SOME FURTHER EXPERIMENTS IN THE USE OF THE INCOMPLETE GAMMA FUNCTION FOR THE CALCULATION OF ACTUARIAL FUNCTIONS

By R. E. BEARD, M.B.E., F.I.A., A.S.A.
Assistant General Manager, Pearl Assurance Company Ltd.

INTRODUCTION

THE experiments described in this paper arose from some calculations made in connexion with the recent discussion on the mortality of life-office annuitants (7. I.A. LXXVIII, 27) and are a natural development of the principles described in the paper submitted to the Centenary Assembly of the Institute (Procecdings, II, 89). They fall into two groups. Those in the first, arising from an attempt to find an alternative method on which to base projections, have an affinity with those set out by Starke in his recent paper ($\mathcal{F} . I . A$. LXXVIII, 171), in that a formula for expressing mortality is derived essentially dependent on year of birth. There are, however, fundamental differences between the approaches, in that Starke is concerned mainly with an ad hoc expression for a derived function of q_{x} without regard to the problem of computing functions, whereas the present experiments are concerned with (i) further developing actuarial technique based on the curve of deaths rather than on rates of mortality, and (ii) the calculation of actuarial functions without recourse to the usual methods of commutation columns. The second group of experiments is an extension of the gamma-function technique to the calculation of joint-life functions, including contingent assurances.
2. It will be convenient to recapitulate first the underlying principles of the gamma-function technique, which is, basically, to fit a Pearson Type III curve to a modified curve of deaths and to calculate values of actuarial functions from tabulated values of the Type III curve or incomplete gamma function. The advantage of this particular curve is that functions at different rates of interest can be found from tabular values by a process equivalent to a change in age. The extension to joint-life functions now developed consists of finding an appropriate Type III curve for the joint-life curve of deaths or other functions from the values for the single-life Type III curve.
3. The modified curve of deaths is defined by $(\mu l)_{t}-\kappa l_{t}$, where κ is a constant which for the A 1924-29 ult. data was taken as approximately equal to μ_{20} and is the minimum value reached by μ_{x}. This modified curve is fitted by a curve of the form $e^{-\gamma(\omega-t)}(\omega-t)^{p}$, where ω is a limiting age; by integration the following expressions for certain functions are found:

$$
\begin{equation*}
{ }_{t} p_{x}=\frac{e^{-\kappa t} \int_{0}^{(\gamma+\kappa)(\omega-t-x)} e^{-z} z^{p} d z}{\int_{0}^{(\gamma+\kappa)(\omega-x)} e^{-z} z^{p} d z}, \tag{I}
\end{equation*}
$$

$$
\begin{gather*}
\mu_{t}=\kappa+\frac{(\gamma+\kappa) e^{-(\gamma+\kappa)(\omega-x)}\{(\gamma+\kappa)(\omega-t)\}^{p}}{\int_{0}^{(\gamma+\kappa)(\omega-z)} e^{-z} z^{p} d z}, \tag{2}\\
A_{x}-\kappa \bar{a}_{x}=\frac{e^{-(\kappa+\delta)(\omega-x)}(\gamma+\kappa)^{p+1} \int_{0}^{(\gamma-\delta)(\omega-x)} e^{-z} z^{p} d z}{(\gamma-\delta)^{p+1} \int_{0}^{(\gamma+\kappa)(\omega-x)} e^{-z} z^{p} d z} . \tag{3}
\end{gather*}
$$

4. Pearson's tables of the incomplete gamma function give values of

$$
I(u, p)=\int_{0}^{x} e^{-z} \mathbb{z}^{p} d z / \Gamma(p+1)
$$

to seven decimal places for various values of p and for an argument

$$
u=x(p+1)^{-\frac{1}{2}}
$$

progressing by intervals of $\cdot 1$ from oto such a value that $I(u, p)=I \cdot 0$. It will be noted that for a given mortality table p remains the same for all rates of interest; thus values of $I(u, p)$ for a single value of p will suffice for all single-life calculations.

APPLICATION TO ANNUITANTS' MORTALITY

5. The starting-point of the expcriments was the table of female ultimate data for the period 1921-48. Study of the run of exposed to risk and deaths suggested that a natural division would be into the two periods 192I-35 and 1936-48, and after some arithmetical trials a set of constants κ, γ, p and ω was found which gave a reasonable representation of the values of q_{x} for the earlier period. Attention was next given to the $\mathrm{O}^{a f}$ data and a further set of constants found, it being noted that the same values of p and $a(=p / \gamma)$ would provide a reasonable representation of the $\mathrm{O}^{a f}$ data, provided that the value of ω was reduced. Consideration of the $a(f)$ ultimate data then suggested that the same values of p and a could be used, and that the value of ω was approximately collinear with the values for the $\mathrm{O}^{a f}$ and the recent data. Finally, some trials were made with the data for the period $1936-48$, from which it appeared that a reasonable result could be obtained with the same values of p and a but with a slightly larger value of ω than for the earlier period. The values of κ showed a decrease in geometrical progression over the whole period covered by the experiments.
6. It was clear, from the progression of the values of the constants, that it would be reasonable to extrapolate on the values of ω and κ and so obtain values of q_{x} for future calendar years; thus the preliminary object of the experiments was formally attained. However, actuarial functions calculated on the basis of the values of q_{x} for a given calendar year would have little theoretical meaning, and attention was next directed to finding a method of calculating functions for given entry ages in any calendar year. Although the values of ω progressed in arithmetical progression over the period from the $\mathrm{O}^{a f}$ data to that for 193^{6-48}, and a mathematical transformation of the incomplete gamma function could
be devised to cope with this variation, the geometrical variation of κ could not be similarly dealt with. Accordingly, an attempt was made to find sets of the constants κ, γ, p and ω which depended only on the year of birth; a solution was found in which ω increased by one-twentieth of a year of age for each year of birth and κ decreased in geometrical progression, bcing halvcd each 50 ycars.
7. The values of the constants finally found were as follows:

$$
\begin{aligned}
p & =1 \mathrm{I} \cdot \mathrm{o} \\
a & =3 \mathrm{I} \cdot 75 \\
\gamma+\kappa & =346456
\end{aligned}
$$

$$
\begin{aligned}
& \omega=115 \cdot 15+\cdot 05 s \\
& \kappa=\cdot 0077 \times 2^{-02 s}
\end{aligned}
$$

where $s=$ (year of birth -1860)
and values of q_{x} appropriate to the years 1878 , 1911-12, 1936, 1950 and 1980 were found from formula (1). The first three sets of values were then applied to the exposed to risk for the $\mathrm{O}^{a f}, a(f)$ and the 1921-48 data (in quinary groups adjusted by $\frac{1}{25}$ of the second central difference), and the expected deaths so found were compared with the actual deaths, with the result given in Table i.
8. Study of the figures in Table ishows that the formula produces values of q_{x} above the experience values for the period $1900-20$ and below the experience values for 192I-48. It would of course be more appropriate, since q_{x} differs in each calendar year, to calculate the expected deaths for each year, but the above resuilts are adequate for the present purpose and it has not been considered necessary to perform all the required calculations. It should be noted that the 'fitting' process does not involve an agreement between the totals of the expected and actual deaths.
9. A comparison of the values of q_{x} given by the constants of paragraph 7 for 1950 and for 1980 with the values calculated by the Joint Mortality Committee is given in Table 2. From a practical point of view the projected values are equally acceptable and, in addition, the new set of values has certain advantages, since mortality functions can be calculated without the need for prepared commutation columns. It is of interest to note that, although the new projection is based fundamentally on a linear extrapolation in ω, it is not so radically different from the geometric method adopted by the Committee, since a linear change in age will be approximately equivalent to a geometric change in q_{x}.
io. A comparison of 3% ultimate annuity-values for entrants in 1955 by the formula (3) and the constants of paragraph 7 with those given by the Committee is given in Table 3. Although this has been carried back to age 20, it is important to note that the values of q_{x} below age 40 by the formula would be too high, the reasonable agreement in the values of \bar{a}_{x} being possible only because the influence of the mortality at these young ages is comparatively small. At the very advanced ages the formula values run below those found by the Committee, the reason being the cut-off of the formula at an age ω, whereas \bar{a}_{x} by the Perks graduation has a minimum value approximating to

$$
\cdot 5+(D / B-1)=r \cdot 0 .
$$

A small error is also introduced because \bar{a}_{x} for the Committee figure has been taken as $a_{x}+\cdot 5$. It should also be noted that the formula values are for durations
Table 1. Comparison of expected and actual deaths.

$\mathrm{O}^{\text {af }}$				$a(f)$				1921-48			
Central age of group	Expected deaths	Actual deaths	$\begin{gathered} q_{x} \\ \text { (formula) } \end{gathered}$	Central age of group	Expected deaths	Actual deaths	$\underset{\text { (formula) }}{q_{x}}$	Central age of group	Expected deaths	Actual deaths	$\underset{\text { (formula) }}{q_{s}}$
52	50	49	. 0144	47.5	61	43	. 0080	52.5	127	134	. 0070
57	119	108	-182	52.5	149	168	-0096	57.5	411	48 I	. 0095
62	289	256	. 0250	$57 \cdot 5$	382	329	-0126	62.5	1,270	1,328	-0142
67	682	673	-0368	62.5	884	878	-0183	67.5	3,535	3,472	. 0229
72	1,299	1,219	-0562	67.5	1,825	1,691	.0285	$72 \cdot 5$	7,703	7,665	${ }^{-}{ }^{3} 83$
77	1,766	1,732	.0867	$72 \cdot 5$	3,201	3,028	. 0457	$77 \cdot 5$	12,038	12,255	. 0628
82	1,659	1,703	-1320	775	4,297	4,076	-0732	82.5	13,124	13,674	- 1006
87	963	996	-1987	$82 \cdot 5$	4,087	4,141	-1147	87.5	9,327	10,331	${ }^{1568}$
92	357	374	-2973	87.5	2,569	2,719	-1761	92.5	3,770	3,776	-2392
97	56	63	-4464	$92 \cdot 5$	1,024	994	-2665	97.5	969	926	$\cdot 3631$
				97.5	187	138	-4029				
				102.5	23	12	. 617				
Total	7,240	7,173			18,689	18,217			52,274	54,042	

5 and over, whereas the table given by the Committee is designed for a one-year select period.
in. The next set of experiments related to the male lives, and preliminary calculations were made in an endeavour to express the male mortality as equivalent to the female for a few years older with an adjustment to the value of κ. These indicated that acceptable results would be obtained only with a variable adjustment to the age. Calculations were then made of the expected deaths by the $\mathrm{O}^{a m}, a(m)$ and the 1921-48 ultimate data, using the female formula with κ increased by 60% and a rating-up in age equal to $\cdot 05$ (year of

Table 2. Values of q_{x} in 1950 and in 1980. Females

Age	1950		1980	
	By formula	By Committee	By formula	By Committee
50	$\cdot 0052$. 0056	$\cdot 0035$	-0040
55	-0068	-0076	- 0047	-0055
60	-0098	- 0108	. 0071	.0081
65	- 158	- 0166	- 0120	- 0128
70	-0266	-0265	-0210	. 0210
75	-0448	-0434	-0367	-0356
80	-0737	-0723	-062I	-0611
85	-1174	-1218	-1010	-1060
90	-1820	-1850	- 1589	-1660
95	$\cdot 2778$	-2626	- 2440	-2429

Table 3. Values of \bar{a}_{x} at 3% for entrants in 1955. Females

Age at entry	By formula	By Committee	Age at entry	By formula	By Committee
20	26.87	27.04	60	15.23	15.25
25	26.00	26.13	65	12.96	13.09
30	25.01	25.08	70	10.68	10.89
35	23.87	23.87	75	8.51	8.75
40	22.56	22.49	80	6.56	6.80
45	21.04	20.94	85	4.91	5.12
50	19.32	19.21	90	3.54	3.78
55	17.37	17.31			

birth - 1786). This formula gave satisfactory results for the $\mathrm{O}^{a m}$, the $a(m)$ and the $192 \mathrm{I}-48$ data, but the known changes in the nature of the data suggested that the formula was not suitable for projection purposes. It seemed reasonable to adopt an upper limit to the rating-up in age-4 years was adopted, this being reached for year of birth 1866 -and to reduce the increase in κ from 60 to 20% for entrants from the year 1950. The justification for these particular amendments is slight, but they do ensure that the male mortality rates run parallel to the female, and avoid the divergence which would occur if projection were to be made on the unadjusted formula. There is a serious break between years of entry 1949 and 1950, but this break could clearly be avoided by grading over a longer period if the method were to be developed.
Table 4. Comparison of expected and actual deaths.

$\mathrm{O}^{\text {am }}$				$a(m)$				192.1-48			
Central age of group	Expected deaths	Actual deaths	$\stackrel{q_{x}}{\text { (formula) }}$	Central age of group	Expected deaths	Actual deaths	$\underset{\text { (formula) }}{\boldsymbol{q}_{\boldsymbol{x}}}$	Central age of group	Expected deaths	Actual deaths	$\underset{\text { (formula) }}{q_{x}}$
52	25	25	.0238	47.5	42	45	. 0141	52.5	62	55	-0126
57	61	67	-0287	52.5	101	71	-0168	57.5	202	175	- 0170
62	124	115	. 0370	57.5	245	218	-0216	62.5	639	632	-0251
67	253	231	. 0504	62.5	510	505	-0299	675	1,670	1,616	-0367
72	453	451	$\cdot .0714$	67.5	888	944	-0437	72.5	3,664	3,600	-0610
77	582	612	-1027	$72 \cdot 5$	1,406	1,322	-0653	$77 \cdot 5$	5,010	5,192	-0935
82	510	532	-1481	77.5	r,729	1,735	-0978	82.5	4,701	4,699	- 1410
87	303	318	$\cdot 2131$	82.5	1,591	1,593	- 1450	87.5	2,894	2,900	- 2093
92	84	88	$\cdot 3070$	87.5	998	989	- 2130	92.5	993	934	$\cdot 3086$
97	20	14	-4456	$\begin{aligned} & 92.5 \\ & 97.5 \end{aligned}$	$\begin{array}{r} 333 \\ 59 \end{array}$	$\begin{array}{r} 272 \\ 45 \end{array}$	$\begin{aligned} & \cdot 3 \times 15 \\ & \cdot 4579 \end{aligned}$	$97 \cdot 5$	159	154	-4570
Total	2,415	2,453			7,902	7,739			19,994	19,957	

The comments in paragraph 10 regarding Table 3 apply also to Table 5 .
12. The constants finally adopted for the male mortality were:

$$
\begin{aligned}
p & =11 \cdot 0 & \omega & =115 \cdot 15+\cdot 05(s-t) \\
a & =3 \mathrm{I} \cdot 75 & \kappa & =\mathrm{I} \cdot 6 \times \cdot 0077 \times 2^{-02(s-t)}
\end{aligned} \quad \text { year of entry }<1950
$$

functions being calculated at the age increased by t years. The comparison of actual and expected deaths for the three periods is given in Table 4.
13. Projected values of q_{x} for male lives have not been calculated; but it may be noted that they will be equal to the female values for an age 4 years older, with an addition of $\cdot 2 \kappa$ approximately. Annuity-values at 3% interest for entrants in 1955 have been calculated, and are given in Table 5 with the values obtained by the Committee.
14. The experiments described in the foregoing paragraphs were undertaken mainly with a view to finding an alternative approach to the problem of projection; they are not intended to be interpreted othcrwise than as an arithmetical exercise, although they are sufficiently successful to suggest that the technique might provide an adequate method for practical application. Although the formulae may appear rather elaborate, calculations of isolated values are relatively straightforward and an example is given below, setting out the entire calculations.
Required: \bar{a}_{63} at 3% for an entrant in 1958-female.
Year of birth 1895

$$
\begin{align*}
& \omega=115 \cdot 15+.05(1895-1860)=116 \cdot 90 \\
& \kappa=\cdot 0077 \times 2^{-02(35)} \quad=\cdot 00474 \\
& \begin{array}{c|c}
\gamma+\kappa=.34646 & \log (\gamma+\kappa)=\overline{\mathrm{I}} \cdot 539648
\end{array} \\
& \gamma=34172 \quad \log (\gamma-\delta)=\overline{1} \cdot 494377 \\
& \delta=.0295^{6} \quad \text { difference }=.045^{271} \times 12=.543252 \\
& \gamma-\delta=31216 \quad \log ^{-1}=3.4934 \tag{A}\\
& \kappa+\delta=.0343^{\circ} \quad(\kappa+\delta)(\omega-x) \log _{10} e \quad=802912 \\
& \omega-x=53.90 \quad \log ^{-1}=6.3520 \tag{B}\\
& u_{1}=(\omega-x)(\gamma-\delta)(p+1)^{-\frac{1}{2}}=4.857 \mathrm{I} \quad I\left(u_{1}, \mathrm{II}\right)=.908933 \\
& u_{2}=(\omega-x)(\gamma+\kappa)(p+1)^{-\frac{3}{2}}=5.3908 \quad I\left(u_{2}, \mathrm{II}\right)=959623 \\
& {\left[(\mathrm{~A}) \times I\left(u_{1}, \mathrm{II}\right)\right] /\left[(\mathrm{B}) \times I\left(u_{2}, \mathrm{II}\right)\right]=\cdot 52092} \tag{C}\\
& \bar{a}_{63}=[\mathrm{I}-(\mathrm{C})] /[\kappa+\delta]=13.97 .
\end{align*}
$$

Interpolating in the table calculated by the Committee for female entrants in 1955, and increasing by the recommended additions, the value of $\frac{1}{2}+a_{63}$ is found to be 14.04 .
If, for example, it were desired to find the value of \bar{a}_{72} for a male entrant in 1962, the calculation would follow the above scheme for an age 76, substituting $1 \cdot 2 \times \cdot 0077=\cdot 00924$ for the factor $\cdot 0077$.

APPLICATIONS TO JOINT LIFE FUNCTIONS

15. Certain suggestions were put forward in the original paper on the extension of the incomplete gamma-function technique to the calculation of joint-life functions. These suggestions were not entirely satisfactory, and a further method is now described which is more appropriate to the underlying principles of the method. The basis of the technique is the approximation to the curve of deaths by a mathematical function with certain convenient properties. The natural extension would be to find the corresponding functions for the joint-life curve of deaths but, unfortunately, the analytical approach has not yielded any expression except in the case of two lives of equal age. Recourse has accordingly been had to arithmetical methods.
16. From formula (1) we may write, for lives subject to the same mortality table,

$$
\begin{aligned}
t p_{x y} & =\frac{e^{-2 k t} \int_{0}^{(\gamma+k)(\omega-t-x)} e^{-z} z^{p} d z \int_{0}^{(\gamma+\kappa)(\omega-t-y)} e^{-z} z^{p} d z}{\int_{0}^{(\gamma+\kappa)(\omega-x)} e^{-z} z^{p} d z \int_{0}^{(\gamma+\kappa)(\omega-y)} e^{-z} z^{p} d z} \\
& =e^{-2 \kappa t}\left[I\left(u_{1}, p\right) I\left(u_{2}, p\right)\right] /\left[I\left(u_{3}, p\right) I\left(u_{4}, p\right)\right]
\end{aligned}
$$

where

$$
u_{2}=u_{1}+(\gamma+\kappa)(x-y)(p+1)^{-\frac{1}{2}}
$$

If we now form the products $I\left(u_{1}, p\right) I\left(u_{2}, p\right)$ we have a table of values equivalent to $e^{2 \kappa t} l_{x+t: y+t}$. By fitting these values with a new Type-III curve, joint-life functions for an age difference $(x-y)$ can be calculated as for single-life values.
17. The products $I(u, 10 \cdot 2) I(u+h, 10 \cdot 2)$, for values of h from 0 to 6.5 by intervals of $\cdot 5$ and for values of u from o by intervals of $\cdot 5$ to the value such that $I(u, 10 \cdot 2)=\mathbf{I} \cdot 0$, have been calculated to seven decimal places and the moments found from the first differences. The value of $10 \cdot 2$ for p was selected as forming the basis of the earlier experiments with the A 1924-29 table, and also of the hypothetical table described in the appendix to the earlier paper. The values of the moment functions derived from these calculations are given in Table 6.
18. The values of $2 \beta_{2}-6-3 \beta_{1}$ are sufficiently close to zero to suggest that a Type-III curve will be adequate for calculating approximate values for most practical applications; but a complication arises, since the value of p will not, in general, be one for which $I(u, p)$ is tabulated. To avoid interpolations for the non-tabular values of p we can select a convenient value of p and find the other constants keeping the first two moments unchanged, a process equivalent to introducing a third moment error, which is known to have only a small effect on the resulting calculations. In fact, this process can be continued further and the value of p taken as the single life value, so that it is only necessary to calculate the first two moments of $I(u, p)$ products. Thus, once the moments of the $I(u, p)$ products have been calculated for one value of p, approximate values of joint-life actuarial functions can be determined for any combination of mortality tables.
19. To calculate the constants appropriate to the A $1924-29$ table from the values of Table 6 and for a value of $p=10.2$ we note that $u=0$ corresponds to $\omega=110$ and the scale factor is given by $u=\cdot 3023(\omega-x) / \sqrt{ }(11 \cdot 2)$ so that $h=1$ corresponds to $11 \cdot 0706$ years of age. The terminating age for the joint life
table is found from the formula $\omega^{\prime}=110-11 \cdot 0706\left(\right.$ mean $\left.\left.-\sqrt{[11} \cdot 2 \mu_{2}\right]\right)$ and the a^{\prime} given by $a^{\prime}=a \sqrt{ } \mu_{2}$. The resulting values are given in Table 6 .

Table 6 . Moments and constants for two-life calculations

h	Moment functions of $\Delta I(u, 10.2) I(u+h, 10 \cdot 2)$					Joint-life constants A 1924-29 ult.	
	Mean	μ_{2}	β_{1}	β_{2}	$2 \beta_{2}-6-3 \beta_{1}$	ω^{\prime}	a^{\prime}
\bigcirc	3.90457	-85543	$\cdot 37823$	3.66009	-18549	101.041	31.207
$\cdot 5$	$3 \cdot 69064$. 86586				103.617	31.397
$1{ }^{\circ}$	$3 \cdot 54397$	-89250	- 39370	3.65915	-13720	105.767	31.876
r 5	3.45200	-92491				107.415	32.450
2.0	3.39915	-95370	-39019	3.60641	-04225	108.551	32.951
25	$3 \cdot 37117$	-97442				109.252	$33 \cdot 307$
3.0	3.35744	-98715	$\cdot 37068$	3.55731	. 00258	109.642	33.524
3.5	3.35114	-99406				109.840	33.641
$4{ }^{\circ} \mathrm{O}$	3.34842	-99744	$\cdot 36054$	$3 \cdot 54002$	-.00158	109.932	$33 \cdot 698$
4.5	3.34732	-99896				109973	$33 \cdot 724$
5.0	3.34689	-99960	$\cdot 35775$	3.53633	-.00059	109.990	33.735
5.5	$3 \cdot 34673$	- 99985				109.996	33 739 7
$6 \cdot 0$	$3 \cdot 34667$	-99995	$\cdot 35723$	$3 \cdot 53576$	--00017	109099	$33 \cdot 740$
$6 \cdot 5$	$3 \cdot 34665$	-99998				$110 \cdot 000$	33.741
∞	$3 \cdot 34664$	1-00000	$\checkmark 35714$	3.53571	-.00000	$110 \cdot 000$	33.74 I

20. To illustrate the use of this table the calculations for $\bar{a}_{20: 50}$ by the A 1924-29 table at 3% interest are now given.

Diff. in age $(y-x)=30$ years, $\omega^{\prime}=109.449, a^{\prime}=33.413$.

$$
\begin{align*}
& \gamma^{\prime}+2 \kappa=p / a^{\prime}=10 \cdot 2 / 33 \cdot 4 \mathrm{I} 3=\cdot 305270 . \quad \log =\overline{\mathrm{I}} \cdot 484684 \\
& \gamma^{\prime}-\delta \quad=\cdot 271111 . \quad \log =\underline{\mathbf{1}} . \underline{433147} \\
& \text { difference }=.051537 \\
& \text { difference } \times(p+1)=577214 \\
& \log ^{-1}=3.7776 \tag{A}\\
& \left(\omega^{\prime}-y\right)=59.449 \\
& (2 \kappa+\delta)\left(\omega^{\prime}-y\right) \log _{10} e=-88191 \quad \log ^{-1}=7.6192 \tag{B}\\
& u_{2}=\left(\omega^{\prime}-y\right)\left(\gamma^{\prime}+2 \kappa\right)(p+1)^{-\frac{1}{2}}=5 \cdot 4227 \quad I\left(u_{2}, 10 \cdot 2\right)=\cdot 967970 \\
& u_{1}=\left(\omega^{\prime}-y\right)\left(\gamma^{\prime}-\delta\right)(p+1)^{-\frac{1}{2}}=4.8 \mathrm{I} 60 \quad I\left(u_{1}, 10 \cdot 2\right)=\cdot 918243 \\
& {\left[(\mathrm{~A}) \times I\left(u_{1}, 10.2\right)\right] /\left[(\mathrm{B}) \times I\left(u_{2}, 10.2\right)\right]=\cdot 470306} \tag{C}\\
& \bar{a}_{20: 50}=[\mathrm{I}-(\mathrm{C})] /(2 \kappa+\delta)=15 \cdot 5 \mathrm{I} .
\end{align*}
$$

(Tabular value, $a_{20: 50}+\cdot 5=15 \cdot 57$.)
Values of $\bar{a}_{x y}$ for various combinations of ages calculated by this method are given in Table 7 , together with values interpolated, where necessary, from the A 1924-29 tabulated values.
21. The errors in Table 7 are the combined effect of a number of factors. First, the single-life functions are themselves an approximation to the A 192429 values; secondly the A 1924-29 annuity-values are based on interpolation in the tabulated values; thirdly $\frac{1}{2}+a$ is used as an approximation to \bar{a}; fourthly the joint-life values are based on a Type-III approximation to the curve of deaths with the value of p fixed at $10 \cdot 2$. To test the last error, joint-life values have been calculated for the hypothetical table described in the appendix to the first paper, since the corresponding life table columns are available. Some results are given in Table 8.

Table 7. Values of $\bar{a}_{x y}$, A 1924-29 ult., 3\%

x	y	Approx.	Tabular	x	y	Approx.	Tabular
20	20	22.96	22.95	20	30	21.45	21.43
30	30	20.43	20.41	30	40	18.40	18.38
40	40	17.05	17.04	40	50	14.56	14.58
50	50	12.96	13.06	50	60	10.36	10.42
60	60	8.78	8.84	60	70	6.56	6.50
70	70	5.28	5.20	70	80	3.70	3.64
80	80	2.79	2.82	80	90	1.81	2.00
90	90	1.16	1.56				
20	40	18.95	18.94	20	50	15.51	15.57
30	50	15.27	15.32	30	60	11.44	11.48
40	60	11.15	11.18	40	70	7.60	7.51
50	70	7.31	7.21	50	80	4.54	4.49
60	80	4.29	4.22	60	90	2.38	2.59
70	90	2.21	2.38				
20	60	11.52	11.57	20	70	7.71	7.64
30	70	7.69	7.62	30	80	4.65	4.62
40	80	4.63	4.58	40	90	2.47	2.71
50	90	2.45	2.68				

Table 8. Values of $\bar{a}_{x y}$ at 3%. Hypothetical Table

x	y	Approx.	True	\boldsymbol{x}	\boldsymbol{y}	Approx.	True
20	20	23.39	23.39	20	40	19.30	19.31
40	40	17.33	17.34	50	70	7.52	7.49
60	60	8.99	8.93	70	90	2.32	2.39
80	80	2.93	3.02	20	80	4.86	4.86
90	90	1.37	1.83	30	90	2.63	2.66

The true values were calculated by approximate integration and the approximate values by the method of paragraph 20 with appropriate values of the various constants. Apart from the very high age combinations the formula gives an acceptable method of approximation. In considering this table it will be appreciated that the entire calculations are based on the four constants κ, γ, ω and a and the values of $I(u, p)$ for $p=10 \cdot 2$.
22. The method can obviously be extended to calculations involving more than two lives, although the subsidiary tables of ω and a become more extensive
and more troublesome to use. However, calculations have been made for combinations of 3 lives, and the means and variances are given in Table 9. In Table io are given values of ω and a corresponding to the A 1924-29 approximations. For example, to calculate $a_{x: x+r: x+s}$, the values of ω and a corresponding to differences h, k in u of $\frac{r}{11 \cdot 0706}$ and $\frac{s-r}{11 \cdot 0706}$ would be found by interpolation in Table io. The calculations would be treated as a single-life annuity at age $x+s$ with a constant of 3κ and $p=10 \cdot 2$.

Table 9. Moments of $\Delta I(u, 10 \cdot 2) I(u+k, 10 \cdot 2) I(u+h+k, 10 \cdot 2)$

h	k	Mean	μ_{2}	h	k	Mean	μ_{2}	h	k	Mean	μ_{2}
\bigcirc	-	4.21377	$\cdot 78043$	1	-	3.99375	- 80744	2	\bigcirc	3.92432	$\cdot 83873$
-	1	$3 \cdot 69044$	-82425	1	1	$3 \cdot 57994$	- 86440	2	1	$3 \cdot 55086$	-88518
-	2	$3 \cdot 44408$	- 91708	1	2	$3 \cdot 40853$	$\cdot 94323$	2	2	$3 \cdot 40072$	$\cdot 95161$
-	3	$3 \cdot 36787$	$\cdot 97503$	1	3	3.35915	$\cdot 98474$	2	3	3.35777	$\cdot 98666$
-	4	3.35019	-9949	1	4	3.34909	$\cdot 99633$				
-	5	3.34716	-99913								
3	-	3.90806	-85158	4	-	3.90508	$\cdot 85477$	5	-	3.90463	$\cdot 85533$
3	1	$3 \cdot 54503$	-89114	4	1	$3 \cdot 54411$	$\cdot 89229$				
3	2	3.39936	-95338								

Table 10. Constants for three-life values, A 1924-29

h	k	w	a	h	k	w	a	h	k	w	a
0	0	96.081	29.808	1	0	99.078	30.319	2	0	100.486	30.901
0	1	102.781	30.633	1	1	104.814	31.370	2	1	105.547	31.745
0	2	107.352	32.312	1	2	108.249	32.770	2	2	108.494	32.915
0	3	109.299	33.317	1	3	109.578	33.483	2	3	109.629	33.515
0	4	109.866	33.655	1	4	109.905	33.679				
0	5	109.978	33.727								
3	0	100.925	31.137	4	0	101.022	31.195	5	0	101.038	31.205
3	1	105.729	31.852	4	1	105.762	31.872				
3	2	108.543	32.946								

Table 11. Values of $\bar{a}_{x y z}$, A 1924-29 ult., 3%

x	y	z	Approx.	True	x	y	z	Approx.	True
20	20	20	21.39	21.39	30	30	50	14.63	14.68
30	30	30	18.79	18.77	30	50	50	12.55	12.64
40	40	40	15.31	15.29	20	20	60	11.28	11.34
50	50	50	11.17	11.31	20	60	60	8.64	8.71
60	60	60	7.16	7.25	30	30	70	7.57	7.48
70	70	70	4.03	3.99	30	70	70	5.22	5.14

23. Approximate values of three-life annuity-values on A 1924-29 ult. at 3% are given in Table 11, in which 'true' values are taken from the official table or from T.F.A. xv, 107. As with the two-life calculations, the errors given are the combined result of a number of factors.

CONTINGENT ASSURANCES

24. Although various convenient approximations are available for the calculation of functions such as $\overline{A_{x y}^{1}}$, it was considered worth while to develop the present technique for such functions.

We have

$$
\bar{A}_{x: x-s}^{1}=\int_{0}^{\infty} v_{t}^{t} p_{x: x-s} \mu_{x+t} d t
$$

Using formulae (1) and (2) and making some reductions we find
where

$$
\begin{equation*}
\bar{A}_{x: x-s}^{1}=\kappa \bar{a}_{x: x-s}+\frac{e^{-(\delta+2 \kappa)}\left(\omega^{\prime}-x+s\right)}{I_{1}\left(u_{3}, p\right) \bar{l}_{1}\left(u_{4}, p\right)\left(\gamma^{p+1}-\delta I_{2}\left(u_{5}, p\right)\right.}, \tag{4}
\end{equation*}
$$

$$
\begin{aligned}
& u_{3}=(\omega-x)(\gamma+\kappa)(p+1)^{-\frac{1}{2}}, \\
& u_{4}=(\omega-x+s)(\gamma+\kappa)(p+\mathrm{I})^{-\frac{1}{2}}, \\
& u_{5}=\left(\omega^{\prime}-x\right)\left(\gamma^{\prime}-\delta-2 \kappa\right)(p+1)^{-\frac{1}{2}}
\end{aligned}
$$

and I_{1} refers to the single-life functions. (In place of the product $I\left(u_{3}, p\right) I\left(u_{4}, p\right)$ the equivalent joint-life function may be used.) I_{2} is derived by fitting the product $(\gamma+\kappa) e^{-u \vee(\nu+1)}\{u \sqrt{ }(p+1)\}^{p} I(u+h, p)$ with a new Type-III curve for which the terminating age is ω^{\prime} and γ^{\prime} is equal to p / a^{\prime} for this curve.
25. Approximate moments of I_{2} were found for the A 1924-29 table by forming the products $(\gamma+\kappa) e^{-u \sqrt{V}(p+1)}\{u \sqrt{ }(p+1)\}^{p} I(u+h, p)$ for various values of h at intervals of $\cdot 5$ in u. These are given in Table 12. The error in calculating the moments may be gauged by comparison of the values for $h=0$ and $h=6 \cdot 0$ with Table 6.
26. The values of $\omega^{\prime}, a^{\prime}$ and N corresponding to the A 1924-29 table are also given in Table 12.

Table 12. Moments and Constants for contingent assurances (see paragraph 25)

h	Mean	μ_{2}	A 1924-29 ult.		
			ω^{\prime}	a^{\prime}	N
\bigcirc	3.90192	. 85280	101.017	31-159	$\cdot 49895$
$\cdot 5$	3.71824	. 88229	103.637	31.693	. 64093
$1 \cdot 0$	3•58164	-91618	105.812	$32 \cdot 296$	$\cdot 76473$
$1 \cdot 5$	3.48714	-94316	107.376	$32 \cdot 768$	-85924
$2 \cdot 0$	$3 \cdot 42449$	-96292	108.445	33.110	-92224
2.5	$3 \cdot 38652$	- 97740	109.138	$33 \cdot 358$	-96001
3.0	$3 \cdot 36526$	-98684	109550	$33 \cdot 519$	$\cdot 98052$
$3 \cdot 5$	3.35421	-99255	ro9.778	33.615	-99075
$4{ }^{\circ}$	$3 \cdot 34892$	-99560	109.893	$33 \cdot 667$	-99547
$4 \cdot 5$	3'34654	-99713	109.948	$33 \cdot 693$	- 99750
$5 \cdot 0$	3.34552	-99783	109.972	33.705	-99833
$5 \cdot 5$	3.34512	-99811	109.982	33.710	-99867
$6 \cdot 0$	$3 \cdot 34497$	$\cdot 99823$	109.986	33.712	'99879

27. Values of $\bar{A}_{x ; y}^{1}$ at 3% calculated from formula (4) are given in Table I3 together with 'true' values calculated by the formulae

$$
\begin{aligned}
& \bar{A}_{x x}^{1}=\frac{1}{2} \bar{A}_{x x}, \\
& \bar{A}_{x y}^{1}=\left(\bar{a}_{x y}-p_{x} \bar{a}_{x+1: y}\right)+\frac{1}{2}\left(p_{x}!p_{x+1} \bar{a}_{x+2: y}-2 p_{x} \bar{a}_{x+1: y}+\bar{a}_{x y}\right)+\ldots
\end{aligned}
$$

and the results nced no comment.

Table 13 . Values of $\bar{A}_{x y}^{1}$, A $1924-29$ ult., 3%

x	y	Approx.	True	x	y	Approx.	True
20	20	$\cdot 1604$	$\cdot 1608$	40	20	.365	.360
30	30	$\cdot 1977$	$\cdot 1984$	60	40	$\cdot 583$.582
40	40	$\cdot 2475$	$\cdot 2482$	80	60	$\cdot 751$.760
50	50	$\cdot 3077$	$\cdot 3069$				
60	60	$\cdot 3690$	-3693	60	20	.632	.628
70	70	$\cdot 4233$	$\cdot 4232$	80	40	$\cdot 848$	$\cdot 848$
80	80	$\cdot 4652$.4583				

CONCLUSION

28. These further notes on the incomplete gamma function technique are presented in the hope that in the principles developed may be found some ideas for development. They are essentially of a research character, since it is clear that for many practical problems the classical methods based on prepared tables and commutation columns would be more appropriate.
