

Agenda

Which elements of Solvency II are changing?

Summary of the key changes in basis

Current Basis	Solvency II
UPR	Premium provision
Undiscounted	Discounted
Margin for prudence	No margin for prudence
No risk margin	Risk margin
Limited latent claims allowance	"All possible" claims included
ULAE	ULAE + overheads + investment costs
Incepted contracts	Legal obligation basis
Deterministic methods	Cashflow basis - possibly stochastic

Lloyd's Dry Run includes qualitative and quantitative returns during 2011

What and when?

- Year-end 2010 TPs submitted on 27 May
- full feedback packs in August
- Year-end full standard formula recalculation received 29 July - agent specific feedback packs in September
- Half-year 2011 and projected 2011 year-end TPs by 30 September
- feedback by end of November
- TPD and GQD data due by 30 November

The results confirm the impact is significant ...

Source: yle 2010 SRD and May 2010 TP submissions
Note: excludes some syndicates so that a like for like comparison can be made
Note: Solvency II TPs include estimated risk margin of 10%

but do look closely at the overall balance sheet before making firm conclusions

	Mar ket Total			
Anal ysis of Technical Provisions and Impact on Bal ance Sheet (£m)	Current Basis	Sol vency II Basis	Changefrom Cur rent Basis	\%change
Net Technical Provisions	35,422	28,123	$(7,299)$	(21\%)
Net Premium Debtor s*	$(2,612)$	(238)	2,375	(91\%)
Defer red Acquisition Costs	$(2,348)$	-	2,348	(100\%)
Net technical provisionsless pr emium debt or s and DAC	30,462	27,885	$(2,577)$	(8\%)

Note: table above shows liabilities with a positive sign and assets with a negative sign

* Net premium debtors are calculated as insurance and intermediary recoverables less reinsurance accounts payable
- "Real" impact is much lower allowing for asset movements
- direct impact on Solvency position
- need to ensure consistency with any Internal Model

Practical challenges have emerged
 - the usual suspects

- The same issues are fast becoming the "usual suspects" for TPs:
- segmentation
- currencies
- cashflows
- binary events
- contract boundaries
- expenses
- risk margins

- And remember data challenges will underlie all points!

Agenda

- Background
- Lloyd's Dry Run
- Practical Examples
- Binary Events
- Risk Margin
- Reinsurance cashflows
- Half-year versus Year-end
- Summary \& Questions

Binary Events

- "All possible future outcomes" so binary events are required
- not just a Lloyd's requirement
- although not much airtime outside Lloyd's
- Methods difficult by definition ("unknown unknowns")
- so will always be subjective / based on expert judgement
- but do try to be explicit
- Possible approaches
- uplifts based on effect of truncating distributions
- scenario-type approaches
- One of Lloyd's worked examples follows:

Overview of proposed method

Fit a distribution to the claims and then assume truncated

- Use expert judgement and data available to fit an assumed "true underlying" claims distribution
- Calculate the impact on the mean of truncating the "true underlying" distribution to an assumed level
- e.g. 99.5\% level
- Derive the uplift to the ultimate losses based on the two mean ULRs

- Fitted "true underlying":
- LogNormal (-0.2, 0.8);
- Mean = 113.1\%; SD = 107.7\%
- Truncated Mean = 109.3\%
- Uplift Percentage = 3.45\%

Apply the uplift to the reserves

- but assume a decay
- Assumption
- decay uplift on ultimate claims by 15% for each year of account prior to the latest modelling year (decay varies by class) to account for lower likelihood of binary event
- Derive reserve loading required to uplift ultimates to level required for each year of account
- apply these uplifts to the future claims
- Can conduct a similar exercise for reinsurance or net losses

Dir ect Worker s Compen sat ion (USD)			
Reserves	Run-Down Factor	Unadjusted	Adjusted
1993	5%	122.6%	101.2%
1994	6%	112.8%	100.8%
1995	7%	119.7%	101.5%
1996	9%	120.3%	101.8%
1997	10%	120.1%	102.1%
1998	12%	118.2%	102.2%
1999	14%	116.7%	102.4%
2000	17%	108.3%	101.4%
2001	20%	105.9%	101.2%
2002	23%	104.9%	101.1%
2003	27%	105.4%	101.5%
2004	32%	105.4%	101.7%
2005	38%	104.1%	101.6%
2006	44%	104.2%	101.8%
2007	52%	103.7%	101.9%
2008	61%	103.6%	102.2%
2009	72%	103.5%	102.5%
2010	85%	103.6%	103.1%
2011			
Unincepted)	100%	103.4%	103.4%

What have we seen on binary events

- Market average results
- closer to those in Lloyd's first detail guidance paper (i.e. 5\%)
- looks on the high side?
- but is it only moving capital into TPs anyway?

Binary Events included within Technical	Net BE (undisc, excl expenses) (£m)	Net Binary Events $(£ \mathbf{m})$	Binary Events $\%$
Provisions for Lloyd's top 6 classes	7,859	314	4.0%
Maneral liability	3,407	185	5.4%
Fire and other damage to property	3,205	167	5.2%
Non-proportional casualty	2,659	163	6.1%
Non-proportional property	2,245	166	7.4%
Non-proportional MAT	1,434	59	4.1%
Other	2,871	124	4.3%
TOTAL	$\mathbf{2 3 , 6 8 0}$	$\mathbf{1 , 1 7 8}$	$\mathbf{5 . 0 \%}$

Please do remember:

this is only one approach!

- This is an example of one possible approach based on several subjective assumptions
- Results are very sensitive to:
- amount and credibility of data
- choice of distribution

Distribution	Pareto	LogNormal
Uplift to ultimate claims	100.5%	103.4%

- assumed amount of observable data

Unknown' Percentile	99.0%	99.5%	99.9%
Uplift to ultimate claims	106.3%	103.4%	100.6%

- uplift decay over time

Decay over time	10%	15%	30%
1993 Uplift to Reserves	103%	101%	100.04%

- Need to derive own methodology which is appropriate for your business - and validated and documented

Risk Margin

- "Simplification 3" was extensively used in QIS5 Rerun
- quantify SCR for Risk Margin purposes (excluding avoidable Market Risk and Type 2 Counterparty Default Risk)
- run off in line with best estimate
- Originally method was potentially applied "blindly"
- need to consider the risk margin more carefully
- Proposed:
- calculate element of SCR which is to be run-off
- for current obligations transferred to "reference undertaking" (reserving risk, operational risk and counterpart default risk)
- also allowance for unexpired exposures between t_{0} and t_{1} (Premium risk, Catastrophe Risk)

Reinsurance cashflows

- Reinsurance cashflow will tend to be different to gross
- but by how much?
- Calculating the patterns
- net/gross ratios would imply a link to gross
- or use net projections?
- Decision tree could be:
- do I have to do anything specific?
- if so would a link to the gross patterns be appropriate?
- can "shift" or "stretch" patterns - or a combination of the two
- Materiality is a key consideration
- The following exhibits demonstrate some of the concepts:

Tends to be "easy" for short tailed classes with low reinsurance reliance.....

... but not the case when patterns diverge or reinsurance reliance increases

Materiality is probably the best place to start

 - for example when do you get a 5\% difference?| | | Short Tail Class: Net Discounted Future Claims Payments Impact of differences in the R// payment pattern from the gross payment pattern of 11.5 years (R/I $=20 \%$ of Gross) | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Length of pattern (years) | | | | | | | | | | |
| | | 11.5 | 12.0 | 12.5 | 13.0 | 13.5 | 14.0 | 14.5 | 15.0 | 15.5 | 16.0 | 16.5 |
| | 0.0 | 100.0 | 100.1 | 100.3 | 100.4 | 100.5 | 100.6 | 100.7 | 100.9 | 101.0 | 101.1 | 101.2 |
| | 0.5 | 100.7 | 100.8 | 101.0 | 101.1 | 101.3 | 101.4 | 101.6 | 101.7 | 101.9 | 102.0 | 102.2 |
| | 1.0 | 101.0 | 101.1 | 101.3 | 101.5 | 101.6 | 101.8 | 101.9 | 102.1 | 102.3 | 102.4 | 102.6 |
| | 1.5 | 101.3 | 101.5 | 101.6 | 101.8 | 102.0 | 102.1 | 102.3 | 102.5 | 102.7 | 102.8 | 103.0 |
| | 2.0 | 101.6 | 101.8 | 102.0 | 102.1 | 102.3 | 102.5 | 102.7 | 102.9 | 103.1 | 103.2 | 103.4 |
| | 2.5 | 101.9 | 102.1 | 102.3 | 102.5 | 102.7 | 102.9 | 103.0 | 103.2 | 103.4 | 103.6 | 103.8 |
| | 3.0 | 102.2 | 102.4 | 102.6 | 102.8 | 103.0 | 103.2 | 103.4 | 103.6 | 103.8 | 104.0 | 104.2 |
| | 3.5 | 102.5 | 102.7 | 103.0 | 103.2 | 103.4 | 103.6 | 103.8 | 104.0 | 104.2 | 104.4 | 104.6 |
| | 4.0 | 102.8 | 103.1 | 103.3 | 103.5 | 103.7 | 103.9 | 104.2 | 104.4 | 104.6 | 104.8 | 105.0 |
| | 4.5 | 103.1 | 103.4 | 103.6 | 103.9 | 104.1 | 104.3 | 104.5 | 104.8 | 105.0 | 105.2 | 105.4 |
| | 5.0 | 103.5 | 103.7 | 103.9 | 104.2 | 104.4 | 104.7 | 104.9 | 105.1 | 105.4 | 105.6 | 105.8 |
| | | Long Tail Class: Net Discounted Future Claims Payments Impact of differences in the R/I payment pattern from the gross payment pattern of 17.5 years (R/I = 60\% of Gross) | | | | | | | | | | |
| | | Length of pattern (years) | | | | | | | | | | |
| | | 17.5 | 18.0 | 18.5 | 19.0 | 19.5 | 20.0 | 20.5 | 21.0 | 21.5 | 22.0 | 22.5 |
| | 0.0 | 100.0 | 101.3 | 102.5 | 103.5 | 104.7 | 105.9 | 107.1 | 108.1 | 109.2 | 110.3 | 111.2 |
| | 0.5 | 103.4 | 104.8 | 106.1 | 107.2 | 108.4 | 109.7 | 111.0 | 112.1 | 113.2 | 114.4 | 115.4 |
| | 1.0 | 105.3 | 106.7 | 108.0 | 109.1 | 110.4 | 111.7 | 113.0 | 114.1 | 115.3 | 116.5 | 117.5 |
| | 1.5 | 107.1 | 108.6 | 110.0 | 111.1 | 112.4 | 113.7 | 115.1 | 116.2 | 117.4 | 118.6 | 119.6 |
| | 2.0 | 109.0 | 110.5 | 111.9 | 113.1 | 114.4 | 115.7 | 117.1 | 118.3 | 119.5 | 120.7 | 121.8 |
| | 2.5 | 110.9 | 112.4 | 113.8 | 115.0 | 116.4 | 117.7 | 119.1 | 120.3 | 121.6 | 122.8 | 123.9 |
| | 3.0 | 112.7 | 114.3 | 115.7 | 117.0 | 118.3 | 119.8 | 121.2 | 122.4 | 123.7 | 124.9 | 126.0 |
| | 3.5 | 114.6 | 116.2 | 117.7 | 118.9 | 120.3 | 121.8 | 123.2 | 124.4 | 125.8 | 127.0 | 128.1 |
| | 4.0 | 116.5 | 118.1 | 119.6 | 120.9 | 122.3 | 123.8 | 125.3 | 126.5 | 127.8 | 129.2 | 130.3 |
| | 4.5 | 118.3 | 120.0 | 121.5 | 122.8 | 124.3 | 125.8 | 127.3 | 128.6 | 129.9 | 131.3 | 132.4 |
| | 5.0 | 120.2 | 121.9 | 123.5 | 124.8 | 126.3 | 127.8 | 129.3 | 130.6 | 132.0 | 133.4 | 134.5 |

Half-Year vs. Year-End valuations: what might be different?

This is what we expected...

Element	Compared to year-end
Margins + 100\% UPR	Higher
Future Premiums	Higher
Unincepted business	Lower
Expenses	Lower (less Acq. costs)
Binary events	Similar
Discounting	Similar
Risk Margin	Similar

and here are the results

Source: May and September 2011 TP submissions to Lloyd's, QMA data
*Economic basis includes removal of profit in UPR, claims from unincepted business and removal of margins
** Syndicate risk margins were not collected as at year-end 2010. Lloyd's has therefore included a 10% risk margin (based on the QIS5 results) so that the overall change can be analysed.

Remember: the impact does vary significantly between syndicates

* Source: September and May 2011 TP submissions to Lloyd's

Agenda

Summary and Questions

- The change in basis for Solvency II technical provisions is marked
- There will be many challenges
- both methodological and practical
- try to test approaches as much as you can
- only then will most "practical" issues emerge
- $5^{\text {th }}$ time for market and we're still tuning methods
- Data will always play a part - don't leave until the end
- Remember to look at all angles
- for example consider half-year vs year-end differences
- And of course, it is still a moving target !!
- maintain a flexible approach as requirements continue to evolve

The views expressed in this presentation are those of the presenter

