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SOME STATISTICAL ASPECTS OF THE 
CONTINUOUS MORTALITY INVESTIGATION BUREAU’S 

MORTALITY INVESTIGATIONS 

BY W. F. SCOTT, M.A., Ph.D., F.F.A. 

ABSTRACT 
This article discusses the formulae for the select and ultimate exposed-to-risk in the CMIB’s mortality 
studies, and certain statistical aspects of these investigations. It is shown that there are difficulties in 
the traditional binomial approach to the distribution of deaths, particularly for select rates, and the 
use of the Poisson distribution, rather than the binomial, is advocated. 
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1. INTRODUCTION AND NOTATION 

The system of classification of policies used by the Continuous Mortality 
Investigation Bureau (CMIB) since its establishment in 1923(1) is according to: 

y = age nearest birthday 
and 

t = curtate duration. 

Thus, for example, 0(y,t) denotes the number of deaths in a given period among 
policyholders aged y nearest birthday with curtate duration t years. Similarly, the 
in force at timer years from a given 1 January, denoted by rP (y,t), is the number 
of policies in force at this time on lives aged y nearest birthday with curtate 
duration t years. The CMIB calculates the ‘in force’ on each 1 January, and hence 
obtains the ‘mean in force’ for any given calendar year by the formula: 

½ [0P(y,t) + 1P(y,t)] (1.1) 
where time is measured in years from the start of the year in question. Formula 
(1.1) is, of course, an approximation to the central exposed-to-risk for the 
calendar year, viz. 

(1.2) 

The central exposed-to-risk, and the corresponding deaths, may be aggregated 
over several calendar years; in practice, the CMIB uses quadrennia (1975-78, 
1979-82 and so on). 

According to the ‘traditional’ approach (that used before 1988), the ‘initial’ (or 
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‘q-type’) exposed-to-risk in respect of lives aged y nearest birthday with curtate 
duration t years is calculated by the formula: 

E(y,t) = (y,t) + ½ θ (y,t). (1.3) 

For a given select period, s years, the ultimate deaths, θ (y), and central 
exposed-to-risk, (y), at age y nearest birthday are calculated by the formulae: 

and 

where rP(y) denotes the number of ultimate policies in force at age y nearest 
birthday at time r, i.e.: 

E(y) is defined as: 

which equals 

We note that and so on, because the ultimate lives 
‘aged y’ are aged y nearest birthday, and are therefore followed from age (y - ½) 
to age (y + ½). For select lives, we note that lives aged (y - ½) to (y + ½) on death 
must have entered into assurance, etc., between ages ((y - ½) - (t - 1)) and 
((y + ½) - t), i.e. at age (y - t - ½) on average. It is therefore assumed that: 

etc. 

The maximum select period available in respect of CMI data is 5 years. By 
suitable aggregation, however, a shorter select period (or none) may be used. 
Mortality data may be collected on the basis of ‘lives’ or ‘amounts’ (i.e. weighted 
by size of benefit); except where otherwise stated, we shall refer to ‘lives’ data. 

2. STATISTICAL PROBLEMS OF THE TRADITIONAL APPROACH 

We now discuss the statistical basis employed in the CMI Reports, and by 
those constructing, mortality tables from CMI data, before 1988. For the purpose 
of graduation and other statistical calculations it was assumed that (ignoring any 
duplicate policies): 
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θ (y,t) ~ binomial (E(y,t),q) (2.1) 

where: 
q = q[y - t - ½) + t (2.2) 

If these formulae hold, the crude q-type death rate: 

(2.3) 

is an unbiased estimator of the true rate q, and the variance of is 
q(1 - q)/E(y,t). 

We shall consider the accuracy of formula (2.1). Let us first assume, for the 
sake of simplicity, that there are no surrenders or other terminations except by 
death, and that there are no fractional contributions to the exposure from 
‘beginners’ and ‘enders’. Each policy contributes a period of between 0 and 1 year 
to Ec(y,t), as shown in Figure 2.1. 

‘overlap’ of age (y-½) to (y+½) and duration t to (t+1) 
* 

_______ exact age (years) 

-I -----exact duration (years) 

Figure 2.1. 

In practice, there may be a tendency for assurance policies to be effected just 
before a birthday, due to premium increases at birthdays; likewise, there may be a 
tendency for pensions and annuity policies to be effected just after a birthday. If 
this were always the case, all the contributors to Ec(y,t) would each give ½ year 
less losses due to deaths. If there are no such tendencies, it is likely that the 
average contribution to Ec(y,t) will be approximately ½ year, less losses due to 
deaths, as policies will probably be taken out more or less uniformly over the year 
of age. 

We therefore consider the true position to be similar to that in which all lives 
contribute exactly ½ year, ignoring ‘losses’ of exposure caused by deaths. The 
exact entry age is either (y - t) (with exact duration t since entry), as shown in 

exact age (years) 

exact duration 
(years) 

Figure 2.2. 
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Figure 2.2, or (y - t - 1) (with exact duration (t + ½) since entry). We assume 
that, in each case, the probability of death within ½ year is ½q, where q is defined by 
formula (2.2). 

Since the average extra time that would have been spent as a (y,t) life by each 
such policyholder who dies may be taken as ¼ year, we have the following 
alternative model. Let us define the q-type exposed-to-risk as: 

(2.4) 
Instead of formula (2. l), we have: 

θ (y,t) ~ binomial (2.5) 

In particular, θ (y,t) has mean (y,t)q and variance (y,t)q(l - ½q). Thus: 

is, approximately, an unbiased estimator of q = q[y -t - ½] + t , and its variance is 
equal to q(1 - ½q)/ (y,t). The actual position is further complicated by the 
existence of surrenders and other terminations besides deaths, and by the 
fractional contributions due to ‘beginners’ and ‘enders’. These lead to even 
greater departures from formula (2.1) (see Hoem(2) for a discussion of the 
problems associated with fractional contributions to the q-type exposed-to-risk 
in non-select tables). 

The foregoing remarks do not apply with the same force to the ‘ultimate 
exposed-to-risk because each policyholder is generally an ultimate life aged 
(y - ½) to (y + ½) over parts of two policy years, although the problems 
mentioned by Hoem apply. 

3. THE POISSON THEORY 

We now consider the use of the central exposed-to-risk (called the ‘person- 
years of exposure’ by many statisticians) rather than the q-type exposed-to-risk. 
This approach has been considered independently by several writers (e.g. 
Week(3), Scott(4,5) and is largely adopted by Forfar et al.(6) and in a recent CMI 
paper(7). In the theory developed by Scott (4), it is not assumed that the force of 
mortality is constant over any age-range: the force of mortality is assumed to be 
continuous with respect to age, as one would expect from biological considera- 
tions (except in special circumstances, e.g. at the exact ages at which young 
people are first permitted to drive motor vehicles). 

According to this theory, the number of deaths, θ (y,t), is assumed to be 
approximately the same as would occur if (y,t) ‘replaceable’ lives aged 
(y - t - ½) on entry and with exact duration t were followed until duration 
(t + 1). That is: 

θ (y,t) ~ Poisson [ (y,t)m(y,t)] (3.1) 
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where: 

Using properties of the Poisson distribution: 
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(3.2) 

(3.3) 

is an unbiased and efficient estimator of m(y,t). Formula (3.2) is not the usual 
definition of the central death rate, but is that which arises naturally from the 
Poisson theory. An alternative symbol is (y,t). Similar remarks apply to 
formula (3.6). Having graduated { (y,t)}, the values of q[y- t - ½] + t may be found 
by the formula: 

(3.4) 

These results may be extended to multiple-decrement tables simply by adding the 
appropriate affix: α , ß, etc. 

This approach also applies to the ultimate rates. We have: 

θ (y) ~ Poisson [Ec(y)m(y)] (3.5) 

where: 

(3.6) 

It follows that: 

is an unbiased and efficient estimator of my-½. After one has obtained graduated 
values of my-½, qy-½ may be found by the formula: 

qy- ½ = 1 - exp( - my-½). (3.8) 

The Poisson theory has a number of statistical advantages, particularly in 
connection with the allowance for duplicate policies and for mortality by 
‘amounts’ (see Scott(5)). It is also much simpler than the binomial theory when 
there is more than one mode of decrement, or when the population under 
investigation is inhomogeneous. 
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