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Abstract

Renshaw and Verrall (1994) have suggested & stochastic claims reserving model which
reproduces the reserve estimates provided by the standard chain fadder model (subject 1o
constraints on the pattern of nepgative incremental claims). Their model falls within the
generalised linear modelling (GLM) framework and can be fitted easily using standard
statistical software packages. Having fitted the model, it is possible to obtain analytic
prediction errors of the reserves. The GLM framework suggests appropriate goodness-of-fit
measures, and also gives a choice of appropriate residual definitions which can be used for
informal diagnostic checks of the fitted model. Residuals can also be used in a bootstrap
exercise providing a computationally simple method of obtaining estimates of the reserve
prediction errors.  In this paper, we consider an appropriate residual definifion for this
purpose, and show how the bootstrap prediction etrors can be compuied easily in a
spreadsheet, without the need for statistical software packages. The bootstrap prediction
errors are compared with their analytic equivalent, and also compared with other methods
commonly used, including Mack’s distribution free approach (Mack 1993) and methods
based on log-linear models.

1. Introduction

In recent years, considerable aitention has been given to the relationship between various
stochastic models and the chain ladder technique. Stochastic models have been constructed
with the aim of producing exactly the same reserve estimates as the traditional deterministic
chain ladder model. At first sight, this might seem like a futile exercise: why use a complex
stochastic method {o fisxl reserve estimates when a simple deterministic method will suffice?
The auswer is that as well zs the reserve estimates, there are other aspects of the model whick
are of importance, such as the underlying distributional assumptions of the model being
fitted, estimates of the likely variability in the parameter estimates, and an estimate of the
goodness-of-fit of the model. It is also useful o know whete the data deviate from the fitted
model, and to have a sound framework within whick other models can be fitted and

compared.

To date, fwo models have been suggested as stochastic chain ladder models, Mack’s
distribution free approsch ¢(Mack, 1994), and Remshaw and Verrall's approach using
generaliged linear models (Renshaw and Verrall, 1994). Both models provide reserve
estimates which are identical to those provided by the deterministic chain ladder model
(under suitable consirsints explained in section 2), and allow estimates of reserve variability
to be caleulated, Other models have been proposed which provide reserve estimates which
are wsually close to those from the chain ladder model, but not identical.
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A key advantage of Renshaw and Vermall’s spproach is that it is embedded within the
generalised linear modelling framework, widely used in statistical modelling. Theory
associated with generalised linear models can be used to supgest how parameter estimates
can be obtained, and also to suggest appropriate goodness-of-fit measures and residual
definitions. The theory can also help in deriving analytic standard errors of prediction
(prediction errors) of reserve estimates,

Residuals can also be used in a bootstrap exercise to provide bootstrap standard errors. It is
important when bootstrapping to use a residual definition which is appropriate to the model
under consideration. Renshaw and Verrall’s stochastic chain ladder model sugpests a
residual definition which is appropriate for bootstrapping chain ladder reserve estimaies.
This residual definition deviates from the definition used in previous papers on bootstrapping
reserve estimates (e.g. Brickman er al 1993, Lowe 1994), and overcomes some of the
difficulties previousfy identified.

Analytic prediction errors involve complex formulae which are difficult to evaluate. On the

other hand, boatstrap prediction errors are remarkably easy to calculate, and can be computed
using a spreadsheet, without recourse to specialised statistical modelling packages.

In the following section, we provide a brief overview of a range of stochastic “chain ladder”
type reserving models, not just those mentioned above. Sections 3 mnd 4 introduce analytic
prediction errors and bootst.mp prediction errors. An example in which results from the
vatious models are compared is contained in Section 5. An outline of the calculations
required for the bootstrap prediction errors appears in the Appendix.

2. Stochastic “Chain Ladder” Type Reserving Models

A significant step in the search for a stochastic chein ladder model was made by Kremer
(1982) who focused on the logarithm of incremental claims amounts as the response and
regressed on two hon-interactive covariates,

let C, denote the incremental claims amownt arising from accident year / peid in
development year /. Let ¥ =log(C,) and consider the log-normal class of models
¥ =m; +g, with

¥, ~ IN(m,,c%) .1
& ~ IN(0,0%) @2
my =1, @3)
7, =c+a,+ 8, a=p5=0 2.4

The normal responses ¥; are assumed to decompose {additively) into a deterrninistic non-
random component with mean my, =17, and a homoscedastic nommally distributed random
eror cotsponent about 2 2ero mean. The use of the logarithmic transform immediately
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imposes a limitation on this class of models in thai neremental claim amounts must be
positive.

Equations 2.1, 2.7, 2.3 and 2.4 define the model introduced by Kremer. Accident yesr and
development year are treated as factors, with a parameter ¢, for each accident year 7 and a
parameter f, for each development year /. it should be noted that this represeniation implies
the same development pattern for all accident years, where that pattemn is defined by the
parameters 5.

Parameters in the predictor structire 77, are estimated by maximum likelihood, which in the
case of the Normal error structure is equivalent fo minimizing the residual sum of squares,

The unknown variasice o aseshmatedhythemstdualsamofsqumesdmded by the degrees
of freedom {the number of observations minus the number of parameters estimated).

Gwentimparameﬁeresnma(es, the predicted valves on a log scale can be obtained by
introducing those estimates back into equation 2.4. Unfortunately, exponentiating to give
predicted values on the vidransformed scale introduces a bias, which must be corrected.
Specific details can be foumd in Renshaw {1989) and Vemrall (19914). This modet usually
produces predicted valuas which are close to those from the simple chain Iadder model.

Standard results from statistical theory allow prediction errors to be calculated for reserve
estimates, and also allow diagrostic checks of the fitted model to be performed by analysing
appropriate residuals.

ft shouid be moted that the model can be extended by considering alternatives to the linear
predictor specified in equation 2.4, This log-normal “chain-laddes™ model and further
generalisations have been considered by Zehowirth (1989, 1991), Renshaw (1989),
Christofides (1990) and Vemail (19912, 19910}, amongst others.

In 1994, two papers were published, both of which derived stochastic models giving the sare
reserve estimates as the deterministic chain lsdder model. Mack (1994) presenied a
distribution free approach, whereas Renshaw and Verrall (1994) presenied a model in which
the distributional properties underiying the mode! were fully specified. In an earfier paper,
Mack (1993) derived reserve standard errors for bis distribution free approach. The approach
of Renshaw and Verrall {1994) is considered in detail because of the relevance when
mtroducing the bootstrap, In the example in Section 5, the results from Mack (1994) are
compared with those obtained by Renshaw and Verrall (1994}, and by using a bootstrap
approach

Renshaw and Vereail (1994) proposed modelling the incremental claims C, directly as the
response, with the same linear predictor as Kremer, but linking the mean to the fnear
predictor tirough the logarithmic link flunction, while using an “over-dispersed™ Poisson erxor
distritntion. Formally,

E{Cyj'*' m, and V"’[Cs l” ﬁlcﬁj=“ gon, 23)

log(m, )=, (2.6}
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7]‘.j=c+a‘,+ﬂj a,=p =0 Q.7

Equations 2.5, 2.6 and 2.7 define a generalised linear model in which the response is
modelied with a logarithmic link function and the variance is proportional to the mean (hence
“gver-dispersed” Poisson). The parameter ¢ is an unknown scale parameter estimated as part
of the fitting procedure.

Since this model is a generalised linear model, standard statistical software can be used to
obtain maximum (quasi) likelihood parameter estimates, fitted and predicted values.
Standard statistical theory also suggests goodness-of-fit measures and appropriate residual
definitions for diagnostic checks of the fitted model.

Renshaw and Verrall were not the first to notice the link between the chain ladder model and
the Poisson distribution (see Appendix A of Mack (1991)), but were the first to implement
the model using standard methodolgy in statistical modelling, and to provide a link with the
analysis of contingency tables.

It should be noted that the model proposed by Renshaw and Verrall is robust to a small
number of negative incremental claims, since the responses are the incremental claims
themselves (rather than the logarithm of the incremental claims as in log-normal models).
However, because of the way in which the model structure is parameterised and the estimates
obtained, it is necessary to impose the restriction that the sum of incremental claims in every
sow and every column of the data triangle must be positive. Furthermore, because of the
logarithmic link function, fitted values are always positive. This usually makes the model
unsuitable for use with incurred claims, which often include overestimates of case reserves in
the early stages of development leading to a series of negative incremental incurred claims in
the later stages of development.

Mack (1991) suggested a further model which is relevant to this paper, although it is not
described as a chain ladder model. Mack proposed a multiplicative parametric structure for
the mean incremental claims amounts which are modelled as Gamma response variables, and
used a rather complex fitting procedure for obtaining maximum likelihood parameter
estimates. As Renshaw and Verrall (1994) note, exactly the same model can be fitted using a
generalised linear model in which the incremental claim amounts are modelled as
independent Gamma response variables, with a logarithmic link function and the same linear
predictor as Kremer (1982). Formally,

E i }: m; and Va"{ctj }: ¢E[Cy ]2 = W; 238
log(m;) =17, 29
q§=c+a¢'+ﬂj a1:161=0 (2‘10)

The only difference between this model and the stochastic chain ladder model proposed by
Renshaw and Verrall (1994) is that the variance is now proportional to the mean squared.
The model defined by equations 2.8, 2.9 and 2.10 can be fitted using standard statistical
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software capable of fiting GLMs. Like the log-normal models, fitted values from this model
are usually close to those from the standard chain ladder model, but not exactly the same.

3. Analytic Estimates of Reserve Prediction Errors

One of the principle advantages of stochastic reserving models is the availability of estimates
of reserve variability. Commonly used in prediction problems (as we have here) is the
standard error of prediction, also known as the prediction error, or root mean square error of
prediction. Consider accident year / and claim payments in development year 7 (vet 10 be
observed). The mean square error of prediction is given by

i, ¢, ¢ |zvalc, }+verdé, | G.1)

For a detailed justification of equation 3.1, sce Renshaw (1994}, Equation 3.1 is valid for the
log-pormal reserving models, the over-dispersed Poisson model, and the Gamma model.
Note that the mean square error of prediction ean be considered as the sum of two
components, variability in the dafa (process variance) and variability due to estimation
{estimation variance}. The precise form of the two components of the variance is dictated by
the specification of the model fitied. For the log-normal mrodel] defined by equations 2.1, 2.2,
2.3 apd 2.4, the precise form of the two components of variance can be found in Renshaw
(1989) or Verrall (1991a).

A general form for the process variance can be derived for the over-dispersed Poisson and
Gamma models. From equatiens 2.5 and 2.8, it can be seen that

varlc, )= gef (3.2)

where o= | for the over-dispersed Poisson model and p = 2 for the Gamma model.

For the estimation variance, we note that for the over-dispersed Poisson and Gamma models

-

Cg' =m, = emq;;)
Then using the deita method,
.1 lam [
Var[C’ " ] = '—Eqi'-‘ VarEq!., ]
giving glc, ~ &,y |z dm + mivarln, ] )

The final component of equation 3.3, the variance of the linear predictor, is usually available
directly from statistical software packages, enabling the mean square error to be calculated
without difficulty. The standard error of prediction is the square root of the mean square
etror.
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The standard error of prediction for origin year reserve estimates and the total reserve
estimates can also be calculated. Denoting the triangle of predicted claims contributing to the
Teserve estimates by 4, then the reserve estimate in origin year 7 is given by summing the
predicted values in row i of 4, that is

C.=2.C,

Jed,

From Renshaw {1994), the mean square error of prediction of the origin year reserve is given

by

EfC, -C. 0 |z Somp + Smvarly,J+2 X m, m, Corln,m, ] )
jea,

fEA, Jindandy
f: *h

The total reserve estimate is given by

C.=2C

fjeh

and the mean square exror of prediction of the total reserve is given by

BC., ~C, ) |z Tpmf + Smivarly }+2 Tm m, Covly 1, ] (.5)
i geh I fe=d S:.l}:.da
Lfpeiyly

Eguations 3.4 and 3.5 require considerable care when summing the appropriate elements, The
covariance terms are not readily available from statistical software packages. However,
provided the design matrix and variance-covarionce marix of the parameter estimates can be
extracted from the statistical software package used, a full mairix of the covariance terms can
be calculated. Indeed, the variances of the linear predictors are simply the diagonal of such a
matrix,

Note that the first tenn in the accident year and overall prediction ermors is simply the
appropriate sum of the process variamces. The remaining terms relate to the estimation
variaznce.

4. Bootstrap Estimates of Reserve Predictior Errors

Where a standard error is difficult or impossible to estimate analytically, it is common 10
adopt the bootstrap. In claims reserving, we are intercsted in the prediction etror of the sum
of random variables, and the bootstrap technique is a natural candidate for this. In regression
type problems, it is common to bootstrap the residuals, rather than bootstrap the data
themselves (see Efron and Tibshirani 1993). However, it is important to use an approptiate
residuat definition for the problem at hand. For linear vregression models with Normat etrors,
the residuals are simply the observed values less the fitted values. For generalised linear
models, an extended definition of residuals is required which have {approximately) the usual
properties of Normal theory residuals (see McCullagh and Nelder [989). The most
commonly used residuals in generalised kHnear models are the Deviance residuals and the
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Pearson residuals. A third residual, less commonly used, is the Anscombe residual. The
precise form of the residual definitions is dictated by the etror distribution. For the stochastic
chain ladder model defined by equations 2.5, 2.6 and 2.7, we use the form of residuals
suitable for Poisson GLMs, which are:

Unscaled Deviance residual: 7y = Sign(C ~ m}JZ(Clog(%r} —C+m) @n
Unscaied Pearson residual: .= Cm w
: p- »
(¥ b
Unscaled Anscombe Residuals: r, =2 ( }gm )
m

The bootstrap process involves resampling with replacement, from the residuals, A
bootstrap data sample is then created by inverting the formula for the residuals using the
resampled residuals, together with the fitted values. Qiven 7 and m, it can be seen that
equation 4.] cannot be solved analytically for the observed incremental claims, C, making
deviance residuals less suitable for bootstrapping. However, it is easy to solve equation 4.2
for C. Given a resampled Pearson. residual r; together with the fitted vaiue ms, the associated

bootstrap increments! claims amount, €, is given by
C =rpdm+m @3)

It is also possible to solve the Anscombe residuals for , but they are not considered here any
further because they are less commonly used and because it is desirable to use a residual
definition when bootstrapping which is consistent with the estimation of the scale parameter
(see below).

Having obtained the bootsrap sample, the model is refitted and the statistic of interest
calculated. The process is repeated a large number of times, each time providing a new
bootsirap sample and statistic of interest. The bootstrap standard error is the standard
deviation of the bootstrap statistics.

In the context of stochastic claims reserving, resampling the residuals ¢with reptacement)
gives rise to a new triangle of claims payments. Strictly, we ought to fit the over-dispersed
Poisson GLM to the bootstrap sarnple to obtain the bootstrap reserve estimnates. However, we
can obtain jdentical reserve estimates using standard chain ladder methodology. It is st this
point that the usefulness of the bootsirap process becomes apparent: we do not need
sophisticated software to fit the model, 2 spreadsheet will suffice. To obtain the bootsteap
standard ervors of the reserve estimates, 1t is necessary to repeat the process a large number of
times (say, N), each time creating 4 mew bootstrap sample, and obtaining chain ladder reserve
estirpates. Fhe bootstrap standard errors are the standard deviations of the N bootstrap
reserve estimates.  Once set up, the process is very quick, taking only a few seconds on a
standard desktop compuler.

The bootsirap standard error is an estimate of the square root of the estimation variance.
However, it cannot be compared directly with the smalytic equivalent since the bootstrap
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standard error doeg pot take account of the number of parameters used in fitting the model:
the bootstrap process simply uses the residuals with no regard as to how they are obtained.
The analytic estimates of the estimation vartance do allow for the number of parameters
estimated since they involve variance and covariance terms whick implicitly invoive the scale
parameter § ip their calculation. The scale parameier is estimated as either the model
deviance divided by the degrees of freedom, or the Pearson chi-squared statistic divided by
the degrees of freedom, the choice usually making litie difference. The deviance and
Pearson chi-squared statistics are obtained as the sum of the squares of the corresponding
residuals, The degrees of freedom are defined as the sumber of data points (in the original
datz sample) jess the number of parameters used in fitting the model. Therefors, the
Deviance scale parameter is given by

oy = Lt
and the Pearson scale parameter is given by
7

n-p

$p = (4.4)

where n is the mumber of data points in the sampie, p is the number of parameters estimated
and the summstion is over the number (n) of residuals. It can be seen that an increased
number of parameters used in fitting the mode! introduces a penalty {cereris paribus).

For consistency, we use the Pearson scale parameter in the analytic estimation variance, and
the Pearson residuals in the beotstrap process. The bootstrap estimation vasiance is
analogous o the analytic estimation varfance without adjusting for the number of parameters
(as though the scale parameter had been calculated by dividing by 2 not #— ). To enable a
proper comparison befween the estimation variances given by the two procedures, it is
pecessary to make an adjustment to the bootstrap estimation variance to take account of the
numnber of parameters used in fitting the model. The appropriate adjustment is to multiply the
bootstrap estimation variance by af(n-p}.

To obtain the bootstrap prediction error, it is necessary to add an estimate of the process
varignce, which is simply the scale parameter multiplied by the reserve estimates {see
equations 3.4 and 3.5 when p = 1). The reserve estimates are given by the initial chain ladder
projection, and the scale parameter is calculated by summing the squares of the residuals ysed
in the bootstrap exercise. The process variance can also be computed in 8 spreadsheet. The
bootstrap prediction ervor is then given by

PEa,(R)=J¢rR+ " (SE, (B
n-p

where R is an accident year or total reserve, and SE,, (R} i3 the bootstrap standard error of the
reserve gslimate,



It should be noted that no allowance has been made for a tail factor in the bootstrap
calculations. It is not obvious how uncertainty in predicted values beyond the range of data
observed should be taken into account. A fixed tail factor should not be included as this will
increase the reserve estimates but leave the estimation variance unchanged, thus reducing the
prediction etror as a percentage of the reserve estimate. Extrapolating can only increase the
uncertainty, not reduce it.

An example showing the computations required by the bootstrap can be found in the
Appendix.

5. Example

To enable a comparison with previously published methods, we use the data from Taylor and
Ashe (1983) which was also used by Verrall (1991), Mack (1993) and Renshaw (1989,
1994). The data are shown here in incremental form.

357848 766940 610542 482940 527326 574398 146342 139950 227229 67948
352118 B84021 933894 1183280 445745 320996 527804 266172 425046

290507 1001798 926218 1016654 750816 146923 495982 280405

310608 1108250 776189 1562400 272482 352053 206286

443160 693190 991983 760488 504851 470639

396132 937085 847498 805037 705960

440832 847631 1131398 1063269

350480 1061648 1443370

376686 986608

344014

Reserve estimates provided by the deterministic chain ladder, the over-dispersed Poisson
model, the Gamma models using the GLM implementation outlined in this paper and the
Mack 1991 implementation, and three methods using log-normal models are shown in Table
5.1. Equivalent prediction errors are shown in Table 5.2, with the inclusion of the bootstrap
approach and Mack’s distribution free approach.

Table 5.1 : Estimated Reserves (000°s)

Chain Poisson | Gamma Mack Verrall Renshaw/ | Zehnwirth

Ladder GLM GLM {1991 (1991} | Christofides
=2 95 95 93 93 96 111 109
=3 470 470 447 447 439 482 473
=4 710 710 611 611 608 661 648
=5 985 985 992 992 1011 1091 1069
=6 1419 1419 1453 1453 1423 1531 1500
=7 2178 2178 2186 2186 2150 2311 2265
=8 3920 3920 3665 3665 3529 3807 3731
=9 4279 4279 4122 4122 4056 44572 4364
=10 4626 4626 4516 4516 4340 5066 4965
Total 18681 18681 18085 18085 17652 19512 19124
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Table 5.2 : Prediction Errors a3 % of Reserve Estimate

Mack’s | Poisson | Bootstrap | Gamma | Mack | Verrall | Renshaw/ | Zehnwirth
Dism. | GLM chain GLM | (199%1) | {1991} | Christofides
Free 1 Analviic Jadder

=2 30 ilo 117 48 40 (49 49 34 49
=3 26 46 46 36 363D 37 39 35
=4 19 37 36 29 24 (30 36 32 29
=5 27 31 31 26 2126} 27 28 25
=6 29 26 26 24 20 (25) 25 26 24
=7 26 23 23 24 20(25) 25 26 24
=8 22 20 20 26 21 {26) 27 2% 26
=4 23 24 24 29 24 (30 3 3 30
=1{ 29 43 43 37 31 (38) i3 40 39
Total 13 16 16 13 - 15 16 16

The results for Mack (1991), Verrall (1991), Renshaw/Christofides and Zehnwirth have been
1zken from Mack (1993). The three log-normal models (Verrall 1991, Renshaw/Christofides
and Zehnwirth) are all using essentrally the same model struchire, as defined by equations
2.1,2.2,23 and 2.4. The differences in the reserve estimates and the prediction emors for the
log-normal models are due to alternative methods for implementing the necessary bias
correction of in the calenlation of o®.  The prediction error using Mack’s distribution free
approach has been taken from Mack (1993). Reashaw (1994) used the same dats o compare
resylts from the log-normal, Poisson and Gararna chain lzdder type models {using a deviance
scale parameter), but did not compare his results with Mack’s distribution free and Gamma
models, and did not consider the booistrap.

Tt can be seen that the stochastic chain ladder mode) of Renshaw and Vemall (the
overdispersed Poisson GLM) gives exactly the same reserve estimates as the deterministic
chain ladder model {and hence Mack’s distribution free stochastic model}. The Gamma
mode} implemented as a generalised Hnear model gives exactly the same reserve estimates as
the Gamma model implemented by Mack (1991), which is comforting rather than surprising.
It can be seen that these reserve estimates of the Gamma models are cloge to the chain [adder
estimates. The loglinear model implemented by Verrall (1991} gives reserve estimates which
are vlose to those given by the Gamma models, and again they are close to those given by the
chain ladder mode! on the whele, The reserve estimates given by Renshaw/Christofides and

Zehnwirth are very close to each other, the difference being due to the calculation of .

The prediction errors as a percentage of the equivalent reserve estimates of the three log-
normal models are very close to each other in total snd scross accident years. For the
Gamma models, at first sight it appears that the prediction errors are quite different.
However, Mack (1991) did not make an adjusiment for the degrees of freedom used in fitting
his meodel, the appropriate adjustrnent being division by r— p instead of » when calculating
the scale parameter ¢, where » is the number of data points (55) and p is the number of
parameters estimated {19). The adjustment affects both the estimation variance and process
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variance. To enable a proper comparison, it is necessary to adjust Mack’s prediction esrors
by a factor £,

where o fut =‘/§=1,236
A=p V36

The numbers in parentheses show Mack’s prediction errors including this adjnstment, ¥ can
be seen that these are now very close to those given by the Gamma GLM, the differeuces
being due to rounding emors. Mack did not provide a prediction error for the overall reserve,
It is perhaps surprising that the prediction errors given by the Gamma models are very close
to those given by the log-normal models, particularly the models of Verrafl (1991} and
Zehnwirth, It should be noted, however, that for both the lfognormal and gamma
distributions, the variance is proportional o the mean squared.

Although the prediction error for the total reserve given by the Poissor GLM is almost
identical to that given by the Gamma and lognombal models, there are some large
differences when looking across sccident years, The biggest difference is clearly when =2,
where the Poisson model gives a large prediction error of 116%. It should be noted,
however, that the detominator (the reserve estimate} is very low, and a large prediction error
is not unexpected.

The bootstrap prediction emrors (besed on 1000 simulations) are exwemely close to the
analytic prediction emors of the Poisson model, both in total and across accident years. This
is remarkable given the radically different methods used in obtaining the estimation vartance.

Like the Poisson GLM and bootstrap approaches, Mack’s distribution free spproach gives a
bigh prediction error when =2, Prediction etrors using Mack's distribution free approach for
the other accident years are systematically neither higher nor lower than those given by the
other methods. The prediction error for the total reserve, at 13%, is slightly lower than the
equivalent figures from the other methods. Again, there is no adjustment for the number of
parameters ased in fitting the model. It is interesting to note that using the same adjustment
factor, £, as for Mack’s Gamma model gives 16% for the prediction error of the total reserve,
bringing it into Yine with the other models. Unlike the Gamsna modef, however, it is not clear
that such an adiustment is justified.

6. Conclusions:

With the exception of Mack's distribution free approach, all of the stochastic claims reserving
models shown in this paper use exactly the same linear predictor structure, that is, the
structure introduced by Kremer, The models differ in the emor distribution assumed, the
choice being betwesn the log-normal, the (over-Jispersed) Poisson aod the Gamma
distributions. The Poisson model is interesting since the reserve estimates given by the
model are identical 1o those given by the standard deterministic chain ladder model (under
suitable constraints), and ag such, it can be cajled a stochastic chain ladder model. Mack’s
distribution free approach is included becauvse it also provides reserve estimates which are
identical to those given by the deterministic chain ladder model.
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Perhaps more interesting than the reserve estimates themselves are the prediction erroms given
try the various models. For models in which the distitutional assumptions have been
specified, it is possible 1o use sn analytic or bootstrap approach. The bootstrap approach has
been outlined for the Poisson model only, since it is easy to implement in a spreadshest
environment, Since residuals can be defined for the log-normsl and Gamma models, it is also
possible to oblain bootstrap prediction errors for these madels, but model fitting is more
tomplex.

It has been shown that when comparing prediction emors piven by different methods, i is
important to ensure that both the estimation variance and process variance have been
inclnded, and that they have been calculated in & consistent manner, inchuding adjustement for
the surnber of parameters used in fiting the model,

A comparison of the prediction errors reveals that the Gamma sad log-normal models
provide very similar results when viewing the prediction erros gs a percentage of resarve
estimates. The bootstrap prediction errors are remarkably stmilar to their analytic equivalent,
justifying their use with the standard chain ladder model when applied corectly. The
bootstrap procedure is practically expedient and does noi require the summation of a large
coflection of terms, unlike the snalytic and distribution free approaches.

It is interesting to note that the prediction errors of the reserve totals given by the various
moethods are reassuringly close in the example in section 5. Although this is oflen the case,
unfortunately it is not always, and care must be taken in making inferences from the results,
Further work is needed to justify the use of a partieular ervor distribution in stochastic claims
reserving models. In particolar, the accuracy and interpretation of accident year prediction
errors needs careful consideration. Clearly, it is not appropriate to consider approximate 95%
prediction intervals as the reserve estimate + twice the prediction etror when the prediction
eror is a large percentage of the reserve estimate. It is best to use the accident year
prediction errors as a crude means of assessing confidence {n the reserve estirnates,

Although we have used the Pearson residusds in our treatment of the bootsirap, Moulton and
Zeger (1991) discuss an adjusted Pearson residual which may perform better. The adjustment
is difficult to accommodate in a spreadshect environment, and consequentiy has been ignored
since any ouiperformance is outweighed by difficulty of implementation.
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Appendix ~ Calculations required by the Bootstrap

Triangle 1 below shows the cumulative paid claims from the Example, together with the
traditional chain ladder development factors.

Triangle 1 — Observed Cumulative Data

357848
352118
290507
310608
443160
396132
440832
359480
376686
344014

1124788
1236139
1292306
1418858
1136350
1333217
1268463
1421128
1363294

Development Factors

3.4906

1.7473

1735330
2170033
2218525
2195047
2128333
2180715
2419861
2864498

1.4574

2218270
3353322
3235179
3757447
2897821
2985752
3483130

1.1739

2745596
3799067
3985995
4029929
3402672
3691712

1.1038

3319994
4120063
4132918
4381982
3873311

1.0863

3466336 3606286 3833515 3801463
4647867 4914039 5339085

4628910 4909315

4588268

10539 10768 1.0177  1.0000

The first stage is to obtain the cumulative fitted values, given the development factors. The
fitted cumulative paid to date equals the actual cumulative paid to date, so we can transfer the
final diagonal of the actual cumulative triangle to the fitted cumulative triangle. The
remaining cumulative fitted values are obtained backwards by recursively dividing the fitted
cumulative value at time ¢ by the development factor at time 7—1. The results of this
operation are shown in Triangle 2.

The incremental fitted values, obtained by differencing in the usual way, are shown in

Triangle 3.

Triangle 2 — Cumulative Fitted Values

270061
376125
372325
366724
336287
353798
391842
469648
390561
344014

942678
1312904
1299641
1280089
1173846
1234970
1367765
16393565
1363204

1647172
2294081
2270905
2236741
2051100
2157903
2389941
2864498

2400610
3343423
3309647
3259856
2989300
3144956
3483130

2817960
3924682
3885035
3826587
3508995
3691712

3110531
4332157
4288393
4223877
3873311
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Triangle 3 —~ Incremental Fitted Values

270061
376125
372325
366724
336287
353788
391842
469648
390561
344014

672617
938779
927316
813365
837559
881172
975923
1189707
872733

704494
981178
971264
956652
877254
922933
1022175
12256143

TEIZS
1049342
1038741
1023114

938200

987053
1083189

417350 282871 268344 182035 272608
581280 407474 373732 253527  37868%
575388 403358 369887 250966

566731 397280 364381

519695 35436

546756

87948

The unscaled Pearson residuals, shown in Triangle 4, can be obtained using equation 4.2,

together with the observed and fitted incremental data.

Triangle 4 — Unscaled Pearson Residuals

168.93
-39.14
-134.09
-92.87
184.29
7117
78.26
-160.76
-22.20
0.00

115.01
-54.51
77.35
203.92
-167.75
§9.56
-129.87
-99.91
14.07

-111.94
-47.73
-45.71

~184.51
122.49
-78.52
108.03
197.16

-311.63
130.76
-21.67
533.16
-174.18
-183.21
-28.62

17023  521.04 -23552 -98.64 -86.91
-177.75 13547 25202 25.11 73.64
23127 40377 207.21 58.77
-380.87 7177 -261.92
2058 17615
21831

Q.00

A crucial step in performing the bootstrap is resampling the residuals, with replacement. One
such sample is shown in Triangle 5. Notice that residuals may appear more than once when
resampled with replacement (e.g. 59.56 appears four times). Care must be taken to ensure
that all residuals have an equal chance of being selected.

Triangle 5 - Example set of resampled residuals

-187.75
-135.47
215.31
~380.87
115.01
14.07
-11184
-403.77
203.92
68.56

20721
-135.47
7177
-183.21
77.35
533.18
-183.21
252.02
-28.62

«261.92
115.01
0.00
-86.91
-21.87
-157.75
521.04
-86.91

11501
184.29
521.04
-157.75
-45.71
203.92
-98.64

-22.20 14.07 25.11 168.93 -78.52
-45.71 176.15 9267 11501 23652
78.26 -21.67 5856 -160.76
-235.52 59.56  184.29
533.16 0.00
-236.52
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Using the resampled residuals in Triangle 5, together with the original incremental fitted
values in Triangle 3, a bootstrap data sample can be calculated by using equation 4.3. The
bootstrap sample associated with the resampled residuals in Triangle 5 is shown in Triangle
6. The associated cumulative sample is shown in Triangle 7, together with development
factors obtained by applying the standard chain ladder to the bootstrap data. The bootstrap
reserve estimate is obtained from the development factors and cumulative bootstrap sample in
the usual way.

Triangle 6 — Incremental Bootstrap data sample

188083
293040
503702
130025
402982
362166
321773
192042
517999
378950

842558
805657
858204
738275
908346
1381652
794937
1442279
944509

484857
1085099
971264
871647
856956
771388
1548957
1128948

853267
1238128
1568774

863552

893928
1189647

990057

403007
546413
634753
389432
904049
372609

300180
519919
388594
434833
364316

281353
317083
406186
475640

254108
311436
170432

231609 83474
234551

Triangle 7 - Cumulative Bootstrap data sample together with development factors

188083
293040
503702
130025
402982
362166
321773
192042
§17989
378950

1030642
1098697
1361906

868300
1311328
1743818
1116710
1635221
1462508

1515209
2193796
2333170
1739947
2168284
2515203
2665667
2764167

Resampled Development Factors

3.982

1.760

1502

2368566
3431924
3902045
2603500
3062211
3704849
3855724

1170

2771573
3978337
4537698
2992931
3966260
4077458

1.110

3071753
4498255
4927293
3427785
4330576

1.092
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3353108
4815338
5333479
3803405

1.064

3607214
51268774
5503911

3838823 3922297
5361324

1.021



Bootstrap Reserve Estimates

i=2 116580
Fu 3 4198289
i=d 526745
i=5 1041244
f=6 1537217
i=7 2236020
=8 3827782
i=4% 4769853
i= g 6068470
Total 20843712

The process is completed by repeatedly resampling from the residnals N times, where ¥ is
large {e.g. N = 1000), each time creating a new bootstrap sample and new bootsirap reserve
estimates. The bootstrap standard errors of the reserve estimates are simply the standard
deviations of the N bootstrap reserve estimates.

It is important to note that the bootstrap standard error so derived is an estimate of the square
root of the estimation variance, with no adjustment for the degrees of freedom. To enable a
comparison with the analytic estimation variance it is necessary to make the appropriate
adjustment. Furthermore, to obtain the prediction error, it is necessary to add the process
variance, which in the case of the chain ladder model is the scale parameter multiplied by the
original chain ladder reserve estimate. The scale parameter is calculated as the Pearson chi-
squared statistic divided by the degrees of freedom, where the Pearson chi-squared statistic is
the sum of the (unscaled) Pearson residuals squared (see equation 4.4).

The various components contributing to the prediction error are shown in Table A.1

Table A.1
Actual Bootstrap Variability Prediction  Prediction
Reserve 80 Parameter Data Error Error %
i=2 94634 88558 84737 70554 110285 117%
i=3 468511 122608 151548 157153 218320 46%
IEX 709638 139107 171941 193204 268634 36%
F=5 984888 165159 204142 227819 305745 31%
f=6 | 1419458 206556 | 255310 273350 | 3738684 26%
i=7 21776841 2915886 380373 338448 484384 23%
i=8 3820301 517972 640230 454107 784925 20%
i=9 4278972 734588 807987 474426 1024461 24%
i=10 4825811 1577154 | 1949415 493279 2010858 43%
Total 18880856 2208053 | 2841582 991281 3008523 16%
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The bootstrap standard deviation is the standerd deviation of 1000 bootstrap reserve
estimates. Parameter variability is the bootstrap standard deviation multiplied by /55/36,
the degrees of freedom adjustment. Data variability is the square root of the product of the

scale paramefer and the reserve estimstes, where the scale parameter is 52,601, The
booistrap prediction error is the square root of the sum of the squares of parameter variability

and data variability.

478



