SOME EXPERIMENTS WITH SALARY SCALES

By A. D. Wilkie, M.A., F.F.A., F.I.A.

1. Salary scales have been widely used in actuarial literature about pension schemes, but they do not seem to have been developed beyond the idea first introduced by Manly (1901) and used in a series of papers following this, including McGowan (1901), Manly (1902, 1903 and 1911), and M’Lauchlan (1908). King (1905), Bacon (1907) and M'Lauchlan (1914) discuss the construction of a salary scale from records of individual employees. King made some valuable observations on how a salary scale may change with time if the observed population is not a stationary one, for example, because the firm is growing or declining, which Bacon also commented on, and M'Lauchlan went into considerable detail about the separation of different grades. Thomas (1913) gave an example of an organization with six ranks, within each of which there was a salary scale, and showed explicit probabilities of promotion in each year of age. His development comes closest to what I shall discuss below. Text books on Life Contingencies, such as Jordan (1952), Hooker \& Longley-Cook (1957) and most recently Neill (1977), have followed essentially the definition introduced by Manly, as also have papers and text books on pension funds, such as Porteous (1936), Marples (1948), Heywood \& Marples (1950), Crabbe \& Poyser (1953) and Lee (1973). Curiously Spurgeon (1922) does not mention salary scales, although his book was written after they had come into use.
2. In principle, the salary scale s_{x} is such that the ratio s_{x+t} / s_{x} equals the ratio of the average salaries of employees in the year of age $(x+t, x+t+1)$ to their average salaries in the year of age ($x, x+1$), conditional on their surviving in the relevant employment. Such a salary scale allows for the fact that average salary levels typically increase to some extent with age, both because of regular progression up a scale with annual increments, and because of promotion to a higher salary level with increasing age. It is convenient to assume that salaries in this context are measured in terms of a constant general level of salaries, which does not change with time. The effects of general price inflation on the money value of salaries, and the further effects of changes in the real level of salaries, measured in constant price terms, are usually brought in separately. I shall ignore these complications in this note.
3. I shall also ignore variations in the frequency of salary payments and the incidence of salary increases. I assume, for simplicity, that all salary increases take place on birthdays; thus the rate of salary throughout the year of age is constant, and the frequency of payment is irrelevant.
4. The specimen salary scale given by Neill and used also in 'Formulae and Tables for Actuarial Examinations' (1980) is reproduced in the column headed s_{x}
of Table 1. It runs from 1.00 at age 18 to 5.40 at age 64. It is assumed that everyone retires no later than their 65 th birthday. I now define the function r_{x}, where:

$$
1+r_{x}=s_{x} / s_{x-1}
$$

that is, r_{x} is the average proportionate increase in salaries on the x th birthday. The values of $100 r_{x}$ are also given in Table 1, and are seen to run from 10% at age 19 to 0.56% at age 64 .
5. While the definitions and descriptions so far give us a general idea of what is happening to average salaries among the employees in question it is clear that we would need a more detailed description if we wished to consider the salary progress of any individual. One possible interpretation of the model would be that each individual enters service with a given salary, which may vary according to the individual and his age at entry, but that he then progresses rigidly up the salary scale, receiving increases each year in accordance with r_{x}, so that at any age his salary depends solely on his starting salary and on the salary scale so far. This seems a fairly unrealistic representation. In reality some employees do receive promotional increases, while others do not.
6. The definition of salary scale makes no reference to the distribution of salary levels at age x, nor to the previous salary history of the relevant employees at age

Table 1. Salary scale and annual percentage increase

Age x	s_{x}	$r_{x} \%$	Age x	s_{x}	$r_{x}{ }_{6}$
			40	3.58	$2 \cdot 87$
			41	3.68	2.79
			42	3.78	2.72
18	1.00		43	$3 \cdot 88$	2.65
19	$1 \cdot 10$	$10 \cdot 00$	44	3.98	$2 \cdot 58$
20	1.21	$10 \cdot 00$	45	$4 \cdot 08$	$2 \cdot 51$
21	1.33	9.92	46	$4 \cdot 18$	2.45
22	1.46	$9 \cdot 77$	47	$4 \cdot 28$	$2 \cdot 39$
23	1.59	8.90	48	$4 \cdot 38$	$2 \cdot 34$
24	1.73	$8 \cdot 81$	49	$4 \cdot 47$	2.05
25	1.87	8.09	50	4.56	. 2.01
26	$2 \cdot 02$	8.02	51	4.65	1.97
27	$2 \cdot 16$	6.93	52	$4 \cdot 73$	1.72
28	$2 \cdot 29$	6.02	53	$4 \cdot 81$	1.69
29	$2 \cdot 42$	$5 \cdot 67$	54	$4 \cdot 88$	1.46
30	$2 \cdot 55$	$5 \cdot 37$	55	4.95	1.43
31	2.67	$4 \cdot 71$	56	5.01	$1 \cdot 21$
32	2.78	$4 \cdot 12$	57	5.07	1.20
33	2.88	$3 \cdot 60$	58	$5 \cdot 13$	$1 \cdot 18$
34	2.98	$3 \cdot 47$	59	$5 \cdot 19$	$1 \cdot 17$
35	$3 \cdot 08$	$3 \cdot 36$	60	5.24	. 96
36	$3 \cdot 18$	$3 \cdot 25$	61	$5 \cdot 29$. 95
37	$3 \cdot 28$	$3 \cdot 14$	62	5.33	. 76
38	$3 \cdot 38$	$3 \cdot 05$	63	$5 \cdot 37$. 75
39	3.48	2.96	64	$5 \cdot 40$. 56

x. For these factors to be irrelevant implies that the definition applies regardless of which employees at age x are under consideration, and hence applies to each individual employee at age x. We can therefore restate the definition more formally: let the salary of employee i at age x be $Y_{i}(x)$; then:

$$
E\left(Y_{i}(x+t) \mid Y_{i}(x)=Y \text { and } i \text { survives }\right)=Y \cdot s_{x+i} / s_{x},
$$

that is, given that the salary of employee i at age x is Y, the expected value of his salary at age $x+t$ is given by Y times the ratio of the salary scale factors, provided he survives. It can be seen that the expected proportionate change in his salary between ages x and $x+t$ depends neither on the level of his salary at age x, nor on his salary history prior to age x. In particular:

$$
E\left(Y_{i}(x+1) \mid Y_{i}(x)=Y \text { and } i \text { survives }\right)=Y \cdot\left(1+r_{x+1}\right)
$$

7. There are infinitely many distributions of $Y_{i}(x+1) / Y$ that have a mean of $1+r_{x+1}$. In order to define the distribution of salaries further we need to make further assumptions. The following is only one among many methods, but it is a simple one, and consideration of it may give some insight into possible alternative models.
8. Consider an employee who enters service at the youngest age in the salary scale, 18 in this case, with a salary of $1 \cdot 0$. For convenience I measure all salaries in terms of this base unit. The ladder of possible future salaries in each year is defined by powers of $(1+j)$; I shall choose a value for j later. At each age, x, the employee moves up the ladder either $k(x)$ or $k(x)+1$ steps, with respective probabilities $q(x)$ and $p(x)=1-q(x)$, such that his expected increase is r_{x}. That is:

$$
\begin{aligned}
Y_{i}(x) / Y_{i}(x-1) & =(1+j)^{k(x)+1} & & \text { with probability } p(x) \\
& =(1+j)^{k(x)} & & \text { with probability } q(x),
\end{aligned}
$$

and

$$
E\left(Y_{i}(x) / Y_{i}(x-1)\right)=1+r_{x} .
$$

Since $k(x)$ is integral, it has to be chosen so that:

$$
(1+j)^{\mathrm{k}(x)} \leqslant 1+r_{x} \leqslant(1+j)^{\mathrm{k}(x)+1},
$$

which determines $k(x)$ uniquely unless one of the equalities holds. We can then determine $p(x)$ by:

$$
1+p(x) \cdot j=\left(1+r_{x}\right) /(1+j)^{k(x)} .
$$

If $\left(1+r_{x}\right)$ exactly equals a power of $(1+j)$, then we can either choose $k(x)$ to equal that power, with $p(x)=0$, or one less than that power, with $p(x)=1$. The effect in either case is that, in that year, the employee is certain to move a particular number of steps up the ladder. In other years he may rise for example either 0 or 1 steps, 1 or 2 steps, etc., with the appropriate probabilities.
9. A few examples may make the process clearer. If $j=\cdot 2$, i.e. each step on the
ladder implies a salary 20% higher than the previous step, then at age 19 , when $r_{19}=\cdot 10$, the probability of moving up one step on the ladder is 5 and of staying on the same step is also $\cdot 5$, giving an average rise of $\cdot 10$. The same happens at age 20 , since r_{20} also equals $\cdot 10$; at age 21 we have $r_{21}=\cdot 09917$, so the probability of an increment is $\cdot 4959$, and the probability of staying on the same step is 5041 . If we choose $j=\cdot 10$, then at ages 19 and 20 the employee certainly moves up exactly one step, and at age 21 his probability of an increae is 9917 . If $j=\cdot 05$, then at age 19 the employee may go up one step (ratio 1.05), or two steps (ratio $1 \cdot 1025$) with respective probabilities $\cdot 0476$ and $\cdot 9524$, and so on.
10. Now let $f(x, h)$ be the probability that at age x our 18 -year-old entrant is on the h th step of the ladder above his starting point. i.e. his salary is $(1+j)^{h}$. We see that he can reach this position from age $x-1$ either by having been at point $h-k(x)$ and going up $k(x)$ steps, or having been at point $h-k(x)-1$ and going up $k(x)+1$ steps. Thus:

$$
f(x, h)=q(x) \cdot f(x-1, h-k(x))+p(x) \cdot f(x-1, h-k(x)-1)
$$

with initial conditions:

$$
\begin{aligned}
f(18, h) & =1 \text { if } h=0 \\
& =0 \text { otherwise } .
\end{aligned}
$$

We can thus readily calculate recursively the probability distribution of salaries at age x for our hypothetical 18-year-old entrant.
11. In order to apply the same salary ladder and the same probability distributions to all employees we need to make some further strong assumptions. First, that a new entrant at age x receives a starting salary which is one of those on the ladder, with probability equal to $f(x, h)$. Further, that the probability of dying, retiring either through age or ill health, or leaving service for any other reason, is independent of the step on the salary ladder reached at the time of exit. Then the probabilities $f(x, h)$ give the probability distribution for all members in employment at age x.
12. A model such as this is at least sufficient for one to be able to use a salary scale for pension fund valuation in the usual actuarial way, although the assumptions are not all necessary ones. Thus, many alternative patterns of dispersion probabilities would be equally satisfactory. One does not need to assume that new entrants have the same distribution of salaries as existing staff. But one does need to assume that at least the average salary of those who die, retire, withdraw, etc. is the same as the average salary of those who do not. And one does need to assume that the expected salary progression at any age is independent of the salary at that age and of the previous salary history.
13. If we make a further assumption about the distribution of the population of employees at each age, say, that the proportion of all employees of age x is $g(x)$, then we can calculate a distribution of salaries for the total population of employees. An appropriate distribution will depend on the circumstances of each case, but two impartial ones are:
(a) equal numbers at each age from 18 to 64;
(b) numbers at age x are proportional to $x-18 p_{18}$, for $x=18$ to 64 .

The second distribution assumes that we have a stationary population in which everyone was born on the same day of the year, that we count salaries on that date, that everyone enters service at the age of 18 , and that the only withdrawal until retirement at age 65 is by death. This would not be very realistic for most individual firms, but it may not be too unreasonable for the total employed population of a country.
14. Now for some numerical results: Table 2 shows the percentage distribution of salaries at ages $24,34,44,54$, and 64 , for j such that $1+j=\exp (\cdot 10)$, i.e. a ladder with steps of 10.5171%. A dash (-) indicates a zero probability; $\cdot 00$ indicates a very small, but non-zero probability. It can be seen how at 24 there are only seven possible steps on the ladder, with over half the population being on the top step; the dispersion increases with age. so that by age 64 there are 45 possible steps though the probabilities of reaching the highest steps or having remained on the lowest steps are extremely small, and most of the population is spread across seven or eight steps rather below the middle of the range.
15. Table 3 shows summary statistics at each age for j such that $1+j=\exp (\cdot 05), \exp (\cdot 10)$ and $\exp (\cdot 20)$, i.e. steps of $5 \cdot 1271^{\circ}{ }_{o} .10 \cdot 5171 \%$ and 22.1403%. I have chosen these values so that the steps may coincide in later tables. The mean salary at each age is the same for each ladder, and of course is the same as the original salary scale. It is given in the first column. The statistics shown are the standard deviation of salary at each age, and the Gini coefficient at each age. which will be explained later. It can be seen how the dispersion, measured by the standard deviation, increases with age, and increases with increasing j.
16. Table 4 shows certain statistics relating to the total population, assuming that the population is distributed from age 18 to 64 in accordance with assumption (b) above and using A1967-70 ultimate mortality. In fact the figures are not substantially different from those using assumption (a). The figures are shown for the same values of j. The columns for each value of j show:
the cumulative percentage of the population on a particular step of the ladder or below it, and
the percentage of total salaries received by those on or below each step.
At the foot of the table are shown the mean salary, standard deviation of salary and Gini coefficient for each distribution. Formally: we define the distribution for the whole population by:

$$
f(h)=\sum_{x=18}^{64} g(x) \cdot f(x, h)
$$

the cumulative distribution up to step H by:

$$
F(H)=\sum_{h=0}^{H} f(h),
$$

Table 2. Percentage distribution of salaries at selected ages:

$$
(1 \mid j)=\exp (\cdot 10)
$$

Step h	Salary $(1+j)^{h}$	24	34	Ages: 44	54	64
0	1.0000	. 00	. 00	-00	. 00	-00
1	$1 \cdot 1052$. 00	-00	. 00	. 00	-00
2	1.2214	-06	. 00	. 00	. 00	. 00
3	1.3499	. 97	-00	. 00	. 00	. 00
4	1.4918	8.24	. 00	-00	. 00	-00
5	1.6487	$34 \cdot 57$. 07	-00	. 00	-00
6	1.8221	$56 \cdot 16$. 44	. 03	. 00	-00
7	2.0138	-	1.92	- 16	. 03	. 01
8	$2 \cdot 2255$	-	595	. 64	- 12	. 06
9	2.4596	-	$13 \cdot 19$	1.99	. 45	. 22
10	2.7183	-	20.97	$4 \cdot 83$	$1 \cdot 31$. 67
11	$3 \cdot 0042$	-	23.76	9.29	$3 \cdot 11$	1.72
12	$3 \cdot 3201$	-	18.93	14.28	6.07	$3 \cdot 67$
13	$3 \cdot 6693$	-	$10 \cdot 32$	17.69	$9 \cdot 86$	6.57
14	4.0552	-	$3 \cdot 64$	17.79	13.47	10.00
15	4.4817	-	.75	14.59	15.60	13.06
16	4.9530	-	. 07	9.78	15.42	14.73
17	5.4739	-	-	$5 \cdot 35$	13.08	14.44
18	$6 \cdot 0496$	-	-	$2 \cdot 39$	9.56	12.38
19	6.6859	-	-	. 86	$6 \cdot 04$	9.32
20	7.3891	-	-	. 25	$3 \cdot 31$	$6 \cdot 19$
21	$8 \cdot 1662$	-	-	. 06	$1 \cdot 57$	$3 \cdot 64$
22	9.0250	-	-	. 01	$\cdot 65$	1.89
23	9.9742	-	-	. 00	.23	. 88
24	11.0232	-	-	. 00	$\cdot 07$	$\cdot 36$
25	$12 \cdot 1825$	-	-	. 00	-02	. 13
26	13.4637	-	-	. 00	. 00	. 04
27	14.8797	-	-	-	. 00	.01
28	16.4446	-	-	-	-00	. 00
29	18.1741	-	-	-	. 00	. 00
30	20.0855	-	-	-	-00	. 00
31	$22 \cdot 1980$	-	-	-	. 00	. 00
32	24.5325	-	-	-	. 00	-00
33	27.1127	-	--	-	-00	. 00
34	29.9641	-	-	-	- 00	. 00
35	$33 \cdot 1154$	-	-	-	. 00	. 00
36	36.5982	-	-	-	-00	. 00
37	$40 \cdot 4473$	-	-	-	$\cdot 00$.00
38	44.7012	-	-	-	-	. 00
39	$49 \cdot 4024$	-	-	-	-	. 00
40	54.5982	-	-	-	-	-00
41	60.3403	-	-	-	-	. 00
42	66.6863	-	-	-	-	. 00
43	73.6998	-	-	-	-	. 00
44	81.4509	-	-	-	-	-00
45	90.0171	-	-	-	-	. 00
46	99.4843	-	-	-	-	.00

Table 3. Mean, standard deviation and Gini coefficients for salary distributions

	Mean	$(1+j)=\exp (\cdot 05)$		$(1+j)=\exp (\cdot 10)$		$(1+j)=\exp (\cdot 20)$	
$\operatorname{Age}(x)$	salary	Std dev.	Gini co.\%	Std dev.	Gini co.\%	Std dev.	Gini co. \%
18	1.00	$\cdot 0$. 0	. 0	. 0	- 0	-
19	$1 \cdot 10$	-0159	. 43	. 0227	45	- 1102	4.98
20	$1 \cdot 21$. 0247	. 78	. 0354	. 85	$\cdot 1718$	$7 \cdot 48$
21	1.33	. 0340	$1 \cdot 12$. 0488	1.28	. 2319	9.34
22	$1 \cdot 46$. 0448	1.47	-0645	1.76	- 2947	10.88
23	$1 \cdot 59$	-0607	1.98	-0894	$2 \cdot 60$	$\cdot 3594$	12.21
24	1.73	. 0771	$2 \cdot 39$	- 1153	$3 \cdot 32$	-4290	$13 \cdot 40$
25	1.87	-0954	2.78	. 1464	$4 \cdot 10$. 5012	14.46
26	$2 \cdot 02$	- 1147	$3 \cdot 12$. 1790	4.76	. 5793	$15 \cdot 44$
27	$2 \cdot 16$	-1330	$3 \cdot 40$	-2165	$5 \cdot 47$. 6559	16.31
28	$2 \cdot 29$. 1475	3.55	. 2558	$6 \cdot 15$. 7301	17.07
29	$2 \cdot 42$	-1603	3.66	. 2961	6.76	. 8058	17.77
30	2.55	$\cdot 1711$	$3 \cdot 70$	- 3373	7.33	. 8829	18.43
31	$2 \cdot 67$	- 1827	3.78	. 3779	7.85	. 9562	$19 \cdot 00$
32	$2 \cdot 78$	- 1979	3.94	. 4171	8.32	1.0251	19.51
33	$2 \cdot 88$. 2152	4-14	. 4543	8.75	1.0892	19.96
34	$2 \cdot 98$	$\cdot 2332$	$4 \cdot 35$. 4917	$9 \cdot 15$	1-1540	$20 \cdot 38$
35	3.08	. 2518	$4 \cdot 55$. 5293	9.52	$1 \cdot 2194$	20.79
36	$3 \cdot 18$. 2710	$4 \cdot 75$	- 5672	$9 \cdot 87$	1.2855	21.18
37	$3 \cdot 28$	- 2906	4.94	. 6054	10.21	$1 \cdot 3521$	21.54
38	$3 \cdot 38$. 3107	$5 \cdot 13$. 6438	$10 \cdot 53$	1.4194	21.90
39	$3 \cdot 48$. 3313	$5 \cdot 32$. 6826	10.83	I. 4873	$22 \cdot 24$
40	$3 \cdot 58$. 3522	$5 \cdot 50$. 7216	$11 \cdot 12$	1.5557	22.56
41	$3 \cdot 68$	- 3736	$5 \cdot 67$. 7609	11.40	1.6247	22.88
42	$3 \cdot 78$	- 3952	$5 \cdot 84$. 8005	11.67	1.6942	$23 \cdot 18$
43	$3 \cdot 88$	4172	6.01	8404	11.92	1.7643	23.47
44	3.98	. 4395	$6 \cdot 17$. 8805	$12 \cdot 17$	1.8349	23.75
45	$4 \cdot 08$. 4621	$6 \cdot 33$. 9210	12.41	1.9060	24.02
46	$4 \cdot 18$. 4849	6.49	. 9617	12.64	1.9776	$24 \cdot 28$
47	$4 \cdot 28$. 5081	6.64	$1 \cdot 0027$	12.86	$2 \cdot 0497$	24.53
48	4.38	5314	6.78	1.0440	13.07	$2 \cdot 1223$	24.78
49	$4 \cdot 47$. 5536	6.92	1.0818	$13 \cdot 26$	2.1884	25.00
50	$4 \cdot 56$. 5759	7.06	$1 \cdot 1199$	13.45	2.2548	25.21
51	$4 \cdot 65$. 5983	$7 \cdot 19$	1-1582	13.63	$2 \cdot 3216$	25.41
52	4.73	. 6191	$7 \cdot 32$	1-1928	13.79	$2 \cdot 3816$	25.60
53	$4 \cdot 81$. 6400	7.43	$1 \cdot 2275$	13.95	$2 \cdot 4418$	25.77
54	$4 \cdot 88$. 6589	$7 \cdot 54$	1.2583	14.08	2.4949	25.92
55	4.95	. 6779	7.65	1.2893	14.22	2.5483	26.07
56	5.01	. 6947	$7 \cdot 74$	1.3162	14.33	$2 \cdot 5944$	$26 \cdot 20$
57	$5 \cdot 07$. 7116	7.83	$1 \cdot 3431$	14.45	$2 \cdot 6406$	$26 \cdot 33$
58	$5 \cdot 13$. 7284	7.93	$1 \cdot 3701$	14.56	$2 \cdot 6870$	26.45
59	5.19	.7453	8.01	1.3972	14.67	2.7335	26.57
60	$5 \cdot 24$. 7598	8.09	1.4201	14.76	2.7725	26.67
61	$5 \cdot 29$. 7743	$8 \cdot 16$	1.4430	14.85	2.8116	26.77
62	$5 \cdot 33$. 7862	8.23	1.4615	14.92	$2 \cdot 8431$	26.85
63	$5 \cdot 37$. 7981	8.29	1.4801	14.99	2.8747	26.93
64	$5 \cdot 40$. 8072	$8 \cdot 33$	1.4941	15.05	$2 \cdot 8985$	26.99

Table 4. Cumulative proportions in total population

Step h for	Salary	$(1+i)=\exp (\cdot 05)$		$(1+i)=\exp (\cdot 10)$		$(1+i)=\exp (\cdot 20)$	
$1+j=\exp (\cdot 05)$	$(1+j)^{h}$	$F \%$	U\%	F\%	U\%	$F \%$	$U \%$
0	1.0000	$2 \cdot 222$	636	2.332	. 669	$5 \cdot 043$	1.446
1	1.0513	$2 \cdot 430$	$\cdot 700$	-	-	-	-
2	1-1052	$4 \cdot 454$	1.341	$4 \cdot 665$	$1 \cdot 408$	-	-
3	$1 \cdot 1618$	$4 \cdot 840$	$1 \cdot 470$	-	-	-	
4	1.2214	6.710	$2 \cdot 125$	7.021	2.233	10.689	$3 \cdot 424$
5	1.2840	7.263	$2 \cdot 329$	-	-	-	-
6	1.3499	8.999	$3 \cdot 001$	$9 \cdot 453$	3.175	-	-
7	1.4191	9.734	$3 \cdot 300$	--			
8	$1 \cdot 4918$	11.430	4.025	12•101	$4 \cdot 308$	17.703	6.425
9	1.5683	$12 \cdot 458$	4.488	--	-	-	-
10	1.6487	13.981	$5 \cdot 208$	14.897	5.630	-	-
11	1.7333	$15 \cdot 223$	5.825	-	-	-	-
12	1.8221	16.758	6.627	18.030	7.267	26.811	11.184
13	1.9155	18.173	$7 \cdot 405$	-	-	-	-
14	2.0138	19.767	8.325	$21 \cdot 689$	$9 \cdot 380$	-	-
15	$2 \cdot 1170$	21-458	9.352	-	--		
16	$2 \cdot 2255$	$23 \cdot 330$	10.547	$26 \cdot 177$	12.244	38.212	18.460
17	$2 \cdot 3396$	$25 \cdot 352$	11.903	-	-	-	-
18	$2 \cdot 4596$	27.606	13.493	$31 \cdot 610$	16.076	-	-
19	2.5857	$30 \cdot 160$	15.387	--	-	-	-
20	2.7183	33.056	17.645	38.076	$21 \cdot 117$	51.228	28.607
21	$2 \cdot 8577$	$36 \cdot 255$	20.266	-	-	-	-
22	$3 \cdot 0042$	$39 \cdot 694$	23.229	45.529	27.538	-	-
23	3.1582	$43 \cdot 337$	26.528	-	-	-	-
24	$3 \cdot 3201$	$47 \cdot 184$	30.192	53.754	$35 \cdot 369$	$64 \cdot 433$	41/181
25	3.4903	$51 \cdot 260$	$34 \cdot 271$	-	-	-	-
26	3.6693	55.598	38.836	62.417	$44 \cdot 485$	-	-
27	3.8574	60.236	$43 \cdot 967$	-	-	-	-
28	4.0552	$65 \cdot 189$	49.727	71.052	54.528	76.247	54.920
29	$4 \cdot 2631$	$70 \cdot 419$	$56 \cdot 120$	--	-		
30	4.4817	75.794	63.030	79.081	64.847	-	-
31	$4 \cdot 7115$	$81 \cdot 090$	$70 \cdot 186$	--	-	-	
32	4.9530	86.015	$77 \cdot 180$	85.947	$74 \cdot 600$	85.562	68.151
33	$5 \cdot 2070$	90.286	83.558	-	-	--	-
34	5.4739	93.708	88.930	91.292	82.991	-	-
35	5.7546	$96 \cdot 242$	93.083	-	-	-	-
36	6.0496	97.913	96.012	95.053	89.516	92.047	79.401
37	6.3598	98.942	97.890	-	-	-	--
38	6.6859	99.511	98.981	97.436	94.084	-	-
39	7.0287	99.795	99.552	---	-	-	-
40	7.3891	99.922	99.822	98.792	96.957	96.040	87.863
41	$7 \cdot 7679$	99.973	99.936		9	-	-
42	8.1662	99.992	99.980	99.483	98.577	-	
43	8.5849	99.998	99.994	-	-	-	
44	9.0250	100.000	99.999	99.800	99.397	98.221	93.507
45	9.4877	100.000	$100 \cdot 000$	-	-	-	-
46	9.9742	$100 \cdot 000$	$100 \cdot 000$	99.930	99.769	-	-
47	10.4856	100.000	$100 \cdot 000$	-	-	-	-
48	11.0232	100.000	$100 \cdot 000$	99.978	99.926	99.279	96.852
49	11.5883	$100 \cdot 000$	$100 \cdot 000$	-			-

Table 4. (Cont.)

Step h for	Salary	$(1+j)=\exp (\cdot 05)$		$(1+j)=\exp (\cdot 10)$		$(1+j)=\exp (\cdot 20)$	
$1+j=\exp (\cdot 05)$	$(1+i)^{h}$	$F \%$	U\%	$F \%$	U\%	$F \%$	U\%
50	$12 \cdot 1825$	$100 \cdot 000$	100.000	99.994	99.975	-	-
51	12.8071	$100 \cdot 000$	$100 \cdot 000$	-	-	-	-
52	13.4637	$100 \cdot 000$	$100 \cdot 000$	99.998	99.993	99.737	98.619
53	14.1540	$100 \cdot 000$	$100 \cdot 000$	-	-		
54	14.8797	$100 \cdot 000$	$100 \cdot 000$	$100 \cdot 000$	99.998	-	
55	15.6426	$100 \cdot 000$	100.000	-	-	-	
56	16.4446	$100 \cdot 000$	$100 \cdot 000$	$100 \cdot 000$	$100 \cdot 000$	99.913	99.452
57	17.2878	$100 \cdot 000$	$100 \cdot 000$	-	-	-	-
58	18.1741	$\underline{100.000}$	$\underline{100 \cdot 000}$	$100 \cdot 000$	$100 \cdot 000$	-	-
60	20.0855			$100 \cdot 000$	$100 \cdot 000$	99.974	99.803
62	22.1980			100.000	$100 \cdot 000$	-	-
64	24.5325			100.000	100.000	99.993	99.936
66	$27 \cdot 1126$			$100 \cdot 000$	100.000	-	-
68	29.9641			$100 \cdot 000$	$100 \cdot 000$	99.998	99.981
70	$33 \cdot 1155$			$100 \cdot 000$	100.000	-	-
72	36.5982			100.000	100.000	$100 \cdot 000$	99.995
74	40.4473			100.000	100.000	-	-
76	44.7012			100000	100000	$100 \cdot 000$	99.999
78	49.4025			100.000	100.000	-	-
80	54.5982			100.000	$100 \cdot 000$	$100 \cdot 000$	$100 \cdot 000$
82	60.3403			100.000	100.000	-	-
84	66.6863			100.000	$100 \cdot 000$	100.000	100.000
86	-2.6998			$100 \cdot 000$	$100 \cdot 000$	-	-
88	$81 \cdot 4509$			$100 \cdot 000$	100.000	$100 \cdot 000$	$100 \cdot 000$
90	90.01^{-1}			100.000	100.000	-	-
92	99.4843			$\underline{100.000}$	$100 \cdot 000$	$100 \cdot 000$	100.000
etc. up to							
Mean							
Standard deviation							
Gini coefficient		23.3		25.6		32.	

the salary at step h by:

$$
Y(h)=(1+j)^{h},
$$

the total salaries payable up to step H by:

$$
T(H)=\sum_{h=0}^{H} Y(h) \cdot f(h),
$$

and the proportion of salaries up to step H by:

$$
U(H)=T(H) / T(N),
$$

where N is the highest step on the salary ladder. The figures shown are then $100 F$ and $100 U$ for each H.

Figure 1. Lorenz curve for data in Table 4 with $1+j=\exp (\cdot 10)$
17. I now need to explain a Gini coefficient. Figure 1 shows an example of a Lorenz curve, which displays the data from Table 4 for $1+j=\exp (\cdot 10)$, with F on the horizontal and U on the vertical axis. The values of $100 F(h)$ and $100 U(h)$ are plotted as points for each h, and the points are then joined by straight lines. There are enough points for the resulting line to look like a fairly smooth curve, running from $(0,0)$ to $(100,100)$. Such a curve is called a Lorenz curve. It is a suitable way to represent the distribution of any variable that takes only non-negative values, or for comparing the cumulative distributions of two variables.
18. The Gini coefficient is given by the ratio of the area of the segment lying between the curve and the straight line joining $(0,0)$ and $(100,100)$ to the area of the triangle $(0,0),(100,0),(100,100)$. Or, if we scale down so that F and U run from 0 to 1 , the Gini coefficient. G. is given by:

$$
G=1-2 A,
$$

where A is the area under the curve, bounded by the F axis and the line $U=1$.
19. Another way of calculating the same number is as follows. Consider every pair of values $\left(x_{1}, x_{2}\right)$ in the distribution of X. The absolute distance between them is $d=\left|x_{1}-x_{2}\right|$. The expected value of d is called $D=E(d)$. Then, provided X takes only non-negative values:

$$
G=D / 2 E(X) .
$$

The proof of this is not difficult, and is omitted.
20. The Gini coefficient gives a useful measure of the equality or inequality of a distribution, such as that of incomes or wealth, which is the field in which it is most often used. If all salaries were equal the Lorenz curve would lie along the straight line $(0,0)$ to (100.100) and the Gini coefficient would be zero. As incomes become more unequally distributed the curve moves down to the right, and at the extreme, when everyone has nothing except for one who has everything, the curve follows the two sides of the triangle and the Gini coefficient is 100%. A statement such that $x \%$ of the population (small) owns $y \%$ of the wealth (large) gives a single point on the Lorenz curve at ($100-x, 100-y$).
21. It may be of interest to compare the Gini coefficient of some actual distribution of salaries with the theoretical ones derived here. For example, the Gini coefficient of the distribution of total taxable incomes (including therefore investment income) in the United Kingdom, 1977-78, given in Inland Revenue Statistics 1980 (the table has been dropped from later editions), allows one to calculate an approximate Gini coefficient of $32 \cdot 86 \%$. My approximation, which assumes points joincd by straight lines, is necessarily an underestimate of the true value, though the error is very small. This value is very close to that of my distribution with $1+j=\exp (\cdot 20)$. Other figures relating to the total population, such as those shown by the New Earnings Survey and discussed and illustrated in Report No. 8 of the Diamond Commission (1979), show that, on average, the incomes of the total population do not rise as steeply as in my specimen salary

Figure 2. Lorenz curves for all data in Table 4 and also for U.K. incomes 1977-78 (see text).
scale, and indeed generally fall somewhat with age. There are many possible reasons for this, such as the growth of new, higher paid industries employing younger people and the decline of older, lower paid ones employing older ones. One does not conclude from this that there is a falling salary scale within any one firm. However, it is possible that the specimen salary scale I have used continues to rise after about age 40 more than is appropriate for many firms, even though one of my distributions is very similar to that for total incomes for the whole population.
22. Figure 2 shows Lorenz curves for all three of my specimen distributions, along with that referred to above for incomes in the U.K. 1977-78. It can be seen
how close this last distribution is to the specimen distribution with $1+j=\exp (\cdot 20)$.
23. Without using information about the process of salary dispersion in a particular case I can go no further. It would be an interesting exercise to investigate the actual salary increments in some large employer, in order to estimate an actual dispersion pattern.

REFERENCES

Bacon, J. (1907) A Pension Fund Problem; with some remarks on the deduction of salary-scales. J.I.A. 42, 36.

Crabbe, R. J. W. \& Poyser, C. A. (1953) Pension and Widows' and Orphans' Funds. Cambridge.
Diamond, Lord, Chairman (1979) Royal Commission on the Distribution of Income and Wealth, Report No. 8, Fifth Report on the Standing Reference, Cmnd, 7679. H.M.S.O.
Formulae and Tables for Actuarial Examinations (1980). Institute of Actuaries and Faculty of Actuaries.
Heywood, G. \& Marples, W. F. (1950) Pension Funds: Some Practical Points. T.F.A. 19, 105.
Hooker, P. F. \& Longley-Cook, L. H. (1957) Life and Other Contingencies. Vol. II. Cambridge. Inland Revenue Statistics 1980, H.M.S.O.
Jordan, C. W. (1952) Life Contingencies. Society of Actuaries.
King, G. (1905) On Staff Pension Funds. J.I.A. 39, 129.
Lee, E. M. (1973) An Introduction to Pension Funds. Institute of Actuaries and Faculty of Actuaries. Manly, H. W. (1901) On the Valuation of Staff Pension Funds. J.I.A. 36, 209.
Manly, H. W. (1902) On the Valuation of Staff Pension Funds. Additions and Alterations. J.I.A. 37, 193.

Manly, H. W. (1903) On the Valuation of Staff Pension Funds, Part II-Widows' and Children's Pensions. J.I.A. 38, 101.
Manly, H. W. (1911) On Staff Pension Funds: The Progress of the Accumulation of the Funds; The Identity of a Valuation with the Future Progress of a Fund; The Manner of dealing with Funds which are insolvent; and Sundry Observations. J.I.A. 45, 149.
Marples, W. F. (1948) The Effect of Changed Economic Conditions and State Insurance of Private Pension Fund Benefits, Contributions and Valuations. J.I.A. 74, 212.
McGowan, J. (1901) An Enquiry into the Methods and General Principles to be adopted in calculating the Rates of Contribution, or Percentage Deductions from Salary, in the case of Superannuation Funds and Pension Funds generally. J.I.A. 37, 15.
M'Lauchlan, J. J. (1908) The Fundamental Principles of Pension Funds. T.F.A. 4, 195.
M'Lauchlan, J. J. (1914) On the Construction of Salary Scales for use in the Valuation of Pension Funds, and the Valuation of Prospective Pensions based on Accumulated Contributions. T.F.A. 7, 215.
Neill, A. (1977) Life Contingencies. Heinemann.
Porteous, D.A. (1936) Pension and Widows' and Orphans' Funds. Cambridge.
Spurgeon, E. F. (1922) Life Contingencies. Cambridge.
Thomas, E. C. (1913) On the Valuation of Benefits dependent on Promotion to a Higher Status J.I.A. 48, 217.

