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SOME PROBABILITY RESULTS FOR MORTALITY 
RATES BASED ON INSURANCE DATA 

BY JOHN E. WALSH 

of the U.S. Naval Ordnance Test Station 

INTRODUCTION 
IT is not usual in mortality investigations of insurance data to associate exactly 
one unit with each life. It is easier to use policies or sums assured or some 
variation of policies and sums assured. But a proper statistical test of graduated 
rates of mortality derived from such an investigation cannot be made unless 
the effect of the variable number of units associated with each life is known. 
Beard and Perks (1949, J.I.A. LXXV, 75) g ave, for four different sampling pro- 
cesses, formulae for the variance of the distribution of deaths for a mortality 
study based on policies, and Daw (1951, J.I.A. LXXVII, 261) illustrated the 
formulae by numerical examples on various hypotheses. In particular, he 
showed that the sampling process employed had little effect on the numerical 
results, but that the frequency distribution of the number of policies held was 
very important. The formulae derived by Beard and Perks assumed that the 
frequency distribution of the universe of number of policies held was known. 
In a discussion on a paper on graduation, Perks (1951, J.I.A. LXXVII, 427) 
suggested that to deal with the duplicates problem Offices should be asked to 
write a card, not for each policy in force, but for each policy included in the 
experience on becoming a claim by death. The duplicates distribution could 
be obtained from the claims. If the name of the life assured, the date of birth, 
the date of death, and the class of assurance etc., were put on the card, it 
would be possible to bring together all claims in all Offices on the same life. 

His intention was clearly to presume the distribution of the universe of 
duplicates from the distribution of the claims duplicates. Probably a process 
of graduation would be employed, itself needing to be tested. In the present 
note a statistic is put forward based directly on the rates of mortality to be 
tested and the distribution of claims duplicates; from this statistic significance 
tests and confidence intervals for the true mortality rate may be obtained. The 
lives of the investigation are not assumed to have the same mortality rate or 
to be observed during the same period. The resulting tests and confidence 
intervals are nearly 100% efficient. 

If there are no duplicates the statistic of this note [formula (I) seq.] becomes 

where N is the number of persons (or policies since there are 

no duplicates) under observation, q’ is the observed rate of mortality (number 
of deaths divided by N), and q is the true value of the rate of mortality (expected 
value of q’). This statistic differs, by the substitution in one place of q for q’, 

fromthestatistic , which I showed in my paper On the large 

sample distribution of mortality rates based on statistically independent lives (1950, 
T.S.A. II, 228) is nearly standard normal for large N. The proof assumed that 
each of the N persons of the investigation represented statistically independent 
observations and that the probability of death for the ith person was qi. The 
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rate of mortality Q was given by and it was assumed that all the q1 

were small. In the discussion on the paper Aditya Prakash pointed out that 
the theorem also held if all the qi were close to unity. 

The slight variation which has been made to the statistic in the present note 
has also slightly modified the condition for which the main theorem of the note 
holds. Instead of the qi having to be all samll or all large it is assumed that none 
of the qi differ from each other widely. 

The sampling process envisaged is the repeated exposure of batches of 
lives who each time hold the same number of policies (differing between the 
lives in one sample) and are each time subject to the same chance of dying 
(again differing between the lives in one sample). This may seem somewhat 
restrictive but as Daw shows (J.I.A. LXXVII, 261) the sampling process em- 
ployed is not very important. If all the qi are equal (=q) then the sampling 
process is similar to stratified sampling where the respective proportions of 
lives holding the same number of policies are fixed by the proportions that 
occurred in the sample being examined. 

STATEMENT OF RESULTS 
As a first step in the presentation of results, let us consider some notation: 

E = number of units exposed to risk, 

d = number of deaths, 

ui = number of units associated with ith death (i = 1, . . ., d), 
q’ = observed mortality rate 

q = ‘ true ’ mortality rate (expected value of q’). 

The principal result of this paper is that the probability distribution of the 
statistic 

(1) 

is very nearly normal with zero mean and unit standard deviation (i.e. very 
nearly standard normal) if the number of units exposed to risk is large enough. 

An exact specification of a lower bound for the values of E which are suffi- 
ciently large for application of (I) is difficult to obtain. However, it is possible 
to state some approximate rules which are believed to be on the conservative 
side. Let 

û=estimate of average number of units per life for the lives considered 
(obtained without knowledge of d and the ui), 

= estimate of q (obtained without knowledge of d and the ui), 
where û tends to exceed the quantity it estimates while tends to under- 
estimate q. Rough estimates with these properties can often be obtained from 
previous mortality studies. The values of û and are important only in an 
order of magnitude sense. An error of over 25% in both values could be 
tolerated. It is important, however, that û and be specified without any 
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knowledge of the value of d and the values of the ui. Otherwise the probability 
distribution of (I) might be appreciably biased by the additional conditions 
imposed on the data. 

The approximate rules concerning the accuracy of (I) are 

Questionable validity if 
Rough accuracy if 
Moderate accuracy if 
Good accuracy if 
Excellent accuracy if 

It is believed that the accuracy is usually at least as good as these rules indicate. 
The rules are of a heuristic nature, and no attempt to furnish a rigorous proof 
of their validity will be made. However, an outline of the theoretical con- 
siderations which motivated their selection is presented in the Derivations 
section. 

For the ordinary type of mortality investigation, data are obtained for 
several periods (e.g. age groupings). If the value of E for such a subdivision 
is less than 20û/q^(1-q^) for that subdivision, it is usually possible to combine 
the data for this period with those for one or more adjoining periods so that E 
for the combined periods exceeds 20û/q^(1-q^) for the combined periods. This 
should be done without any knowledge of the values of d and the ui. The pro- 
cedure of combining adjoining periods leaves û about the same, increases q^, 
and increases E. 

Confidence intervals for q can be derived on the basis of (I) and its pro- 
perties. Significance tests can be obtained from these confidence intervals. 
Let us consider the situation for one-sided and symmetrical confidence inter- 
vals and significance tests. In the derivations the quantity K6 is used to denote 
the deviate of the standard normal distribution which is exceeded with 
probability E. 

If the probability distribution of (I) is standard normal, the following 
relations hold: 

Use of monotonicity properties, combined with the solution for q of the 
quadratic equation defined by 

and selection of the appropriate root, shows that 

Here the quantity s6 is defined by 

(2)
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The probability relations (2) define one-sided confidence intervals for q (with 
confidence coefficient equal to E). 

Two-sided confidence intervals for q can be obtained as the complement of 
combinations of two non-overlapping one-sided confidence intervals. As an 
example, if E<½, 

is a symmetrical confidence interval for q with confidence coefficient equal to 
1-2E. 

If, as is often the case, the value of sE is so small that terms involving s²E can 
be neglected, the forms of the confidence intervals are greatly simplified. For 
example, the symmetrical confidence interval with coefficient 1-2E(E<½) 
becomes 

An analysis which shows that these tests and confidence intervals are nearly 
100% efficient is outlined in the Derivations section. 

Experience indicates that the standard normal tends to furnish an accurate 
representation of the distribution of quantities of the type (I) near the mean 
value; also that this accuracy decreases as the deviation from the mean in- 
creases. This suggests that values of E which are near o or I be used only when 
the accuracy of the standard normal as an approximation to the distribution of 
(I) is good. For example, use of a value of E which deviates from o or I by as 
little as .005 would probably not be warranted unless E >=100û/q^( 1-q^). 

This paper shows that asymptotically (E- 00) the probability distribution 
of (I) is normal with zero mean and standard deviation very nearly equal to 
unity. Some restrictions concerning the probabilities of death and the number 
of units associated with a life are used in the proof. However, these restrictions 
do not appear to have much practical significance. This analysis is presented 
in the Derivations section. 

DERIVATIONS 
Asymptotic probability distribution oƒ(1). First let us consider some additional 

notation. Let 

N = number of lives, 

Uj = number of units for jth life (j = 1, . . . , N), 

Zj = random variable which assumes the value 1 if the jth life dies during 
its period of observation and the value o otherwise (j = 1, . . . , N), 

qj = probability that jth life dies during its period [of observation 

Then 
(j = 1, . . .,N). 

Thus the statistic (1) can be written in the form 

(3) 
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In the derivations it is assumed that the Zi are statistically independent, that 
the qi are such that qi ( 1-qi) is bounded away from o, and that 

(4) 

These restrictions do not seem to be very important from a practical point of 
view. They should be approximated for any reasonable type of mortality 
investigation and in particular relation (4) is obviously true if Ui and therefore 
max Ui² is bounded. The Ui, qj, N, and E are fixed quantities which do not 

have probability distributions. It may be noted that for if 

on the contrary N were bounded by K, Uj and would also be bounded. 

The quantity Zi represents a sample value from a binomial population for 
which probability of value 

probability of value 

Consequently, for 

expected value of 

variance of (5) 
expected value of 

The statistic (3) can also be expressed in the form 

The method of proof consists in showing that the asymptotic probability dis- 
tribution of 

is standard normal, while the quantity 

(6) 

(7) 

converges in probability to a value which is very near unity. Then, on the basis 
of Cramér's Convergence Theorem (see reference (I), p. 254), the asymptotic 
probability distribution of(1) is normal with zero mean and standard deviation 
very near unity. 

First let us show that the asymptotic distribution of (6) is standard normal. 
This is done by using the Liapounoff version of the Central Limit Theorem 
(see reference (I), pp. 216-17) combined with the restrictions on the Ui, qi, 
N, E. Let b > o be a fixed lower bound for the value of qi ( 1 -qi). Then from 
(5) and the statistical independence of the Zi, 

variance of

expected value of
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Thus 

On the basis of (4), = o. Consequently the Central Limit Theorem 

is applicable and the asymptotic distribution of (6) is standard normal. 
Finally, let us show that (7) converges in probability to a value which is 

near unity. It is sufficient to show that this is the case for the quantity 

(8) 

Taking the square root of (8) only tends to make the value nearer unity but 
has no effect on the convergence in probability. The expected value of (8) is 

(9) 

For the usual type of mortality study, the value of (qj-q)/(1-qi) should be 
very small for almost all cases. Consequently the expected value of (8) 
should be very near unity. The variance of (8) has the value 

Thus, on the basis of (4), the variance of (8) has the limiting value o as 
Use of Tchebycheff’s Theorem (see reference (1), p. 253) shows that 

(8) converges in probability to its expected value (9) as 
Efficiency analysis. Let us consider the efficiency of tests and confidence 

intervals based on (1). If the value of the standard deviation of q’ divided by 
J( 1-q) were known (denote this quantity by R), the tests and confidence 
intervals for q based on the statistic 

(10) 

would be at least as efficient as those obtainable without this additional know- 
ledge. The quantity (10) has a probability distribution which is very nearly 
standard normal for the situation considered. However, the distribution of (1) 
is also nearly standard normal and (1) differs from (IO) only in that 
replaces R². This implies that the probability distribution of the endpoint of 
a one-sided confidence interval based on (1) is approximately the same as the 
distribution of the endpoint of the corresponding one-sided confidence interval 
based on (1O). A two-sided confidence interval is the complement of a com- 
bination of non-overlapping one-sided confidence intervals. Thus the prob- 
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ability distribution of the endpoints of a confidence interval based on (1)is 
nearly the same as the probability distribution of the endpoints of the corre- 
sponding confidence interval based on (10).This implies that confidence 
intervals obtained from (1)have approximately the same efficiency as those 
obtained from (10). Consequently significance tests based on these confidence 
intervals have about the same efficiency for the two procedures. However, 
the results based on (10) are at least as efficient as the best results obtainable 
on the basis of the data alone. Thus the efficiency of tests and confidence 
intervals based on (1) is nearly 1OO%. 

Motivation for rules. In the Statement of Results section, some approxi- 
mate rules for deciding when E is sufficiently large for (1) to be applicable were 
presented. It was conjectured that the accuracy is at least as good as the rules 
indicate. As a partial substantiation of this conjecture, the heuristic reasoning 
which led to the approximate rules is outlined here. 

The basis is Bernstein’s Theorem for the binomial distribution (see reference 
(2)). This result states that if n is the sample size and p the probability of 
‘success’, then the total number of ‘successes’ has a probability distribution 
which is very nearly normal if n>=62.5/p(1-p). If each life of the subdivision 
of data considered had the same probability of death and the same number of 
units, the corresponding equation using the notation of this paper would be 
N>=62.5/q(1-q). The accuracy required in this paper is nowhere near that 
sought by Bernstein. Consequently, for a straight binomial situation it is 
likely that the factor 62.5 could be reduced to the factor of approximately 5 
used in reference (3). On the other hand, the ‘standard deviation’ of q’ used 
in (I) is not fixed but has a probability distribution itself. Also the probabilities 
of death and number of units vary with each life while the values of N and q 
are estimated from the relations N = E/û, and q = q^, which may be noticeably 
in error (althoughusually on the conservative side). To allow for the inaccuracies 
and the additional variation, the minimum value of the factor was increased 
from 5 to 20 while the factor for excellent accuracy was increased from 62.5 
to 200. The intermediate factors represent interpolation for intermediate 
accuracies. 

APPENDIX 

In the analysis several well-known but non-elementary theorems of mathe- 
matical statistics were used. For convenience of reference, these theorems 
are stated in this section. 

Cramér's Convergence Theorem. Let ..be a sequence of random 
variables whose cumulative distribution functions converge to a cumulative 
distribution function F(x). Let n1, n2, . . . be another sequence of random 
variables which converge in probability to a value B>o. Then the cumulative 
distribution functions for the sequence , . . . converge to the cumu- 
lative distribution function F(Bx). 

The material for this theorem is given by Cramer (reference (1)p. 254). 
Central Limit Theorem (Liapounoff). Let be independent 

random variables and denote by mv and the expected value and variance of 
Let 

expected value of 
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be finite for all v.Also let 

If lim 

then the asymptotic distribution of 

is standard normal. See Cram& (reference (1),pp. 216-17). 
Tchebycheff's Theorem. Let be random variables and Let m1 and o2 

denote the expected value and variance of as then 
converges in probability to zero. See Cramér (reference (1), p. 253). 
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