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SOME COMPOUND INTEREST APPROXIMATIONS 

BY A. W. EVANS, F.I.A. 
Actuary and Manager, The London Life Association Ltd. 

INTRODUCTION 
WHEN the employment of ( a )-½ as a medium for first-difference interpolation 
was suggested in J.I.A. LXXII, 453, no mention was made of a corresponding 
medium for the amount of an annuity. It seemed that the matter might bear 
further investigation from this angle, and that it would be well to bring the 
allied continuous functions within the scope of the inquiry. These latter are 
simpler to deal with because they may be expressed in terms of only one 
variable ( n ). 

The investigation soon developed on more general lines and led to approxi- 
mations of various kinds–some of them very close. The literature on this 
subject is already extensive and it is difficult to avoid points of contact with 
previous work. It is hoped, however, that there is sufficient variation in the 
lines of approach adopted to justify the presentation of results which compare 
not unfavourably with those obtained in the past. 

FIRST STEPS AND RESULTING FORMULAE 
It appeared desirable in the first place to establish, if possible, a general 

approximate relationship between (a )– p and ( s ) –q ,with the prime considera- 
tion in mind that the value of p (known by experiment to be fractional) should 
enable (a ) -p to be treated as a nearly linear function of i. If the relationship 
were close enough it would then follow that (s)– q also would be nearly linear. 

We may commence by writing down the expansions of (n/a ) p –1and 
1 –( n/s ) q as far as the second power of i. [For convenience the suffix n is 
omitted hereafter.] 

We have 
(A) 
(B) 

Dividing (A) by (B), it may be shown that 

very nearly. 
If now we choose p and q so that 3( p + q ) = 2, we arrive at the formula 

(1) 

With continuous functions the corresponding expansion to (A) and (B) are 
(C) 
(D) 

so that if 
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i.e. if 3( p + q ) = 2, as before, the ratio of (C) to (D) is p/q exactly, that is, 

(2) 

It is easy to pass from formulae (1) and (2) to formulae linking the rate or 
force of interest with present values or amounts of an annuity. Writing 
x for ( n/a ) p, y for ( n/s ) q and and for the corresponding continuous functions, 
we may obtain from (1) 

where 

Hence 

(3) 

Also 
Hence 

From (2 ) the corresponding formulae are 
(4) 

and 

(5) 

(6) 

The concluding step is to decide what are the best combinations of p and q. 
Previous experiment with present values suggested that1 /p should be in the 
neighbourhood of 2 so that the choice of convenient combinations is rather 
limited. The following five combinations satisfy the necessary link between 
p and q and would not be awkward to apply arithmetically: 

1/ q 1 / p 

1.8 9 
2 6 
2.4 4 
2.5 3.75 
3 3 

From the second of these combinations we appear justified in regarding 
s as a natural complement to a-½  or interpolation purposes. The convenience 
of the square root in the latter case outweighs any slight advantage there 
might be in using a value of 1/ p rather above 2 .If, however, we want the 
most accurate all-round results from formulae (3) and (5) it is found that by 
a narrow margin the best values of 1/ p and 1 / q to use are 2.4 and 4 respectively. 
The same is true of formulae (4) and (6) 
as the case may be, is not very high. 

provided that the value of ni or n 

With this particular combination of 1/ p and 1/ q and a comprehensive range 
of examples up to ni (or n ) = 10, errors found by formulae (3) and (5) do not 
exceed about .08%. The construction of these two formulae is such that 
they do not break down for high values of ni or n , because the rate or force of 
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interest is then practically identical with the reciprocal of the annuity-value. 
Nevertheless, the standard of accuracy is surprisingly high when the rather 
slender foundation for the formulae is remembered. 

Formulae (4) and (6) have a more limited range ( ni or n 5), but within 
that range approximations to i or 6 are only slightly less accurate than as 
mentioned in the preceding paragraph. 

For the two formulae dealing with yearly annuities the adjustment 
1 + ¼ ( p-q ) i can be ignored except when a short term (say 20 years) is 
coupled with a high rate of interest. When the adjustment is used, a rough 
estimate of the value of i must of course be made. 

When p =q= the last of the five combinations given above, it will be 
noted that for the continuous functions (expressions (C) and (D)) the 
coefficient of ( n )z vanishes. A further interesting point is that formula (2) 
becomes exact as far as the third power of n . In these circumstances the 
formula is particularly accurate for low values of n . Although the expansions 
of the yearly functions do not work out so neatly there is a corresponding 
reflected advantage in formula (1) for low values of ni. It should be added that 
a value of for p or q is not a very good one for purposes of first-difference 
interpolation. 

Provided that p = q = ,formula (2) may be written 

i.e. 

which leads to 
This is, of course, the quadrature formula which has already been men- 

tioned as a means of determining the rate of interest in an annuity-certain 
(J. Spencer, J.I.A. L, 53. Cf. also G. F. Hardy, J.1.A. XXIV, 101). 

In the remainder of this Note (until the final section) 1/ P is taken as 2 and 
1/ q as 6, although, as already indicated, these are not necessarily the best 
values, either singly or in combination. 

CONSIDERATION OF THE PARTICULAR CASE WHEN 1/ p = 2 
Practical evidence of the nature of the function a–½  can be gained by 

studying specimen values of the expression [( n/a )½  - 1 ]/ ni, details of which are 
given in Table A. 

Table A. Values of [( n/a )½  - 1]/ ni 

n 
100 i 

5 10 20 40 60 100 

0 .3000 .2750 .2625 .2563 .2542 .2525 
1 .2997 .2753 .2638 .2593 .2588 .2596 
2 .2995 .2756 .2649 .2615 .2615 .2616 
3 .2992 .2758 .2657 .2629 .2624 
4 .2989 

.2597 
.2759 .2664 .2635 .2619 

5 .2986 
.2550 

6 .2983 
.2760 .2668 .2634 .2601 .2489 
.2761 .2671 .2627 

8 .2976 
.2574 .2422 

.2760 .2670 .2598 .2504 .2286 
10 .2969 .2757 .2664 .2556 .2423 .2162 
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For each value of n, the comparative lack of variation in the expression 
tabulated (except when ni becomes high) is very noticeable. Denoting the 
expression by F, and ( n/a )½  by x, we have 

x= 1+ niF. 
It is apparent that, over most of the area covered, interpolation by means of 

a-½  must give good results; while if a rate i’ close to the true rate has first been 
found then the latter must be capable of close representation by the formula 
i = i’ ( x– 1 )/( x’ – 1). Similar conclusions are justified when dealing with -½  
and the force of interest. 

Except when n < 8 the values of F rise to a maximum as i increases and then 
diminish steadily. For terms of 12 and over the maximum occurs at a point 
closely indicated by the formula ( n+ 10) i =2.2. There is of course a corre- 
sponding expression F = [( n / )½  –1]/ n which can be regarded as a function 
of ( n ) and whose maximum occurs when n =2.1. 

Tables of [1 – ( n/s ) ]/ ni and [1 – ( n ) ]/n exhibit roughly similar features to 
those of F and respectively, as would be expected from the connexions 
established by formulae (1) and ( 2 ). 

For values of n up to 3, can be represented extremely closely in the form 
A +B( n ) – C ( n ) 2, but, apart from leading to an approximate quadratic 
solution for n from this line of inquiry has no apparent use. Approximations 
to v n+l and vn may be obtained by assuming F and respectively to be 
absolute constants, for each value of n, in relation to i and respectively. 

Thus, in the case of F, we have 
vn = 1 –ni/x2 = 1 – ni l ( 1 + niF)2. 

Differentiating with regard to i, and remembering that on the given 
assumption dx/di = nF = ( X – 1 )/i, we arrive at the formula 

vn +1 = ( 2 – x )/ x3 or ( a/n ) (2 -x )/x. (7) 
This formula is fairly reliable (a) for short terms or (6) for longer terms 

when F is at or near its maximum, but its range is in consequence strictly 
limited. 

FURTHER DEVELOPMENT USING THE FUNCTION 

It seemed worth while to investigate whether which is 

known to vary slowly with i, could be made the basis for a new line of 
approach. The method adopted was to express in powers of ( x – 1 ),i.e. to 
assume = A + B( x- 1 )+C( x- 1 )2+.... 

By expanding each side of this equation in powers of i and putting i= 0 at 
successive stages it follows that 

A=(n +1 )/2 n, 
B=( n– 1 )/3 n. 

Inserting these values in the original equation it can be shown that, as far as 
the third power of i, C is very nearly equal to 
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This expression suggests that the average numerical value of – C may well 

lie between and In fact, it proves to be the case that – C is a near- 
constant with a mean value of about . 

Accordingly we may write 

whence 

(8) 

(9) 

or, in terms x of x and n , 

(9 a ) 

For such a simple formula the result are very accurate and errors do not 
exceed I d. in the rate per cent provided that ni 3. When ni > there are 
negative errors. Taking two extreme cases, the 8% and 10% approximations 
for term 100 are 7.909 and 9.925 respectively. 

A corresponding formula for in terms of and n can be obtained by 
a similar process, but the modified ‘ C ’ in this case has a slightly greater 
range of variation. 

DEVELOPMENT USING loge sn 
As a companion formula to (8), it was found that (1/ ni ) log, s / n could 

be expanded in terms of 1 –( n/s ) and powers thereof with very satisfactory 
results. The formula that ultimately emerged is 

(10) 
where y is written for ( n/s ) . 

The coefficients of the first two powers in the denominator were found by 
orthodox means, but the coefficient of (1 – y )3, although indicated as a possibility 
between certain limits, was in effect determined by trial. It is another near- 
constant over a considerable range. 

Formula (10) is a powerful one and a table of results by it is perhaps worth 
giving (Table B). 

Table B. Values of 100 i by formula (10) 

n 2% 4% 
100 
80 2.000 4.001 

2.000 4.000 60 2.000 4.000 
40 2.000 4.000 
20 2.000 4.000 
10 2.000 4.000 

6% 8% 10% 

6.003 8.003 9.999 
6.002 8.002 9.999 
6.001 8.002 10.002 
6.001 8.002 10.003 
6.000 8.001 10.002 
6.000 8.001 10.001 

A corresponding formula for from is of course a particular case of the 
approximate solution for z of the general equation 

( ez - 1)/z = X, 
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and the formula, with specimen results, is given below: 
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(II) 

where 

Values of z 

True Approximate 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
15 

1.000 
2.000 
2.999 
3.998 
4.998 
5.997 
6.998 
8.001 
9.006 

10.015 
15.138 

The figures speak for themselves and indicate close approximation when z 
(=n in our case) does not exceed 9. 

It will be noted that the third-power coefficient was taken as in this case. 
Formula (11), which is simpler than formula (10), could be used to find 
(and thence i ) from s by making use of the approximate relationship 

Although formula (II) was designed for use with positive values of z it is of 
interest to find that it can also be used reliably with negative values as far as 
z =–3. For z= – 4 the approximation is –4.027, and thereafter errors 
become substantial. It follows of course that, within the range n = 0 to 3, the 
formula could be employed to find from while an appropriate adaptation 
of formula (10) could be made with similar effect, that is, to find i from a. 

To sum up the merits of the formulae so far given, it may be said that (10) 
and (11) stand out as the best for all-round accuracy and use, but they have 
their limitations when applied to present values. Almost as accurate, in 
connexion with present values, are formulae (3), (5) and (9 a ), the latter having 
the additional advantage of simplicity but lacking the range of the other 
formulae. 

It has already been noted that variations of p and q, within certain limits, 
are possible with the early formulae, and it seems likely that the same is true of 
the later formulae, if suitably adjusted. 

YIELDS ON REDEEMABLE SECURITIES 

When the method adopted is first-difference interpolation, partial effect can 
be given to the linear property of a –½  by operating on the square root of the 
reciprocal of the compound interest function A. 

Determination of yields by analytical means, when the security is repayable 
in one sum, can be very simply and effectively approached by concentrating 
on the function as was pointed out in J.I.A. LX, 344. 
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Assuming therefore that one is not working with interest tables, good 

approximations to have some utility though they necessarily involve an 
advance estimate of i, the rate to be determined. The simplest expression for 

in terms of the functions dealt with in this note is 

(12) 
If we work with the limitation in mind that ni 3 (which is not a serious 

limitation in practice) we can see from a fuller version of Table A that it is 
possible to assign a close average value to F for each term. For example: 

Term 

5 
10 
15 
20 
25 
30 
40 
50 
60 

and upwards 

F (average) 

.299 

.276 

.269 

.266 

.265 
.264 
.2625 
.262 
.261 

Thus by taking a trial rate for i we can approximate to by formula (12). 
A slightly better approximation results from the use of formula (8). Putting 

x – 1 = niF this leads to 

(13) 

This formula has the additional advantage that it provides the means of 
obtaining reasonable approximations to d / di, if required. 

The degree of accuracy by this second formula is illustrated in Table C. 

Table C. Values of by formula (13) 

2% 4% 6% 
n 

True Approximate True Approximate True Approximate 

10 .5663 .5663 .5823 .5823 .5978 .5978 
30 .5658 .5660 .6124 .6121 .6553 .6547 
50 .5912 .5910 .6638 .6629 .7241 .7256 

When a value for has been found, the yield is of course ascertained from 

where g and k (discount) have their usual meanings. 
A more elaborate use may be made of in conjunction with its first 

differential coefficient. Thus, denoting by fi and introducing a trial 

rate i’. we may write 

as a close approximation. 
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But fi = i and 

Hence we arrive at the approximation 
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(14) 

Taking as an illustration the often quoted text-book example with 
g= .025, k= .045455 and n =50, 

we obtain, at a trial rate of .02, 
fi = .026624, 

= .5910 from Table C above, 
and d /di’ = 3.82, by differentiation of formula (13), 
and the final result for i is the correct one of .026656. 

A nearer trial rate would certainly be necessary to obtain corresponding 
accuracy in cases involving a high value of k. 

It has been suggested in the past that might be tabulated, and a case 
could also be made for d /di. To be thorough, however, such tabulation 
would take up appreciable space. It would be simpler to tabulate 

because this may be written and is therefore 

a function of n 
A short table of values of and d /d(n ) is given at the end of this Note. 

This table may be employed for finding and d /di by making use of the close 
relationships 

YIELD SOLUTION FROM CUBIC EQUATION 
In J.I.A. LV, 99 there was given a neat approximate solution derived from 

a quadratic equation with v ½  n as the variable. This has hardly received the 
subsequent notice that it seems to deserve. It is fairly simple to apply, avoids 
the use of interest-tables, and gives close approximations except in extreme 
cases. 

Briefly, the method is based on the three-term quadrature formula known as 
Simpson’s Rule, and the value of vn determined by solving the resulting 
quadratic is used to find i by means of the identity 

i=g+ki/ (1- vn ), 

that is 

Much of the accuracy is due to the fact that, as the above expression shows, 
the approximation to vn need not be unduly close. This may be illustrated by 
imposing a severe test such as an example based on 

n= 50, i= .07, g= .04, and k= .41402. 
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The approximate method gives a value of .03022 for v 50 whereas the true 
value is .03394, so that the percentage error is considerable. But the approxi- 
mation to i is .06980, an error of only .3%. 

This last result suggests that, on grounds of accuracy, little further im- 
provement can be expected. But it may be of interest to carry the matter 
a stage further by showing that the four-term quadrature formula represented 
for this purpose by 

can also lead to a simple solution of the problem. We have already seen that 
this formula is identical with formula (2) when p = q = . (No other combina- 
tion of p and q seems to provide a workable alternative in this particular 
connexion.) 

Writing x for (n/a) and for (n/ ) we find from the above quadrature 
formula that 

where 
The basic equation for the yield is 

i=g+k/a, 

that is 

Substituting for vn its approximate equivalent, and replacing 1 /a by x 3/ n 
we obtain the cubic equation 

(1- k ) x 3-(2 m-x )3= ng, 
which leads to ( 2-k ) x 3-6 mx 2+12 m 2 x-8 m 3 =ng. 

Denote 2m/(2 - k ) by r. Then 
x 3–3 rx 2 + 6 mrx = 4 m 2 r + rng/ 2 m. (15) 

A solution for x is obtainable as follows: 
First put x = z + r with the object of eliminating the second power of the new 

variable. 
After the substitution of z+r for x in (15) the adjusted 

becomes z 3 +3 r (2 m - r ) z = 2 r 3 – 6 mr 2 + 4 m 2 r + rng /2 m 
= 2 r ( r – m ) ( r – 2 m ) + rng /2 m. 

equation in z 

Therefore 

The final term, which is always small, can for practical purposes be replaced 
by z 3/3 because r (2 m -r ) when expressed in terms of m and k is seen to be 
close to unity. Therefore 

This could be solved as a cubic equation in z; but this course is unnecessary 
because (for cases likely to arise in practice) z 3 is always very small in relation 
to z and its value can be estimated sufficiently closely after calculation of the 
first two terms in the above expression for z. 

Taking the same example as that used for the quadratic solution we have 
first to estimate the value of m which equals 1 +i /6 approximately. Assume 
that 1.011 is the estimate made. 
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Therefore 

and 

This method is likely to be even more accurate than the quadratic method 
and is also thought to have an advantage as regards application. 

When is small enough for its value to have hardly any sensible effect on 
the final result (as is often the case) we may, by leaving it entirely out of 
account, deduce from the foregoing work a virtually explicit formula for the 
yield, viz. 

(16) 

In the above example has a significant value, but even so its omission 
and the calculation of i from formula (16) does not result in a very serious 
error, the approximation being .07026. For the example taken on p. 245, 
formula (16) gives the true value of .026656. 

0 
.125 
.25 
.375 
.5 
.625 
.75 
.875 

1 
.125 
.25 
.375 
.5 
.625 
.75 

.50000 

.51041 

.52081 

.53118 

.54150 

.55175 

.56192 

.57200 

.58198 

.59183 

.60155 
061113 
.62055 
-6298 I 
.63889 

.8333 

.08326 

.08307 

.08275 

.08230 

.08173 

.08104 

.08024 

.07933 

.07831 

.07721 

.07601 

.07473 

.007339 

.07197 

1.875 
2 
.125 
.25 
.375 

.625 

.75 

.875 
3 
.125 
.25 
.375 
.5 

.64780 

.65652 

.66504 

.67337 

.68150 

.68943 

.69714 

.70466 

.71196 

.71906 

.72596 

.73265 

.73913 

.74542 

.07050 

.06898 

.06743 

.06583 

.06421 

.06258 

.06093 

.05927 

.05762 

.05597 

.05433 
'05271 
.05111 
.04953 

The writer is grateful to Mr A. E. Peter, M.B.E., F.I.A., for his assistance 
in checking the numerical work and much of the algebra. 
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