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1 Introduction and Summary 

Stochastic control has been used in insurance for some time for peculiar 
problems (see Martin-Lof [7], or Brockett[2]). In this paper we shall consider 
continuous time problems which lead to Hamilton-Jacobi-Bellman equations. 
These are problems of optimal choice of new business, and of optimal propor- 
tional reinsurance. Our objective function will be infinite time ruin probabil- 
ity (which is chosen for simplicity and for the purpose of illustration). Other 
objective functions (based on utility functions or on expected discounted div- 
idend) are possible and can be treated with essentially the same methods. 
See e.g. Asmussen and Taksar [1] or Hoejgaard and Taksar [6]. 

The corresponding problems with optimal excess of loss reinsurance and 
with optimal investment are dealt with in Hipp and Taksar [4]. 

We consider the classical Lundberg process for insurance business 

where S(t) is a compound Poisson process. So, S(t) = , 
where N(t) is a Poisson process - with constant intensity - which is inde- 
pendent of the independent and identically distributed claim sizes 

The number c is a fixed premium intensity. The classical infinite time ruin 
probability 
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is based on the assumption that the insurer does not change his or her risk 
management strategy, such as the reinsurance program, investment strat- 
egy, or writing new business. We shall consider ruin probability under the 
assumption that an adjustment of risk management decisions is possible in 
continuous time, and that this adjustment is chosen such that the ruin prob- 
ability is minimized. This leads to stochastic control problems which can 
be solved using Hamilton-Jacobi-Bellman equations. The usual steps for the 
solution are 

l transform the given problem into a Hamilton-Jacobi-Bellman (HJB) 
equation; 

l solve the HJB equation numerically; 

l for a smooth solution of the HJB equation, prove a verification theorem 
which states that the solution of the equation is a solution of the given 
problem. 

The first step in this process is purely heuristic, it is based on smoothness 
assumptions which are not justifiable.. The second step is the hardest one, 
while the third has two components: the dynamics and the initial condition. 
The argument concerning the dynamics is quite general: the HJB equation 
yields that the processes under consideration are (local) martingales and 
submartingales, respectively. The initial condition is needed to compare the 
two processes, and for this step we need arguments which are specific for 
each given problem. Roughly speaking, we want to compare two functions 
f1 and f2. We first show that f1(t) f2(t), and with an initial condition like 

we arrive at the desired result f1(t) f2(t) for all t. 

1.1 HJB equation for optimal new business 

To be more precise we consider a first example. This is the optimization 
of new business in the presence of a non traded fixed insurance portfolio 
which is modelled by a classical Lundberg process. Assume that at each 
time point t 0 a proportion b(t) of new business can be written from an 
independent risk process which is again a classical Lundberg process: if b(t) 
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is the proportion of new business held at time t, then the dynamics of the 
process including new business equals 

where c1 is the premium rate for the new business, and S(t,b) is the com- 
pound Poisson process with claim sizes Y1,Y2,... and intensity Sthe 
written proportion has influence on the premium rate and the claims inten- 
sity, but not on the claim sizes. Now the proportion is adjusted continuously 
in order to make the ruin probability as small as possible: 

For notational convenience we now switch to survival probabilities 

The proportion chosen at time t may depend on the history of the process 
R(s) up to time t; if a claim occurs at time t, then b(t) may not depend on 
the size of this claim. This is necessary for predictability of b(t). 

For (a) the ruin probability without new business we have 

This follows by considering the two distinct cases 

(1) 

there is exactly one claim in the interval [0,dt] which happens with 
probability dt , and after this claim of size X we are left with a surplus 
a-X; or

. there is no claim in the interval [0,dt] which happens with probabiity 
and we are left with a surplus of size a + cdt. 

Averaging over all pcesible claim sizes we srrive at the equation 

Assuming that &,(a) has a (right) derivative &,(a) we obtain equation (1). 
For the rum probability with new business we obtain in exactly the same 

way - with b = b(0) given - the equation 
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or, more explicitly 

An optimal choice for (whichmight be seen as the proportion written in 
the interval [0, dt]) is obtained by minimizing the bracket: 

(2) 
An optimal strategy for all time points is obtained by solving this Hamilton- 
Jacobi-Bellman equation for all state variables s, i.e. derived from a solution
(S(a), B(a)) of (2). This solution - if it exists - has the following properties: 

(3) 

and for arbitrary functions .B(s) we have 

(4) 

The optimal proportion written at time t is 

b(t) = B(R(t-)). 

Later in section 2 we shall see that the optimal strategy has to be restricted 
(since otherwise the optimal parameter would be respectively), 
and that it is bang-bang, i.e. takes extremal values only. Furthermore, 
the optimal strategy is unrealistic for application since even non profitable 
business will be written and sold. 

1.2 HJB equation for optimal proportional reinsur- 
ance 

As a second example we consider the optimization of expensive proportional 
reinsurance. For earlier different approaches to this problem see Hoejgaard 
and Taksar [5) or Dayananda [3].Ateach time point we can reinsure a 
proportion a(t) of our insurance portfolio, the premium for this reinsurance 
in an interval of length dt is a(t)c1dt, and this insurance is called expensive 
when 
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This assumption is needed to exclude the strategy a(t) = 1. Now our risk 
process has the dynamics 

where for fixed number a the process S(t,a) is compound Poisson with in- 
tensity and claim sizes 

In this case the HJB equation is 

(5) 

Here, the dependence on a is more complicated. According to real life con- 
straints the range of a must be restricted to 

2 Computation of optimal strategies 

2.1 Optimal new business 

Since the expression in brackets in the HJB equation (2) is linear in the 
infimum will be attained only if the set of admissible S is restricted. We 
shall introduce the constraints Then the supremum is attained by 

This means that one of the following equation must hold: 

or (6) 

(7) 

For the numerical solution of HJB we choose (0) arbitrarily and solve 
for (0) in (6) or (7). We choose the value which is smallest. We discretize 

Our updating and recursion for and 
is 

and = from (6) or (7), whichever makes smallest, and so on. 
At the end (i.e. when a sufficiently large multiple of is reached), a 
norming is performed to adjust the result to the restriction = 1: 
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The qualitative behavior of the optimal strategy (t) is best visible at 
the point s = 0, i.e. when the initial surplus is zero and the insurer is very 
close to ruin. The choice (0) = 0 or (0) = 1 depends on the size of 
computed with the two defining equations 

i.e. 

or 

or 

We have (0) = 1 if the first equation leads to a smaller (0), i.e. iff 

or 

This means that close to rum new business is written irrespectively of the 
mean claim size of new business. Even non profitable business will be written 
in order to collect premia, and this money will be used to pay the next 
claim. If the company survives, then at some large surplus s the (possibly 
non profitable) new business will be sold (b(t) = 0), and this will not be 
possible in real life. 

2.2 Optimal new business without selling 

For a more realistic setup we now consider constraint optimization: written 
business cannot be sold later. This means that we restrict the proportion 
functions (t) to the set of functions which are nondecreasing and bounded 
by 0 and 1. To solve this new problem we add a new state variable B which 
is the current proportion written. Our value function (s, B) is defined via 
the HJB equation 
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The initial conditions are (s,1)which is a classical rum probability, and
arbitrary values for (0, B) which must be adjusted with the norming proce- 
dure. The optimal strategy is 

where ß(s,B)is the point at which the supremum in (8) is attained, and 
B(t) is the proportion written at time t – . For the numerical computation 
we have to discretize the state space: s and B are integer multiples of the 
step size A (one could of course take two different step sizes for the s-values 
and the – values). We first compute (s, 1) for using 

For B = 1 - we have only two possible values for : = 1 and = B . 
We start with an arbitrary value for (0, B). Next, if = 1 then (0, B) = 
’(0, l), and if = B then (0, B) is taken from 

for s = 0. Notice that the last equation is the integro-differential equation 
for the classical ruin probability (s, B) with a fixed proportion B in new 
business. The decision for = 1 or = B is made according to the rule: 
minimize the value for ’(0, B). Hence 

The norming is done according to (k , B) = 1, and the following updating 
is used: 

For the next steps we similarly obtain 

and we use the same norming and updating procedure. 
Alternatively to the above approach, one could allow for selling of written 

new business via expensive proportional reinsurance. This would lead to a 
joint optimization of writing new business and writing reinsurance. 
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2 . 3 O p t i m a l p r o p o r t i o n a l r e i n s u r a n c e

For a solution of the HJB equation (5) we have to compute the expectations 

for all possible values of a. For simplicity we assume that the claim size 
distribution is an exponential distribution with mean l/ . Then the functions 
g(s,a} satisfy the differential equations 

The value function (a) has derivative 

(9) 

Again, the optimal strategy is given by a(R(t)), where a(s) is the point at 
which the minimum in (9) is attained. 

3 V e r i f i c a t i o n T h e o r e m

We shah consider only the case of new business with selling, i.e. without the 
restriction to non decreasing strategies b(t). Assume that the HJB equation 
admits a smooth solution ( (s), B(s)), i.e. (s) is twice continuously differ- 
entiable, B(s) is the value at which the supremum is attained, for which 

and 

Then the two relations (3) for B(s) and (4) for arbitrary functions (s) hold. 

Assume that (s) is the survival probability using the strategy 

and *(s) is the survival probability with strategy . Here and 

R*(t) are the surplus processes resulting from strategies B and B. Let * and 
be the ruin times for the processes R*(t) and (t), respectively. Consider 

the stochastic processes 
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and 

The dynamics of the two processes R*(t) and (t) are as follows: 

?? the process R*(t) has no jump in the interval [t, t + dt] with probability 
its increment in this interval is (c+B(R*(t-))c1,)dt. 

??the process R*(t) has a jump of size X with probability dt; and 

?? the process R*(t) has a jump of size Y with probability B(R*(t-))dt. 

For (t) we just have to replace *-objects by objects. 

This implies that by (3) the process V’(t) is a martingale, while (t) is a 
supermartingale according to (4). We have to consider the stopped processes 
since the two relations (3) and (4) hold for s 0 only. Hence 

On {r* = } we have R’(t) , and therefor 

(10) 

By dominated convergence this implies 

Similarly, 

With (10) we obtain 

and this optimal survival probability is attained using strategy B(R*(t-)). 
Notice that for most HJB equation the value function has to be convex 

and smooth. This is not obvious for value functions which are ruin proba- 
bilities: the clsssical ruin probabilities with discrete claim size distributions 
are neigther convex nor smooth, they are not differentiable. 
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4 N u m e r i c a m

4 . 1 e w u s i n e s s

We consider an exponential claim size distribution for both, new and old 
business. We take = 1 = 1, c = 2, c1 = 3,and the means of X and Y 
are 1 and 0.8, respectively. Figure 4.1 shows the survival probabilities with 
and without new business in the unrestricted case, together with the optimal 
strategy which is 1 up to s = 4.285, and 0 for larger values of the surplus. 
We obtain (0) = 0.5512. The corresponding values for the restricted case 
do not differ much, they are equal up to possible discretization error. So it 
might be that we obtain the same results for both, the restricted and the 
unrestricted case. 

4 . 2 r o p o r t i o n a l r e i n s u r a n c e

Again we consider claim sizes having an exponential distribution with mean 
1. We let c = 2,c1= 2.1, and = 1. As possible values for a we take 0 
and 0.5 in a first, and 0,0.25,0.5,0.75 in a second attemot. The resulting 
survival probabilities and optimal strategies are given in Figure 4.2. The 
optimal strategy in the second attempt takes the values 0 and 0.75 only. 
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