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Summary 

In recent years, neural networks have been having a wide range of applications. In 
particular, the unsupervised neural networks are designed to implement clustering 
techniques. In this paper we apply a two-stage Kohonen Self-Organising Map to collect 
the basic classes of one tariff variable in clusters. In this procedure we take advantage 
of the topology preservation property of the Self-Organising Maps in order to build 
tariff classes containing contiguous values of the tariff variable. 
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1. Introduction 

In recent years Neural Networks (NN) have been having a wide spread of applications 
in many different fields: from signal and image processing in engineering to the 
exchange rates forecast and other financial applications in economics. Also the 
actuaries are taking interest into possible applications of NN in actuarial practice. J.A. 
Lowe and L.M. Pryor [16] have reported on the application of supervised NN in 
underwriting, since this type of NN is specifically designed to deal with models 
representing a set of information from which some sort of predictions are derived. 
This paper is concerned with unsupervised neural networks. As the supervised NN are 
connected to statistical models for predictions, the unsupervised NN are connected to 
cluster analysis techniques. In [8] some types of unsupervised NN have been applied to 
collect the values (basic classes) of one tariff variable into tariff classes; it has been 
showed how these techniques allow the implementation of partitioning methods of 
cluster analysis, which produce appreciable results in the applications and in 
comparison with the traditional actuarial methods. 
In this paper, we still deal with the clustering problem of collecting the basic classes of 
one tariff variable in clusters. In particular we investigate the possibility of taking 
advantage of a topological property of Kohonen Self-Organising Maps in order to build 
tariff classes containing contiguous values of the tariff variables. 
An outline of the paper is the following. 
In Section 2 we recall, following the discussion in [7], the methods proposed by H. 
Dickmann and by K. Loimaranta et al. to determine the tariff classes by means of a 
hierarchical clustering method and a non-hierarchical method of mixtures respectively. 
In Section 3 we briefly describe two neural network algorithms frequently used in 
clustering problems: Simple Competitive Learning and Kohonen Self-Organising Map. 
Sections 4 is devoted to an application of the algorithms described in Section 3 to 
collect in clusters the values of the tariff variable “age of the insured” in a motor 
vehicle insurance portfolio. 
In Section 5 the topology preservation property of the Self-Organising Maps is 
exploited to collect the basic classes described by the age of the insured in a motor 
insurance portfolio in clusters formed by contiguous values of the tariff variable. 
In Section 6 some final remarks and suggestions for further investigations are resumed. 

2. Clustering methods proposed for the determination of tariff classes. 

The basic classes can be seen as objects that have to be joined together according to the 
values of the characteristic variable, from this point of view the problem of 
determining the tariff classes can be seen as a clustering problem. 
Since the observed values of the characteristic variable in each basic class arise from 
observations on risks with different exposures, these values are not immediately 
comparable by means of the similarity or dissimilarity measures considered in 
traditional clustering procedures. Therefore, in the actuarial literature some clustering 
techniques have been implemented in order to take account of the exposures of the 
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basic classes as well (see [7] for a review). 
In particular, the method proposed by H. Dickmann is a hierarchical agglomerative 
clustering method in which, at the beginning, each basic class is viewed as a group 
containing one object and, at each stage, the merging of two groups is done if it 
minimises the increase of the total within-cluster variance. The procedure is repeated 
until all basic classes are located in one cluster. 
For a short description of the algorithm, let us consider a single stage with the basic 
classes joined together in K clusters. Let 

be the number of basic classes located in cluster k; 
be the observation of the characteristic variable with respect to the i-th 
basic class located in cluster k; 
be the value which reflects the exposure of the i-th basic class located in 
cluster k (e.g. the number of observed policy-years); 

be the total exposure in cluster k. 

Define the within-cluster variance for cluster k as: 

where 

It is important to note how the definition of within-cluster variance allows to take 
account of the different exposures of the basic classes. 
Then the total within-cluster variance with K clusters is defined as: 

where 

and we pass from K to K-l clusters by merging two of the existing clusters so that the 
increase of the within-clusters variance is minimum. 
Another method has been proposed by K. Loimaranta, J. Jacobsson & H. Lonka and it 
consists in a non-hierarchical method of mixtures. 
It is assumed that the N basic classes belong to K clusters and that the characteristic 
variables are independent random variables with probability distribution a mixture of K 
distributions, one for each cluster. 
More precisely, let be the random characteristic variables of the N basic 

classes and their observations. are assumed to be independent and 
is distributed as: 
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where 

is a value which reflects the exposure of the basic class i; 
are parameters to be estimated; 
is the k-th weight in the mixture and can be seen as “a priori” probability 

that a basic class is located in cluster 

is the probability distribution of the characteristic variable conditionally 
to the belonging of the basic class i to the cluster k and dependent on the 
exposure t . 

The posterior probability for the i-th b asic class to belong to the k-th cluster can 

be derived: 

After assigning the “a priori” probabilities and estimating the 

parameters by the maximum likelihood method, the posterior probabilities 
can be estimated. As long as the probability distribution 

is “sufficiently” concentrated on the value k, then the i-th basic 

class will be clearly allocated in cluster k . 
It is interesting to note how, in this method, the different exposures have been dealt 
with by means of the probability distributions. 
Another important class of cluster analysis techniques is known as partitioning 
methods (among which the well-known k-means algorithms). In these methods the 
number of the clusters K is fixed in advance or, in some variants, determined through 
the procedure. Moreover, unlike the hierarchical techniques, they allow the relocation 
of the objects. In this way, bad initial partitions can be improved. Most of these 
techniques consist of two distinct procedures: 
- the determination of au initial allocation of the objects into the clusters; 
- the relocation of some or all of the objects in the clusters. 
An essential feature of these methods is the calculation of the centroids of the clusters. 
Many clustering algorithms have been proposed; among them those proposed by E.W. 
Forgy, by J.B. MacQueen and a variant of the latter method (see [l]) are reported in 
[8]. 
K. Loimaranta et al. ([15]) stated that, in their opinion, as far as the determination of 
tariff classes is concerned, a method that searches for the optimal partition could be 
preferred to a hierarchical clustering technique. However, partitioning methods face the 
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difficulty of considering the exposures of the basic classes. 
In [8], the Authors discussed some techniques, in a NN framework, by which some 
partitioning algorithms can be implemented in a more flexible environment, allowing 
the exposures to be managed as well. 

3. Self-Organising Map and Simple Competitive Learning. 

In [12] T. Kohonen introduced an unsupervised technique to construct topology- 
preserving mappings from an input space into a low dimensional lattice (usually a one- 
or two-dimensional array of units). This algorithm is implemented by means of a 
neural network, called Self-Organising Map (SOM), whose vertices (units or neurons) 
are disposed into two layers. The first layer consists of the input units, the second one 
of the output units and there are connections linking each input unit with each output 
unit. 
Let, in a general case, n be the number of input units and K be the number of output 
units. Each input unit represents a real number, so that the array of input units 
represents an input vector in be the set of the output units 
forming the lattice. To each connection between the input units and the output units a 
real number called weight is associated. 
Let 

d be a distance in 
d be a distance in the lattice; 

£ be a family of positive non-increasing real functions defined on R+, where t is 
a real non-negative number and 
be the weight corresponding to the connection between the input unit i and the 

output unit j. 

Each output unit can be represented by the weight vector 
The network is used to classify a set of data in clusters. We will suppose to have a set 
S (input space) of N input vectors (real vectors of ) denoted by 
which have to be classified in clusters. If we present a vector of data to the 
network, it can be compared with all the weight vectors. We call winner unit, 
c = c(x), the output unit satisfying the condition 

(3.1) 

The SOM algorithm ([1O], [12], [13] carries out a vector classifier according to the 
criterion (3.1). In order to minimise the number of misclassifications, the algorithm 
updates the weights of the network by means of a learning rule (step 4 in the following 
description of the algorithm). 
More precisely, denoting by mj(t) and x(t) the weight vectors at time t and the input 
vector presented at the same time respectively, the SOM algorithm consists of the 
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following steps. 

Self-Organising Map algorithm 

I. put t =O and initialise the vectors mj(0) (j = 1,. . . K) ; 
2. choose an input vector x(t) E S ; 

3. find the index c such that 

4. update the weight vectors according to the rule 

5. stop if the stopping rule is satisfied; 
otherwise replace t with t + 1, go back to step 2 and repeat for the next input vector. 

Usually, the term a(t) (learning rate factor) is a positive non-increasing function oft 
and a(0) is chosen not too far from 1 (typically 0.8). 
Also h1 is a non-increasing function and, as a consequence, the weights of the units of 

the lattice close to the winner unit and those of the winner unit itself are changed 
significantly. On the other hand, weights of units placed further away from the winner 
unit are not updated appreciably. 
At the end of the learning process the network is able to classify the input vectors: 
input vectors that make winner the same output unit belong to the same cluster and the 
corresponding weight vector can be chosen as “representative” of the cluster itself. 
Clearly, different runs of the algorithm can produce different results. 
The choice of the functions h1 is crucia1 for another important feature of the SOM 

algorithm, namely the property of topology preservation. Essentially, after the 
convergence of the algorithm, the input vectors that are close in the input space are 
assigned to clusters represented by output units which are close in the lattice (see [6] 
for a formal definition of this property). A well-known function, widely used in the 
applications, is the gaussian function: 

where a is a decreasing function and o(O) is large enough. 
In the very specific case when 

h1(r)= 
1 ifr=O 
0 ifr O 

that is if, at each time t, only the weight vector of the winner unit is updated, the so 
called Simple Competitive Learning (SCL) algorithm is implemented. It is important to 
note that in this case the topology preservation property is no more in force. A 
thorough discussion on SCL can be found in [10], where also the strong relationship 
between SCL and k-means is pointed out. 
In the SCL algorithm, the training is continuous, since the weights are updated after the 
presentation of each pattern (see step 4 of the SOM algorithm). Nevertheless, there 
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exists also a batch version of the same algorithm, known as Linde-Buzo-Gray (LBG) 
algorithm of Vector Quantisation ([14]), where the weights are updated after all 
patterns have been presented. 
The Vector Quantisation algorithm has been originally designed for encoding/decoding 
processes in data compression. An unified framework of this algorithm and of most of 
its variants can be found in [3]. As pointed out in [3] and [17, if we denote by 
ph (h = I,..., N) a probability distribution over the input space Sand the input vectors 
are selected according to this probability distribution, the LBG algorithm converges to 
a local minimum of the quantity (average distortion) 

Note that, from an essentially practical point of view, continuous training is frequently 
preferred to batch training, because the random presentation order of the input vectors 
can help to avoid poor local minima (see [9] at page 168). 
In [8] it has been emphasised how a suitable definition of the probability distribution 
Ph (h = l,..., N) over the input space S of the basic classes allows to implement, by 
means of these algorithms, a partitioning method of cluster analysis which allows to 
take account of the different exposures of the basic classes. This can be done by 
defining 

(3.2) 

where th is the exposure of the basic class h. 
It must be noted that, despite the extensive use of SOMs, the mathematical theory of 
Kohonen’s algorithm is so far unsatisfactory. A review on main results can be found in 
[4]. See also [2] and [19] for a wide investigation of the connections between neural 
networks and pattern recognition. 

4. An example 

In this Section we present an application of the algorithms described in Section 3 to the 
data in Table 4.1, where the claim frequencies in a motor vehicle insurance portfolio 
are reported. 
The basic classes arc the ages of the policyholders and we want them to be collected in 
clusters according to their claim frequencies. We assume the relative exposures (3.2) as 
probability distribution on the basic classes and we apply both SCL and SOM 
algorithms. 
In Figure 1, the claim frequencies and the relative exposures of the basic classes are 
depicted. 
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Table 4.1: Policy-years (exposure) and relative and absolute claim frequencies in automobile 
insurance for different policyholder’s ages. 

AGE EXPOSURE CLAIM No Of 
FREQUENCY AGE EXPOSURE CLAIM No OF 

CLAIMS CLAIMS 
18 23 91.01 0.252706 57 219 2073.21 0.105633 

593:24 
1266,33 
1939,81 
2156,65 
2566,41 
2724,07 
2832,83 
2974,93 
3132,37 
3177.66 
3311,80 
3431;&!a 
3418,68 
3317,40 
3087.49 
3168,45 
3016.52 
2968,79 
2860.14 
2794,1O 
2831,ll 
2727,02 
2819,13 
2772,79 
2582,16 
2605,99 
2737,60 
2660,50 
2764,65 
2656,79 
2728,08 
2099,79 
2103,36 
2171,34 
2068,38 
2056,44 

0,190480 
0,207686 
0,157748 
0.174345 
0,141053 
0,143535 
0,128847 
0,129078 
0.308225 
0.107934 
0.100851 
0.095283 
0.089801 
0,091035 
0,09!X88 
0,094683 
0.079893 
0,085557 
0,085311 
0,080527 
0,083OC6 
0.083974 
0.080521 
0,088359 
0.080166 
0,100921 
0.106297 
0,092a40 
0,098385 
0,099368 
0,113267 
0,094771 
0.100316 
0,115136 
0,107331 
0,104550 

58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 

187 
174 
168 
132 
146 
133 
1.11 
122 
107 
98 
89 
80 
82 
92 
64 
60 
57 
44 
24 
15 
15 
16 
15 
10 
14 
8 
6 
1 
5 
3 
0 
1 
1 
0 
1 
0 
0 
3 

1746,44 
1714.64 
1637.98 
1496,30 
1450,78 
1442,04 
1390.82 
1329,39 
1135,92% 
1035,29 
990,80 
922,72 
83855 
787.63 
690,74 
590,56 
539.82 
434.87 
234.06 
177.68 
150,75 
171,77 
160,90 
122,52 
89,25 
66,34 
57,26 
44.51 
21,96 
22,47 
12,52 
12,71 
11,26 

7.00 
4,84 
2.90 
6,66 

0,107075 
0.101479 
0,102565 
0.088100 
0,100636 
0.092230 
0,079809 
0.091771 
0.094197 
0,094660 
0,089827 
0,086700 
0‘097707 
0,104110 
0,092655 
0,101599 
0,105592 
0.101179 
0.102537 
0,084421 
0.099502 
0,093149 
0.093229 
0,081620 
0,156859 
0,120589 
0,104794 
0,022465 
0,227728 
0,133523 
0.000000 

19 113 
20 263 
21 306 
22 376 
23 361 
24 391 
25 365 
26 384 
27 339 
28 343 
29 334 
30 327 
31 307 
32 302 
33 280 
34 300 
35 241 
36 254 
37 244 
38 255 
39 235 
40 229 
41 227 
42 245 
43 207 
44 263 
45 291 
46 247 
47 272 
48 264 
49 309 
50 199 
51 211 
52 250 
53 222 
54 215 
55 230 2221&l 0,103527 
56 203 2183.59 0,092966 

(Data provided by an Italian Insurance Company ) 

0:078647 
0.08826 

0,206782 
0,000000 
0,000000 

95 33.14 0,090528 
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To perform the experiments, we used Matlab version 4.2c.l and the Neural Network 
Toolbox version 2.0b ([5]). For this purpose we had to modify the programs provided 
in the Toolbox. Among the main modifications, we mention here the implementation, 
in the SCL procedure, of the following recursive formula to assign an individual 
learning rate to each weight vector 

where a(r) is the learning rate at time t and c is the winner unit at the same time; in 
this way, in every training cycle, only the learning rate corresponding to the winner unit 
c is updated. A discussion on this topic and on the choice of an “optimal" learning rate 
can be found in [13]. 
Other substantial modifications of the original SOM procedure are the provision of the 
gaussian function and of the following formulas for a and , as suggested by H. 
Ritter and K. Schulten (see [9] at page 114) 

where t is the maximum value for t (fixed in advance) and are 
the fixed initial and final values of a and respectively. 
In all the experiments proposed here, both the distances d and d' are Euclidean. The 
initial values of the weight vectors were assigned by means of the " random guess 
method”, that is by choosing them randomly in the “right” domain, according to the 
values of the input vectors. Besides, as suggested by several authors, the algorithms 
were stopped after a quite large number of iterations. 
Analogously to the traditional partitioning methods of cluster analysis (e.g. k-means) 
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we obtain different partitions of the basic classes depending on the stated number of 
clusters (output units) K. Therefore, a problem arises: a criterion to decide how many 
clusters should be considered. 
In [l8] it has been applied for this purpose, the method proposed by H. Schmitter and 
E. Straub ([2O]) (S-S method) to find the “best” subdivision of an insurance portfolio 
in tariff classes. They assumed the existence of a “natural subdivision” and derived two 
statistics to single out this subdivision, or possibly the “closest” one from a set of 
“admissible subdivisions” (the “admissible subdivisions” are a subset of all the 
subdivisions of the portfolio, which can be actually considered for practical and 
commercial reasons). 
From the two statistics a practical decision rule is derived but, to be applied, 
observations of the characteristic variables of the basic classes over a certain number of 
years are required. 
Since we have observations over one year only, following [7] we calculate for each of 
our “admissible subdivisions” the following statistics: 

where 

is the number of clusters of the g-th subdivision, 

is the total exposure of the k-th cluster of the g-th 
subdivision, 

is the total exposure, 

is the mean of the characteristic variable of the basic classes 
located in the k-th cluster of the g-th subdivision, weighted 
with their exposures, 

and 

The practical decision rule, as reported in [7], is: 

choose the subdivision g that shows the highest value of W among 
those with the highest T values. 

However, the subdivision with the highest value of T will be discarded if another 
subdivision with a slightly lower value of T and with a higher value of W can be 
formed joining some clusters of the former subdivision. 
In [7] it is also noted that, although the method is clear and valuable, since a good 
subdivision of the basic classes in clusters should reflect the heterogeneity of the 
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portfolio, the decision rule cannot ensure to find the natural subdivision. In fact it could 
not belong to the family of “admissible subdivisions” which are tested. Moreover, 
since in practical situations the boundary among the clusters may be rather vague, it 
could not be identified by the decision rule. 
In Table 4.3 we report the best results obtained by means of the SCL algorithm in 
several trials carried out with different numbers of output units and various initial 
learning rates. 
To simplify the description of the obtained clusters, the basic classes and the claim 
frequencies, ordered by the latter, are reported in Table 4.2 
The subdivisions reported in Table 4.3 (and in the following analogous tables) refer to 
the order in the data: e.g. (5 3 6 26 33 5) characterises the subdivision where the 
first cluster contains the first five elements in Table 4.2 (ages: 18, 86, 20, 92 and 19), 
the second cluster contains the following three elements (ages: 22,21 and 82), etc. 

Table 4.2 Policyholder’s ages and relative claim frequencies (ordered by claim 
frequencies). 

CLAIM 
AGE FREQUENCY 

0,252706 18 
86 
20 
92 
19 
22 
21 
82 
24 
23 
87 
26 
25 
83 
52 
49 
27 
28 
53 
58 

0,227728 
0,207686 
0,206782 
0,190480 
0,174345 
0,157748 
0,156859 
0,143535 
0,141053 
0,133523 
0,129078 
0,128847 
0,120589 
0,115136 
0,113267 
0,108225 
0.107934 
0,107331 
0,107075 

4GE CLAIM AGE CLAIM 
FREQUENCI FREQUENCY 

45 0,106297 30 0,095283 
57 0,105633 50 0,094771 
74 0,105591 34 0,094683 
a4 0,104794 67 0,094860 
54 0,104550 66 0,094197 
71 0,104110 80 0,093229 
55 0,103527 79 0,093149 
60 0,102565 56 0,092966 
76 0,102537 46 0,092840 
73 0,101599 72 0,092655 
59 0,101479 63 0,092230 
75 0,101179 65 0,091771 
44 0,100921 32 0,091035 
29 0,100851 33 0,090688 
62 0,100636 95 0,090528 
51 0,100316 68 0,089827 
78 0,099502 31 0,089801 
48 0,099368 90 0,088826 
47 0,098385 42 0,088359 
70 0,097787 61 0,088lOO 

- AGE CLAIM 
FREQUENC 

69 0,086700 
36 0,085557 
37 0,085311 
77 0,084421 
40 0,083974 
39 0,083006 
81 0,081620 
38 0,080527 
41 0,080521 
43 0,080166 
35 0,079893 
64 0,079809 
89 0,078647 
85 0,022465 
88 0,000000 
91 0,000000 
93 0,000000 
94 0,000000 

Looking at Table 4.3 we note that the subdivisions in 7 and respectively 8 clusters 
show quite comparable values of T, whereas the T value of the subdivision in 6 clusters 
is sensibly lower. Therefore, according to the S-S criterion, the subdivision in 7 
clusters seems to be the best one (see the corresponding value of w). The details on 
this subdivision are reported in Table 4.4. We note that the weights of the neurons and 
the centroids of the clusters are approximately equal (except those in the 7th cluster). 
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We can deduce that the algorithm has converged to a possibly local minimum of the 
average distortion and the remarkable difference between weight and centroid of the 7th 
cluster can be explained by the very low exposures of the basic classes belonging to 
this cluster (approx. 74 policy-years). 

Table 4.3: Best subdivisions in clusters obtained by SCL. 

No. of Clusters w x 10-5 t x 10-4 d x 10-5 
clusters 8 4 1 3 5 16 26 18 5 7.4694 5.2285 1.9423 

7 5 3 6 24 22 13 5 8.7101 5.2261 1.9692 
6 5 3 6 26 33 5 10.2257 5.1129 3.1042 

Table 4.4: Details on a subdivision in 7 clusters obtained by SCL. 

Cluster No. of Policyholder's ages Weights Centroids Exposures 
Text 

1 5 18 19 20 86 92 0.2048 0.2048 1977.38 
2 3 21 22 82 0.1662 0.1663 4185.70 
3 6 23-26 83 87 0.1351 01353 11187.06 
4 24 27-29-44 48 49 51-55 57- 0.1050 0.1051 42389.66 

6062.71 73-76 78 84 
5 22 30-34 42 47 50 56 61 63 0.0928 0.0927 38243.33 

65-68 70 72 79 80 90 95 
6 13 35-41- 43 64 69 77 81 89 0.0824 0.0824 25225.41 
7 5 85 88 91 93 94 0.0205 0.0136 73.78 

In Table 4.5 the best results obtained by means of a Kohonen SOM are reported. A 
Kohonen network with a one-dimensional array of output units has been considered. 
The parameters of the Ritter and Schulten formulas have been set to the values 

Table 4.5: Best subdivisions in clusters obtained by SOoooooM. 

No. of Clusters W x 10-5 T x 10-4 D x 10-5 
clusters 

8 6 4 4 9 17 17 9 12 7.4610 5.2227 2.0020 
7 6 4 4 9 17 20 18 8.6809 5.2085 2.1489 
6 6 7 10 17 20 18 10.2531 5.1265 2.9643 

We note that the T values are quite close to those obtained by SCL (Table 4.3) and, 
except the subdivision into 6 clusters, the SCL clusters seem preferable (compare also 
the distortion D). Following S-S method the partition in 7 clusters should be chosen as 
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in the SCL case. The details on this subdivision are reported in Table 4.6. 

3 4 25 26 83 87 0.1288 0.12 

Cluster No. of 
elements 

7 clusters - W=8.6809 x 10.5 T=5.2085 x 10.4 
Policyholder's ages Weights Centroids 

1 6 18 19 20 22 86 92 0.1880 0.1889 4134.02 
4 2 21 23 24 82 O.l464 01466 7319.55 

. 89 5896.57 
4 9 272845495253575874 0.1088 0.1088 20375.10 
5 17 294447485154555960 0.1012 0.1011 25617.76 

62 70 71 73 75 76 78 84 
6 20 30-34 42 46 50 56 6163 65 0.0922 0.0921 34640.12 

687279809095 
7 18 35-4 143646977010588 0.0827 0.0822 25299.19 

89919394 

Table 4.6: Details on a subdivision in seven clusters obtained by SOM. 

Exposures 

It is interesting to note that the resulting clusters are rather different from those 
obtained by SCL. In particular, the small group (7th cluster in Table 4.4) containing 5 
basic classes characterised by very low claim frequencies, which emerged through the 
SCL algorithm, has not been isolated by applying SOM. As a consequence, the SCL 
clusters are more differentiated than the SOM ones and, in fact, the distortion is lower 
in the former case. Therefore, if we want to get a subdivision with low distortion, the 
SCL clusters should be preferred. 
However, if we look at the resulting groups of basic classes (Table 4.4), we realise that
this subdivision could be unsatisfactory for actual rate making purposes. 
In particular, the basic classes are not contiguously grouped. Moreover, we observe 
that basic classes characterised by low exposures are anyhow classified according to 
their claim frequencies. For instance, the basic class “age 85” is classified in the 7th 
cluster, whereas the basic classes “age 84” and “age 86” are classified in the 4th and in 
the 1st cluster respectively, since these basic classes show very different claim 
experiences (see Table 4.1), even though their exposures are very low. 
This inconvenience could be avoided if, when grouping the basic classes, the 
information “age of the insurer” would be considered as substantial information and 
not only as a label attached to the basic classes just to identify them. An example of a 
procedure where values labelling data are directly employed as source of information 
In clustering can be found in [l1].

5. Clustering under a constraint of contiguous grouping 

A way to take account of the actual value “age of the insured”, in addition to the 
observed claim frequency, is to apply the clustering techniques to the objects (basic 
classes) described by two characteristic variables: the claim frequency and the age of 
the insured. Therefore, since the objects are described by R2 vectors, a suitable 

562 



distance in R2 should be considered. Clearly, it determines the strength of the 
information “age” with respect to the observed claim frequency. In addition, this 
distance should have the appreciable property of enforcing this strength when the 
exposure (that is to say the number of observations) of the basic class is very low. 
In this Section we follow a different approach and develop a procedure in which the 
clustering of the basic classes “age of the insured” is performed under a sort of 
constraint of contiguous grouping. More precisely, it consists of a successive 
application of Kohonen SOMs in which the property of topology preservation plays the 
substantial role of inducing the contiguous grouping in a natural way, even though it is 
not generally granted. 
The procedure develops in two stages in which the basic classes are actually described 
by the two characteristic variables “age of the insured” and “claim frequency”. 

1 Stage 

In the first stage two parallel SOMs are trained: one concerns, as objects to be collected 
in clusters, the “age of the insured” relative to the basic classes and the other the “claim 
frequency”, As a result we obtain classes of “ages” and classes of “claim frequencies”. 
Thanks to the topology preservation property both the classes of ages and the classes of 
claim frequencies are ordered by age and by claim frequency respectively. 

II Stage 

In the second stage the outputs of the first stage become the input of another SOM. 
To each initial basic class (described by the two characteristic variables “age of the 
insured” and “claim frequency”) the corresponding indexes of age class and of claim- 
frequency class are associated. In this way, the new basic classes are now described by 
two characteristic variables, the index of age class and the index of claim frequency 
class, and these objects form the input space of another SOM. More precisely, the input 
space is now a subset of R2 whose elements are the couples (index of age class, index 
of claim frequency class) to which at least one initial basic class has been associated. 
Since both the characteristic variables are indexes of clusters resulting from the first 
stage, the usual Euclidean distance can be considered. Moreover, we assume, for each 
couple of indexes, the total amount of the relative exposures of the initial basic classes 
associated to such couple as probability distribution over the input space. 

In the following, we report the results of an application of this procedure to the date in 
Table 4.1. We have used the SOM algorithm implemented in Matlab and the 
parameters of the Ritter and Schulten formulas have been set to the values = 1.5, 

=0.1, =2, = 0.5. 

In the First Stage one SOM is trained to collect the objects “age of the insured” into 20 
clusters. The input space is the set of the ages in Table 4.1 and the probability 
distribution is defined as the relative exposures (3.2). Therefore, no evidence is given 
to the claim frequency, but only the actual age values are considered. The resulting 
clusters are reported in Table 5.1. It has to be stressed that the topology preservation 
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property of the SOM algorithm makes the indexes of the clusters ordered according to 
the order on the input space. Moreover, the relative exposures of the resulting clusters 
are quite flat. 
At the same stage another SOM is trained to collect the objects “claim frequencies” 
into 9 clusters. The input space is the set of claim-frequency values from Table 4.1 and 
the probability distribution is defined, again by means of the relative exposures (3.2). 
The resulting clusters are reported in Table 5.2 and their indexes are ordered in 
accordance to the claim-frequency values, owing to the topological property of the 
SOM algorithm (cf. Table 4.2). In Table 5.2 are reported the labels “age of the insured” 
in order to identify the objects collected in the same cluster. 

Table 5.2: 1 stage-Clusters of claim frequencies. 
Claim- 

Ages Centroids Relative 
index exposures 

1 35-4143647781 0.082046 0.197729 
858889919394 

2 31-3342616869 0.089643 0.130210 
9095 

3 303446505663 0.093848 0.158257 
65-67727980 

4 294447485159 0.100367 0.166243 
606270737576 
78 

5 27284553-5557 0.106366 0.167085 
58717484 

6 495283 0.114182 0.040280 
7 23-2687 0.135333 0.090205 
8 2182 0.157709 0.016459 
9 18-20228692 0.033533 

Age Ages Relative 
index exposures 

1 18-22 0.049050 
2 23-25 0.065892 
3 26-27 0.049539 
4 28-29 0.052641 
5 30-31 0.055568 
6 32-33 0.051953 
7 34-35 0.050169 
8 36-38 0.069945 
9 39-40 0.045085 

10 41-42 0.045359 
11 43-45 0.064289 
12 46-47 0.044006 
13 48-50 0.060712 
14 51-53 0.051452 
15 54-56 0.052414 
16 57-59 0.044891 
17 60-62 0.037208 
18 63-6 0.042976 
19 67-71 0.037110 
20 72 - 0.029742 

Table 5.1: 1 stage - Clusters of ages. 

freuency 

0.188920 

In the Second Stage one SOM is trained to collect objects described by the couple of 
indexes (age index, claim-frequency index) into 7 clusters. The elements of the input 
space are represented in Figure 2. 
The results are reported in Table 5.3, where we note that the final groups contain age 
values which are actually contiguous. 
To appreciate the features of the resuhing groups we compare in Figure 3 the original 
claim frequencies with the centroids of the clusters. 
Incidentally, observe that young drivers show a quite high risk level and in fact the 
claim frequency progressively decreases in clusters 2,3 and 4, whereas clusters 5 and 6 
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show a higher risk level again. This is a welt-known phenomenon present in the Italian 
market and it is explained by the fact that in the age classes of insured 44-59 we find 
the insured whose young sons or daughters get their driving licence and begin to drive 
their parents’car. 

Figure 3 

Figure 2 

Table 5.3: II stage-Clusters of ages of the insured. 

Cluster Ages Claim-frequency Relative exposure centroids 
1 18-26 0.1507 0.139073 
2 27-29 0.1056 0.078049 
3 30-35 0.0904 0.157690 
4 36-43 0.0835 0.181334 
5 44 - 50 0.1011 0.148062 
6 51-59 0.1042 0.148756 
7 60- 0.0945 0.147036 
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As far as the goodness of the clustering is concerned, the distortion and therefore also 
the S-S method are no more acceptable criteria to choose among diierent groupings. In 
fact, in this application the distortion calculated from the centroids of the clusters is 
1.2026 x 10-4, an extremely high level when compared with the results in Section 4. 
Clearly, the continuity of the elements in the groups is a valuable result but it cannot be 
evaluated by means of these traditional measures. 

6. Closing remarks 

ln this paper we were concerned with the problem of determining the tariff classes by 
means of some unsupervised neural networks. In particular the SCL algorithm and the 
SOM algorithm have been applied to collect the age of the insured in clusters. The 
results have shown that these methods do not consider the information “age” itself. In 
order to get groups of basic classes formed by contiguous values, a two-stage Kohonen 
SOM algorithm has been applied. 
In the example reported in Section 5, a suitable choice of the parameters has produced 
interesting results thanks to the topology preservation property of SOM. In fact, the 
final clusters contain contiguous values of the considered tariff variable, as it is desired 
and often pursued in the actuarial practice. 
However, since such type of results is not generally granted, the role played by the 
various parameters seems worthwhile of further investigations. 
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