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SOME NOTES ON INTERPOLATION 

BY HUBERT VAUGHAN, F.I.A. 
General Secretary and Actuary of the Mutual Life and Citizens’ Assurance 

Company, Ltd., Sydney, Australia 

1. THE CONNEXION BETWEEN CERTAIN INTERPOLATION 
AND GRADUATION FORMULAE 

IT was shown by G. F. Hardy (J .I.A. Vol. XXIII, p. 351) that Woolhouse’s 
system of interpolations, used in graduating the HM Table, can be expressed in 
summation form; and other interpolation methods, such as Sprague’s oscu- 
latory formula, were later made the basis of summation formulae of graduation. 
In the Transactions of the Second International Actuarial Congress, p. 78, Karup 
sketched a method by which a more general relation might be established; and 
this is further developed by Lidstone in J.I.A. Vol. XLII, p. 134.

The relation between interpolation and graduation by summation is, how- 
ever, closer than may be generally realized. To illustrate this we show below 
the numerical coefficients when an interval is subdivided by five, using 
Lagrange’s formula taken centrally: 

and so on. 
Inspecting the column showing the successive multipliers applied to u10, it 

will be seen that u10, first enters into the calculation when it is multiplied by 
– .12 to ascertain u3. It is then, in the calculation of further interpolated values, 
multiplied successively by - .08, zero, + .12, etc. It is last used in ascertaining 
u17, for which purpose it is again multiplied by - .12. Exactly the same multi- 
pliers, fifteen in number, are applied successively to each of the given terms 
u0, u5, etc. These multipliers, written in the order of their appearance, are : 

This set of coefficients, especially if graphed out, will have a familiar appearance 
-that of the expanded coefficients of a summation formula of graduation. This 
is not surprising because they are in fact the coefficients of Woolhouse’s formula 
multiplied by five. 

It follows that this graduation formula could, if so desired, be used as an 
interpolation formula for the subdivision of intervals by five. If we write 
down every fifth term of a series, filling in the gaps with zeros, and apply 
Woolhouse’s graduation formula-multiplied by five, we shall be using only three 

Richard Kwan
JIA 72  (1946)  0482-0497



Some Notes on Interpolation 483 

of the expanded coefficients in ascertaining each value, the remainder being 
multiplied by zeros. In ascertaining u3, for example, the only effective coeffi- 
cients will be the fifth, tenth and fifteenth, viz. .28, .84 and - .12, which are the 
Lagrange coefficients as shown in the second paragraph above. 

It is not merely the case that the graduation formula can be connected with 
the interpolation formula. In effect it is the interpolation formula. To show 
that this is general, a preliminary proposition will now be enunciated. 

If ux is a polynomial of the (n - I)th order (i.e. if nth differences vanish) and 
the operation [k]n is applied to a series consisting of every kth value of ux, with 
zeros interpolated, the result multiplied by k will exactly equal the result 
obtained by applying the same operation to the complete series of ux. 

For convenience ax will be used to denote the terms of the series 

so that ax equals ux when x is divisible by k, and otherwise ax = zero. 
is used to indicate the central difference for an interval of one, and k the 

central difference for an interval of k. [k] means, as usual, the sum of k con- 
secutive terms taken centrally. 

For any series of arithmetic numbers whatever, n[k]n = nk. This is the 
symbolic expression of an identity arising from the nature of the operations. 
It is obvious that , and the identity still holds if each operation is 
performed any number of times. 

Now nkax is always zero, because for some values of x we are operating on 
terms of a polynomial of the (n - 1)th order, and for others only on a series of 
zeros. Hence n [k]n ax also is always zero, so that [k]n ax must be a polynomial 
and of an order not higher than the (n - 1)th. (It is, in fact, of the (n -1)th order, 
but it is not necessary to the proof to establish this.) We can therefore say that 

[k]n ax may be expressed in the form where the c’s are 
the same for all values of x. 

If now we apply the same operator [k]n to the series u1,uk+1,u2k+1 with zeros 
interpolated, the same reasoning holds good. The same operations are applied 
to a series of exactly the same mathematical form, (x + 1) taking the place of X. 
We must therefore reach a polynomial of the same form, with the same coeffi- 
cients c0, c1, etc. In other words, the result of operating on u1, uk+1, etc., is 
identical with the result obtained from u0, uk, etc. 

We can therefore say that 

= etc. 

Adding k successive expressions of the above form, the law of distribution 
applies, so that the total is 

i.e. the series of [k]nux. 
[k]n (u0 + u1 + u2 + u3 + etc.), 

This proves our theorem that the result of retaining only every kth term is to 
yield exactly 1/kth of [k]nux. 

To illustrate numerically what has been proved so far, we show in Table A 
the result of summing three times in fives a series of the second order, selected 
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arbitrarily. On the right of the table the same summations are applied to five 
times the quinquennial terms with o's inserted between. It will be seen that 
the columns of [5]3 in each case are identical. 

Table A 

Series 

5 

55 

3 
1 
0 
0 
1 
3 
6 

10 
15 
21 
28 
36 
45 
66 
78 

[5] 

5 
10 
20 
35 
35 
80 

110 
145 
185 
230 
280 

[5]2 

75 
125 
200 
300 
425 
575 
750 
950 

[5]3 

1125 
1625 
2250 
3000 

Series 

15 
0 
0 
0 
0 

15 
0 
0 
0 
0 

140 
0 
0 
0 

390 

[5] 

15 
1.5 
15 
15 
15 
15 

140 
140 
140 
140 
140 
390 

[5]2 

75 
75 

200 
325 
450 
575 
700 
950 

[5]3 

1125 
1625 
2250 
3000 

0 

From the foregoing the connexion between interpolation and summation 
formulae follows easily. 

It is known, from the work of G. F. Hardy, Todhunter and Higham, that 
with any given series of summations we can combine an ‘operand’ so that the 
result will reproduce a polynomial of any given order. For equal summations 
we have 

which, in the historic case of Woolhouse’s formula, becomes 

If we ascertain the consecutive terms of a polynomial series of the second 
order passing through u0, u5 and u10, sum these terms in fives three times and 
apply the operand (1 - 3 2), dividing by 125, we shall reproduce the series. But 
the third sum in fives, obtained from u0, u5 and u10, with added zeros, is exactly 
one-fifth of that obtained as above, so that we can obtain the five central terms 
of the same series by applying the formula to 

0, 0, 0, 0, u0, 0, 0, 0, 0, u5, 0, 0, 0, 0, 0, u10, 0, 0, 0, 0, 
dividing by 25 in lieu of 125. Seeing that only one polynomial curve of the 
second order will pass through three given points, the results so obtained must 
be identical with those of a central second-difference interpolation. 

The preceding paragraph is for simplicity written with reference to the 
particular case of Woolhouse’s formula, but the argument is general. It is 
known that a summation formula based on interpolations correct to an even 
order of differences will be correct to the next order, as the summation formula 
(applied to the whole series) takes terms equally from each side so that the 
coefficients of the odd orders of differences cancel out. Remembering this, we 
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can at once write down the graduation formulae equivalent to subdividing an 
interval by ordinary finite difference methods. For example, for the interval 5 : 

corresponds to 1st-difference interpolation,
corresponds to 2nd-difference interpolation,
corresponds to 3rd-difference interpolation,
corresponds to 4th-difference interpolation,
corresponds to 5th-difference interpolation.

We have now to consider the case of special methods where additional terms 
are added to an ordinary interpolation formula for the sake of osculatory 
properties or for any other reason. The above proof does not apply, because the 
interpolated curve will not, if extended, pass through all the points from which 
it is calculated. Sprague’s formula, for example, uses six points in obtaining 
each interpolated arc, but the arc, if extended, will not necessarily pass through 
more than two of those points. It will now be shown that if a term (or any 
number of terms) in a higher order of differences is added to an ordinary 
finite-difference interpolation, the process can still be expressed in summation 
form with an addition to the operand only, even if the added terms are purely 
arbitrary. This follows directly from the fact that is always divisible by 
[k]n. 

To put the proof more explicitly, suppose that to an ordinary central second- 
difference interpolation between ux , ux+5, ux+10 , etc., we add 

and when interpolating for ux+1, ux+2, ux+3 and ux+4 respec- 
tively. If we write out the coefficients as in our second paragraph adding 
( - au0 + 3au5 - 3au10+au15) to u6 and so on, we find that to the series of multi- 
pliers we must add 

+ a + b + c + d + 0 - 3a - 3b - 3c - 3d + 0 + 3a + 3b + 3c + 3d + 0 + a + b + c + d. 

The expression represented by these detached coefficients can obviously be 
written symbolically as 

which equals 

The special interpolation formula will therefore correspond to Woolhouse’s 
summation formula with one-fifth of the above addition. Remembering that 
there is a numerical divisor of 125, this amounts to adding 25 times the third 
differences of 0, 0, 0, a, b, c, d, 0, 0, 0 to the Woolhouse operand. 

Though the above is, for convenience, written for an extra term in 3, the 
argument is general. In practice the additional terms would be symmetrical: 
otherwise the interpolation and the summation formula would be lop-sided. 

As an example, Karup’s formula of interpolation, used for several English 
Life Tables, is equivalent to giving a, b, c, d the values -.016, - .048, + .048, 
+.016; this adds the coefficients (-.4+0+3.6-6.4+3.6+0-.4) to the 
Woolhouse operand (0 + 0 - 3 + 7 - 3 + 0 + 0), giving 

which is the operand found by Karup and King. 
(-.4+0+.6+.6+.6+0-.4) or (-2+0+3+3+3+0-2)÷5,
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To summarize, the above enables us to say explicitly: 
(1) Subdivision of an interval by k, using ordinary central differences correct 

to , corresponds to a summation formula of graduation with the summations 
[k]n+1. The operand, will be the expression necessary to make the graduation 

correct to (n+1)th differences when n is even, and to nth differences when n is 
odd. 

(2) If additional special terms are added to such an interpolation formula 
(for the purpose of osculation or other reason), the summations will still be 
[k]n+1 but the operand will alter. 

(3) In any case, the graduation expression, divided by k, can be used as an 
interpolation formula. 

II. INTERPOLATING FOR SMOOTHNESS 
The origin of the foregoing investigation was the thought that interpolation 

formulae designed for smoothness might be subjected to the test customary 
for summation formulae. 

If we consider the original terms as made up of two parts, a polynomial and a 
series of errors or departures from the true values, we can regard an interpolation 
formula from two angles. The order of differences to which it is correct indicates 
its capacity to reproduce a polynomial, and the smoothness in the flow of the 
coefficients might measure its capacity to pass smoothly through an irregular 
series of ‘errors’. As the coefficients of an interpolation formula come into the 
calculation of successive terms in the same order as in the related summation 
formula, the smoothing coefficient of the latter seems a reasonable index for 
comparing the relative smoothing properties of two interpolation formulae, 

The theory is, of course, open to criticism on the ground that the errors are 
not independent, and have not the same standard deviation, etc.; but, as with 
summation formulae, there is ground for expecting the comparison to give 
results approximating to those of a series of trials. 

When Sprague’s formula is used for an interval of five, we have six successive 
points on a polynomial are of the fifth order; but, since six points supply only 
one fifth difference, no two successive fifth differences of the final series need 
actually be equal. At the junction points only two differential coefficients are 
equalized; so that, while a degree of smoothness is ensured, its measure is not 
obvious. There are later formulae, some equalizing one differential coefficient 
only, some more than Sprague’s, others based on different principles. The 
method now used adopts an independent standard for comparing them. 

The smoothing coefficients quoted below do not imply that an interpolation 
method of graduation gives results of the same smoothness as the summation 
formula; that depends on other factors. The suggestion is only that when one 
of two graduation formulae has the better smoothing coefficient, the related 
interpolation formula will probably give the smoother interpolation on an 
irregular series. 

The following applies in particular to subdivision of an interval by five. 
The relative smoothing index for another interval would differ slightly. The 
smoothing coefficients have been calculated for 3, according to the usual 
practice. 
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Taking fifth-difference formulae first, we write the ordinary Everett formula 

below for reference: 

where . This, as already shown, corresponds to the summation 
formula 

The smoothing coefficient of this is found to be 1/67. 
The next step is to calculate, as a standard of comparison, the formula of the 

same range, correct to fourth differences, with the smoothest possible coeffi- 
cients for subdividing an interval by five. We have shown that the process is 
equivalent to ascertaining the best operand for a summation formula with the 
summations [5]5. The method of doing this can be found elsewhere (Larus, 
Transactions of the Actuarial Society of America, Vol. XIX; Vaughan, J.I.A. 
Vol. LXV); and the formula which has been ascertained is not very convenient 
for use, so that it is perhaps sufficient to say that the smoothing coefficient is 
found to be 1/117. This is the best value that can be obtained by any formula of 
the stated range and accuracy, and it can be used as a standard for assessing the 
various methods. 

Sprague's original osculatory formula (J.I.A. Vol. XXII), which replaces the
Everett coefficients of by x3 (X - 1) (5x - 7) ÷ 24 and a similar term in , has 
been put in summation form by Karup and by King. The smoothing coefficient 
turns out to be 1/103. The classic formula therefore passes the present test with 
honours. 

As a matter of interest it may be mentioned that after calculating the ‘ideal’ 
formula above, the fractional coefficients in the operand were, by methods 
described elsewhere, replaced by the simplest integral coefficients that would 
give the same approximate smoothing effect. The result was to rediscover 
Sprague’s formula from an entirely different approach. 

Shovelton’s formula ( .I.A. Vol. XLVII) is based on somewhat different 
principles and replaces the Everett coefficients by x2 (x - 1) (x - 5) ÷ 48 and a 
similar term. It is found that the smoothing coefficient of the related gradua- 
tion formula is 1/116, which is practically as good as possible. 

The above formulae are both correct to . The three next mentioned are 
correct only to . 

A formula of Henderson, published in T.A.S.A. Vol. XXII and quoted in 
Mathematics for Actuarial Students (Freeman), Part II, p. 153, replaces the 
Everett terms in and by the attractively simple form . 
However, the smoothing coefficient has the disappointing value of 1/73. It 
may be said that this formula was a by-product of Henderson’s difference- 
equation method, which is excellent. The latter method requires an artificial 
second difference Bx, to be ascertained from the difference equation 

If Bx is taken at the approximate value of the interpolation formula 
under consideration is reached; but the approximation does not seem to retain 
the smoothness. The coefficients of the simple formula are very close to those 
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of a straight fifth-difference interpolation, and the formula might therefore be 
regarded as one for quickly approximating to an ordinary fifth-difference 
interpolation, but not as replacing an osculatory formula. 

An earlier formula of -Henderson (T.A.S.A. Vol. IX) gave the very satis- 
factory result of 1/116. In this case the Everett coefficients of are replaced by 

and . This formula was successfully devised to fill 
an intermediate position between those of Sprague and Karup. It is correct 
to one more order of difference than Karup’s formula while retaining some of 
its simplicity. 

Jenkins’s interesting osculatory formula with final coefficients of form 
is related to a smoothing coefficient of 1/113. This is quite 

satisfactory, but the formula is not quite as simple as that last mentioned, and 
is correct to one order of differences less than Sprague’s or Shovelton’s. 

We now come to the simplest formula, that of Karup, used for recent ,English 
Life Tables. This equalizes one differential coefficient only at each end, and is 
correct only to second differences. The smoothing coefficient of the graduation 
formula related to a ‘straight’ third-difference interpolation is 1/52. Karup’s 
formula replaces the Everett coefficients of by and of 
course not being used. The relative smoothing coefficient is 1/105, and it is found 
that nothing better can be done with any similar formula of the same range. 

This confirms King’s remark that the simpler formula sometimes gives a 
curve nearly as smooth as the longer forms. The experiment has been made 
of interpolating between terms of the utterly irregular series quoted in J.I.A. 
Vol. XLII, p. 112, and it is found that here the shorter formula gives third 
differences quite as small as Sprague’s method. However, it must be re- 
membered that the smoothing coefficient does not tell the whole story; it 
supplies a guide to the result from an utterly irregular series, but correctness to 
a higher order of differences is valuable when the differences show some regu- 
larity. It is also the case that the smallness of is not a complete test of smooth- 
ness; and if the smoothing coefficient were computed from say a formula 
such as Sprague’s would show to more advantage. 

The verdict from this test is that existing formulae are very good of their 
type and no improvement can be expected from any new method on the same 
lines, but also that the gain in smoothness is definitely limited. 

It is interesting to note that, among ordinary interpolation formulae, those 
correct to an odd order of differences are the smoother. A second-difference 
interpolation corresponds to Woolhouse’s formula with a smoothing coefficient 
of 1/15. Third-difference interpolation would bring this to 1/52 (so that Wool- 
house would no doubt have attained a material improvement in smoothing by 
using another order of differences). For fourth differences the figure is 1/23, 
and for fifth 1/67. The reason for this is probably that for the odd orders the 
interpolated arcs each pass through two pivot points so that adjoining arcs have 
a pivot point in common. This suggests that in completing a series by inter- 
polation, if we go beyond first differences, we should go to third rather than 
second, adopting the convenient Everett formula. 

Interpolation combined with graduation . 
There is an inherent limitation to the smoothing power of the above methods, 

due to the condition that the pivot values must be unaltered. In the series used 
by Sprague to illustrate his formula, the first five values of are , 
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+ 1322, - 56, + 1605; and it is obvious that in such a case any interpolated 
curve passing through the assigned points must either have breaks of continuity 
or waves. 

Turning to the coefficients of an interpolation formula, set out in order as 
described in these notes, it will be seen that to reproduce given quinquennial 
values it is necessary that the central coefficient be unity and every fifth coefh- 
cient from the centre zero. This condition restricts the flow of the coefficients. 

When we abandon ordinary finite-difference methods for other formulae it 
may be that we are assuming the series to be other than a polynomial form. In 
that case we should logically search out the true form and use it. If we are 
assuming the series to be approximately a polynomial but subject to errors, why 
not retain liberty to alter the given values ? 

In J.I.A. Vol. L, p. 126, ' R.T.' (presumably Todhunter) described a method
for use ‘if the retention of the given values is not ‘material’. With present 
knowledge better formulae can be deduced, but the method is mentioned as 
perhaps the first on such lines. 

Jenkins (T.A.S.A. Vol. XXVIII) gave the following osculatory formula, which 
is both simple and effective: 

This corresponds to the ordinary Everett form down to S2. The coefficients of 
S* do not both vanish when x = o or I, so the formula replaces an original u, 
by ( uz - & S*U,) . 

The smoothing coefficient of the corresponding graduation formula for 
subdivision in fives is 1/197. The introduced ‘error’ has a slight graduating 
effect on the original values; and at this expense, if it be an expense, the smooth- 
ness of the interpolated series is materially improved in comparison with 
Sprague’s and similar formulae. 

Now we can, from the angle of the present paper, deduce the formula 
corresponding to the best possible smoothing coefficient. Such a formula, 
calculated to reproduce the assigned values, has already been mentioned as 
corresponding to a smoothing coefficient of 1/117. Granted freedom from the 
restriction, it has been found that this can be improved to 1/417. 

The calculated formula was then ‘touched up’ to obtain coefficients to only 
three decimal places. The result is 

y. = u,, --061S4uo, 

y+ = - *045u-~ + *1272+ + .614uo + *366u, - ‘057~~ - *oo5u3, 

yg = - .028u-, + ‘034~~i + .56ou,, + .476u, - .02X24, - ‘014~~) 

yt = - ~0142~~ - ~0282~~ + -476~~ + .56ou, + ‘034~~ - +028u,, 

y+ = - ~005u.-~ - *057u-,,-+ *366u, + .614ui + -127~~ - ‘045~~. 

It will be seen that the ‘error’ is - .06#. The related smoothing coefficient, 
after the reduction to three decimal places, is 1/413. 

The above can be expressed in an Everett form, but it is necessary to quote 
the numerical coefficients of 64 because the general expression in terms of x 
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is complicated. For the common case of subdivision by five, the values for 

are —.005, —.014, —.028, —.045 respectively. While this is 
simple enough, it was desired to find a formula that could be expressed in a 
simple mathematical form for any interval of interpolation. This was found in 
an interesting way. 

An attempt was made to deduce interpolation formulae by starting from 
summation forms; and, for certain reasons, a trial was made with 

The corresponding interpolation method turned out to be good but so close in 
effect to Jenkins’s formula that it was not worth suggesting as an alternative. 
The interesting fact was then noticed that if k were made infinite (i.e. the case 
of infinite subdivision where we would be interpolating a continuous curve and 
in effect aiming to minimize the differential coefficient in lieu of the finite 
difference) the formula would become exactly the same as Jenkins’s-a quite 
unexpected result. 

This suggested that the ‘ideal’ formula also might be simplified by calculating 
the general form for an interval of k, and putting . This led to formula C 
quoted below. The related smoothing coefficient, corresponding to subdivision 
in fives, is 1/366, which is sufficiently close to the best result obtainable. 

It was then noticed that this formula would be osculatory, although obtained 
without reference to that property; and that therefore it should be one of the 
family of formulae covered by the general form given by Reid and Dow 
(T.F.A. Vol. XIV, p. 188). Their general expression for fourth and sixth differ- 
ences of an osculatory formula in Everett form is: 

where b, e and f may have any numerical values. The form we had reached is 
, and it will be seen that this can be obtained from the general 

form by putting . 
The work, however, was not wasted as it indicated which simple cases of 

the general form are likely to be effective. Failing such a guide it would be 
possible to select a form of the general expression that would have increased 
error coupled with comparative loss of smoothing. 

Knowing the approximate form for maximum smoothing; two simple 
intermediate formulae were obtained. These, with Jenkins’s formula, form a 
series of four with graded degrees of error and smoothing power. They are 
listed in the following table, and the suggestion is that from them a formula can 
be selected which would limit change in the pivot values to the degree considered 
desirable in any case. 

Reid and Dow made a similar suggestion, involving the use of terms in . 
This has high smoothing power, but the wide range of the process may be 
thought an objection as eight pivot values (covering nearly forty ages when 
subdividing by five) are required for each interpolated term. The method 
now described provides a good measure of flexibility without going beyond . 

In the following table of formulae the expression in the second column 
replaces the coefficient of in Everett’s formula, the coefficient of being 
of the same form in . 
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Table of formulae 
Smoothing coefficient of 

Coefficient of Error graduation formula 
corresponding to sub- 

division by five 
Formula A 
Jenkins’s formula 
Formula B 
Formula C 

1/144 
1/197 
1/285 
1/366 

III. DIFFERENCE-EQUATION INTERPOLATION 
In the usual methods a direct expression for each interpolated value is obtained 

in terms of a few adjoining given values, two for first-difference interpolation, 
three for second-difference interpolation, and so on. It is possible to adopt a 
different approach, and ascertain definitely the interpolated terms which will 
have over the whole series the smallest possible sum of squared differences of 
any given order. The solution is quite simple, but requires the use of a difference 
equation which is of a form less generally familiar than the direct algebraic 
formulae. The arithmetical work need be no greater than for the older methods. 

Henderson (The Record, American Institute of Actuaries, Vol. XIII) obtained 
a simple difference-equation solution to the problem of interpolating an 
osculatory series; and, in T.A.S.A. Vol. XLIV, Spoerl has given a solution of the 
problem mentioned in the preceding paragraph. Spoerl’s approach was to 
connect the problem with the Whittaker-Henderson graduation formula B 
and, until the following work was completed, it was not noticed that the result 
would be identical. In the following the approach is direct, and the suggestions 
for a solution by factorization and for the method of constructing the series are 
thought to be new. 

Given uo, uk, u2k, etc., it is required to find u1, u2, etc., so that the summed 
squares of shall be a minimum. 

The necessary condition is that, if x is not divisible by k, 

Now ux is contained only in (n + I) successive values of so that (ignoring the 
ends of the series for the moment) we have 

When n is odd, contains -ux, so that, by the ordinary rules of differentiation, 

contains +nux so that 



492 Some Notes on Interpolation 
and so on. Hence the first equation becomes 

i.e. When n is even the signs will be different, but the result is the
same. 

We have therefore established, for example, that, when subdividing by five 
to minimize the square of third differences, the interpolated series must be such 
that sixth differences are zero except at quinquennial points. 

At the beginning of the series some of the terms contained in will be 
lacking, and the last equation becomes successively 

from which we can deduce 
etc., 

and generally, when x is less than k, 

At the other end of the series similar conditions apply. 

As the result of the factorial form of these coefficients, etc., it 

will be seen that, if we treat beyond the end of the series as zero and difference 
n times to reach , we will here also reach a series of zeros except for ; 
so that we can legitimately regard the values of beyond the end as zeros, and 
on this understanding the statement that is zero (except for , 
, etc.) applies to the whole series including the ends. This is analogous 
to the position in difference-equation graduation as explained in The Calculus 
of Observations (Whittaker and Robinson), p. 306. 

We have still to find the values of when x is divisible by k. After ascertain- 
ing these it will be possible to complete the interpolation by continuous addition, 
if desired. It will not be necessary to calculate fresh leading differences for each 
interval, as the proposition covers the whole series. 

Before taking the next step, however, the above will be confirmed by an 
alternative proof to meet the possible objection that the vanishing of the first 
differential coefficient is not a complete test for a minimum. 

Alternative proof. Given that a series of ux has been interpolated following the 
above conditions, it is required to prove that any change will increase the sum of 

For simplicity the proof, though general, is written for the case when n = 3. 
If any positive or negative values, a1, a2, etc., be added to the series, ao, ak, 

etc., must, of course, be zero (since uo, uk, etc., are the given values), and for 
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all other values of is zero; so that is always zero, and we 
can write, for all values of x, 

If from all the terms of this form we gather the coefficients of we get 

After doing this for all values of x there will be no surplus terms because 
vanishes at the ends, so we find that 

Hence 
which proves the proposition that the summed squares for the altered series 
must exceed those of ux, and also shows that the excess is the exact total of the 
summed squares for the additions of ax taken separately. 

We turn back to the problem of ascertaining at the points where x is 
divisible by k, and for this it will be more convenient to write central differences. 
We require for uo, uk, u2lc, etc., and commence by writing the identity 

Since ux, is given at intervals of k, we know the left-hand side; but the known 
value is expressed as a linear compound of the unknown, so that the relation is 
a difference equation of the first order which we have to solve. A difference 
equation is, of course, subject to a multiplicity of numerical solutions as the 
process is an inverse one, but in this case we need the particular solution for 
which becomes zero at the ends. With fixed end conditions the solution is 
unique. 

As is zero, except at intervals of k, the only effective coefficients of [k]2n 
are at the same intervals. If co represent the central coefficient, c1 the coefficient 
k places from the centre, and so on, the above identity in this case becomes 

The c’s are expanded coefficients of and for such an 
expansion an expression is given in standard works on algebra; but perhaps the 
easiest method of obtaining the numerical values is to construct the coefficients 
of [k]2n by summation for any case required, e.g. 

1 1 1 1 1 

1 3 6 10 15 18 19 18 15 10 6 3 1 
1 4 10 20 35 52 68 80 85 80 68 52 35 20 10 4 1 

The figures underlined are the coefficients for subdivision of an interval by 
five when 2n = 4, so that in minimizing the squares of second differences, the 
difference equation becomes 

1 2   3 4 5 4 3 2 1
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Continuing for a few more lines we would find the coefficients, when n = 3, 

to be 21, 666, 1751, 666, 21, 
and, when n = 4, 

8, 1652, 18320, 38165, 18320, 1652, 8. 
In the case where n = 2, the equation is simple, especially as the right-hand 

side expressed in E’s can be factorized 

leading to the simple process of solution described later in detail. 
When n = 3, the factors are less simple, but still quite practical with the help 

of a multiplying machine. They are 

As one objection to the method of minimizing differences has been that at 
the ends of the series the order of differences concerned tends to vanish, making 
for an ‘artificial situation at the ends’, it may now be pointed out that these end 
conditions may, if desired, be ignored. By a modification of the ‘alternative 
proof’ above, it can be shown that, if we adopt end differences to suit our own 
idea, the method will yield the minimum values obtainable with those end terms. 
It is possible, if desired, to apply similar initial conditions to those put forward 
for Henderson’s osculatory method. (In fact, as Spoerl shows, the latter is a 
limiting case of the present method.) 

Under Henderson’s and Spoerl’s methods for second differences, a function 
Bx is ascertained which replaces in Everett’s formula; but, as already pointed 
out, after ascertaining all the differences of one order we need only one initial 
set of differences to enable the series to be completed by continuous addition. 
The latter method is therefore now suggested. It will be found that owing to the 
nature of the method the accumulation of error is not troublesome. 

Taking the case where n = 2 and k = 5, and using vx to denote the given 
series of quinquennial values with intermediate zeros, we have for every value 
of x 

Taking the finite integral of each side twice, 

We need not concern ourselves with constants of integration, as the solutions of 
the last difference equation will include those of the previous one. 

Since is zero except at quinquennial points, [5]2 is at such points equal 
to a multiplication by 5 and of course vx = ux; so at the quinquennial points 
we have simply 

(1) 
By solving this we obtain at intervals of 5; and the intermediate values we 
can fill in by first-difference interpolation, because, as previously seen, the 
operation is equivalent to this. 

Having found the whole series of , we need only one value of to enable 
the whole of the u’s to be constructed. Since each set of five successive values 
of is in arithmetical progression, we can write accurately (when x is divisible 
by 5) the ordinary advancing difference formula 
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and, since and this becomes 

495 

so that (2) 
and, when is zero, (3) 

Equations (1) and (3) are all we need to obtain an interpolation with the 
smallest possible squares of second difference. Equation (2) can be used, if 
desired, to check the at any point or to ascertain if we prefer in any case 
that should not tend to zero at the ends. 

We can minimize the squares of third differences by a similar process, the 
calculation required being about the same as for a Sprague interpolation. The 
work for the second-difference case is about the same as for Karup’s simple 
formula, or for an ordinary third-difference interpolation. 

It may be remarked, in passing, that we could also work in summations 
because it can be deduced that 

leading to another simple process. We could solve the difference equation for the 
given quinquennial u’s, make a first-difference interpolation (to replace [5]2), 
and sum twice in fives to get the interpolated values without using differences 
at all. The process above suggested is, however, perhaps slightly shorter, though 
not so compact in expression. 

An actual example of the suggested procedure may clarify the explanation. 
In Table B the series shown is that of q[x]+3, used by Sprague (J.I.A. Vol. XXII, 
p. 281) to illustrate his osculatory formula, the figures being multiplied by 106 
to save writing the decimal points. The next column contains the second central 
differences. 

To solve the difference equation (1), we calculate the next column, ax, so 
that starting with a20 = o. For example, 

To obtain the next column, bx, we start at the foot with a zero and apply the 
same process backwards to ax; so that b60, for example, 

Since and , 
we now have 
so that bx is a solution of difference equation (1). 

This process is equivalent to solving the equation by factorization, since we 
have in effect replaced by its factors , and 
effected the solution in two steps. 

However, bx is not quite the solution that we want, and we can obtain a 
solution starting with zero by a simple adjustment. To obtain other solutions 
we may add to bx any solution of the difference equation , 
the solutions being of the form , where p and q are any numbers. 
We can take p as zero if we wish to adjust the beginning of the series, or q as 
zero if we wish to adjust the end. Hence in the next column we write +7.13, in 
the next line one-fourth of this with the sign changed, and continue until in a 
few lines the adjustment becomes negligible. 
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Table B 

x ux ax bx Adjustment x 

25 

77.34 
—27.48 

.03 85.44 40 
— .01 40.87 45 

103.36 50 
283.61 55 

579.52 
576.46 70 

46.99 -129.08 9419.05 
57.11 -82.09 9289.97 67.23 -24.98 9207.88 
77.35 42.25 9182.90 

30 56.38 119.60 9225 30 
35.41 175.98 9344.60 
14.44 211.39 9520.58 

— 6.53 225.83 9731.97 
—27.50 219.30 9957.80 

35 — 4.91 191.80 10177 35 
17.68 186.89 10368.80 

62.86 
85.45 307.70 

40 11313 40 

20 
0 

5.35 -246.20 10709 20 
10.70 -240.85 10462.80 
16.05 -230.15 10221.95 
21.40 -214.10 9991.80 

-192.70 9777.70 
25 

26.75 
36.87 -165.95 9585 

20 10709 0 -7.13 7.13 0 20 
25 9585 764 191.00 28.52 -1.78 26.74 25 
30 9225 1312 280.25 76.90 .44 30 
35 10177 184 -24.06 -27.37 -.11 35 40 11313 1500 382.52 85.41 
45 13955 1450 266.87 40.88 
50 18047 3055 697.03 103.36 

41.56 60 
65 

0 75 
x Interpolated series x 

55 25194 5401 1175.99 283.61 
60 745.75 
65 

37742 4159 41.50 
54449 12324 2894.56 579.52 

70 83480 12118 2305.86 576.46 
75 124629 0 

40.27 204.57 
244.84 

10555.69 
10760.26 
11005.10 

Adding the adjustment to bx, we reach in the final column the values of 
for our interpolation. It will be found that any three consecutive lines of 

this column multiplied in order by 4, 17 and 4, will add to the corresponding 
in the third column. 
The explanation may seem rather laboured, but it is desired to make the 

process clear to a reader who may not be versed in difference equations. The 
actual work consisted only of a few subtractions and divisions by four, and took 
less time to do than to describe. This work replaces that of calculating the 
leading differences for á Karup interpolation by King’s method. 

Now from equation (3), 

=—246.2. 
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The lower part of Table B shows the completion of the interpolation. The 

values of which we have obtained are written at quinquennial points and 
underlined. They have been taken to the nearest five or zero in the last decimal 
place to simplify the arithmetic, and appear one line higher as we are now using 
advancing in lieu of central differences. The intervening values of are filled 
in by first-difference interpolation, and, starting with as above, 
we can complete the series of u’s. The work has been carried only to u40 to 
compare with Sprague’s example. 

It will be noticed that the original values are in each case reproduced correctly 
to an integer. If sufficient decimal places had been used the reproduction would 
have been exact. We have carried the work for twenty terms without needing 
an adjustment for accumulated error, although is correct only to .05. It was 
not thought worth while to use more decimal places as Sprague took the q’s 
to the sixth decimal, and further extension seemed superfluous. Any accumu- 
lation of error that might appear could be met by adjusting a by say .05, or a 
half-way down the series could be checked by equation (2) if it were thought 
worth while. 

It will be seen that the successive arcs of the interpolated series overlap, 
u24 to u31, for example, being on one polynomial arc, u29 to u36 on another, and 
so on, so that adjoining arcs have three points in common. This incidentally 
explains why in the limiting case, when the interval of interpolation is infinite- 
simal, this process becomes identical with Henderson’s osculatory method. 

It will be noted that the present method covers the whole series while 
Sprague’s interpolation commences at age 30. 

An interpolation of the same series has also been made for third differences, 
using the factorization method quoted earlier. With a multiplying machine, 
the process is not unduly onerous. 

Comparative differences for the small portion of the series quoted by Sprague 
(ages 30 to 40) are as follows: 

Sprague 

+74 -26 -17 +48 -43 +20 
+5 -23 +27 -18 +4 -5 -14 -1 +24 
-15 +23 +19 
+8 +42 -15 
+50 +27 
+77 

Difference equation for second differences 

+56 -21 +1 
+35 -20 -2 
+15 -22 +2 
-7 -20 +42 
-27 +22 0 
-5 
+17 

+22 +2 
+24 -2 

+41 +22 
+63 

Difference equation for 
third differences 

+54 -20 
+34 -23 

-3 

+4 
+11 -19 +12 
-8 -7 +15 -15 +8 +11 
-7 +19 +4 +12 +23 0 
+35 +23 
+58 

AJ 33 




