ≤ 1 

 

Equation A-1 

where 𝑐(𝑢, 𝑣) is the copula density and �̃�𝑖 is the shifted Legendre polynomial defined on the interval [0,1].  

The latter is related to the standard Legendre polynomial 𝑃𝑖 defined on the interval [−1, 1] by the formula 

�̃�𝑖(𝑢) = 𝑃𝑖(2𝑢 − 1).  (For a definition of the 𝑃𝑖 see Appendix C of Hursey and Scott (2012), Smith and 

Sweeting (2011) or any standard textbook on approximation theory.)  The �̃�𝑖(u) �̃�𝑗(𝑣) form an orthogonal 

basis for the set of continuous functions on [0,1]2 with respect to the usual 𝐿2 inner product. The Fourier 

coefficients 𝑟𝑖,𝑗 are determined by the formula: 

𝑟𝑖,𝑗 = (2𝑖 + 1)(2𝑗 + 1) ∫ 𝑐(𝑢, 𝑣)�̃�𝑖(𝑢)�̃�𝑗(𝑣)𝑑𝑢
[0,1]2

𝑑𝑣 = (2𝑖 + 1)(2𝑗 + 1)𝔼[�̃�𝑖(𝑈)�̃�𝑗(𝑉)]  Equation A-2 
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It can be shown that 𝑟0,0 = 1 and 𝑟𝑖,0 = 𝑟0,𝑗 = 0 for 𝑖, 𝑗 > 0 – the latter being a consequence of the copula 

having uniform marginals.  

Thus 𝑐(𝑢, 𝑣) = 1 + ∑ ∑ 𝑟𝑖,𝑗�̃�𝑖(𝑢)∞
𝑗=1

∞
𝑖=1 �̃�𝑗(𝑣) i.e. the density function of the independence copula plus an 

additional term which introduces dependency.  The formula generalises in the natural way to higher 

dimensions. 

The Fourier coefficients 𝑟𝑖,𝑗 are uniquely determined by the copula and can be thought of as an array of 

characteristic values, analogous to the vector of moments of a one dimensional distribution. Smith and 

Sweeting (2011) define the rank invariant called “arachnitude” as: 

 𝜌((2𝐹𝑋(𝑋) − 1)2, (2𝐹𝑌(𝑌) − 1)2) where 𝜌 is Pearson’s (linear) correlation.   

The equivalent sample statistic is given by the formula 

arachnitude =  
45

4𝑁(𝑁2 − 1)(𝑁2 − 4)
[∑(2𝑅𝑘 − 𝑁 − 1)2(2𝑆𝑘 − 𝑁 − 1)2 −

𝑁(𝑁2 − 1)2

9

𝑁

𝑘=1

] 

 

Equation A-3 

 

where the {𝑅𝑖} and {𝑆𝑗} are the ranks of the sample data {𝑥𝑖} and {𝑦𝑗}.  Arachnitude takes values between  

-1 and 1 and is large when extreme high or low values of X tend to coincide with extreme high or low 

values of Y.  It is therefore a measure of dependency along both diagonals rather than just along the 45 

degree ray as in the case of tail dependence. 

The Fourier coefficients of the copula and the rank statistics are related by the following formulae: 

       
𝑟1,1

3
  =  Spearman′s rank correlation 

 

Equation A-4 

  

𝑟2,2

5
 =  arachnitude                        

Equation A-5 

 

  

 

  



 

83 

 

B. Appendix – Extracts from Solvency II Delegated Regulation 2015/35 

Article 228 

Probability distribution forecast 

1. The probability distribution forecast underlying the internal model shall assign probabilities to changes 

in either the amount of basic own funds of the insurance or reinsurance undertaking or to other monetary 

amounts, such as profit and loss, provided that those monetary amounts can be used to determine the 

changes in basic own funds. The exhaustive set of mutually exclusive future events, referred to in 

Article 13(38) of Directive 2009/138/EC, shall contain a sufficient number of events to reflect the risk 

profile of the undertaking. 

2. Insurance and reinsurance undertakings shall calculate the probability distribution forecast of a partial 

internal model at the highest level of aggregation of the components of the partial internal model. If a 

partial internal model consists of different components which are separately calculated and not 

aggregated within the partial internal model, the probability distribution forecast shall be calculated for 

each component. 

Article 230 

Information and assumptions used for the calculation of the probability distribution forecast 

1. Information shall only be considered credible for the purposes of Article 121(2) of Directive 

2009/138/EC where insurance and reinsurance undertakings provide evidence of the consistency and 

objectivity of that information, the reliability of the source of information and the transparency of the 

method by which that information is generated and processed. 

2. Assumptions shall only be considered realistic for the purposes of Article 121(2) of Directive 

2009/138/EC where they meet all of the following conditions: 

(a) insurance and reinsurance undertakings are able to explain and justify each of the assumptions, 

taking into account the significance of the assumption, the uncertainty involved in the assumption 

and why the relevant alternative assumptions are not used; 

(b) the circumstances under which the assumptions would be considered false can be clearly identified; 

(c) insurance and reinsurance undertakings establish and maintain a written explanation of the 

methodology used to set those assumptions. 

Article 234 

Diversification effects 

The system used for measuring diversification effects referred to in Article 121(5) of Directive 

2009/138/EC shall only be considered adequate where all of the following conditions are met: 

(a) the system used for measuring diversification effects identifies the key variables driving 

dependencies; 

(b) the system used for measuring diversification effects takes into account all of the following: 

(i) any non-linear dependence and any lack of diversification under extreme scenarios; 

(ii) any restrictions of diversification which arise from the existence of a ring-fenced fund or 

matching adjustment portfolio; 

(iii) the characteristics of the risk measure used in the internal model; 

the assumptions underlying the system used for measuring diversification effects are justified on an 

empirical basis. 
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