# JIA 116 (1989) 589-609

# A STATE SPACE REPRESENTATION OF THE CHAIN LADDER LINEAR MODEL

BY R. J. VERRALL, M.A., M.Sc., F.S.S. (of the City University, London)

[Presented at the Seminar, 'Applications of Mathematics in Insurance, Finance and Actuarial Work', sponsored by the Institute of Mathematics and Its Applications, the Institute of Actuaries, and the Faculty of Actuaries, held at the Institute of Actuaries, 6-7 July 1989.]

# 1. INTRODUCTION

In a recent paper, Kremer  $(1982)^{(2)}$  has shown how the classical chain ladder method for estimating outstanding claims on general insurance business is strongly related to a two-way analysis of variance. It can be argued that the estimation methods in a standard chain ladder analysis are inefficient from a statistical viewpoint and that an analysis of variance is more appropriate. Once the chain ladder method is identified with a standard statistical method, the wellknown statistical theory can be used to the advantage of the claims reserver. For a further discussion of the use of main stream statistical theory applied to the least squares estimation of the linear model which is close to the chain ladder method, the reader is referred to Renshaw (1989)<sup>(4)</sup>.

In this paper, the analysis of variance model is used (in a slightly different form from that given in Kremer<sup>(2)</sup>) as a basis for a method which allows the practitioner to enter prior information or to estimate the parameters dynamically. A Bayesian method is used and the data are analysed recursively. The method uses the Kalman filter: a full specification and discussion of the different modelling possibilities will be given. The Bayesian estimation of the parameters of the analysis of variance model using a non-recursive method has been derived by Verrall (1988)<sup>(6)</sup>, in which paper the theory is extended to include empirical Bayes or credibility theory estimation. A comparison between the state space representation and the credibility type analysis will be made.

The machinery for recursive estimation is based on the Kalman filter, and has been used in a claims reserving context by de Jong & Zehnwirth (1983)<sup>(3)</sup>. The present paper uses the same basic form of the Kalman filter, but concentrates exclusively on the two-way analysis of variance model which was not discussed by de Jong & Zehnwirth<sup>(3)</sup>. The various modelling assumptions will be discussed in detail, including the case of distinct parameters and static Bayesian estimation. It is, of course, also possible to relate the parameters to each other recursively and use a dynamic estimation method, and this will also be described and compared with the empirical Bayes method. In order to incorporate prior information into a static model, stochastic input vectors have to be introduced which contain the prior distributions of the new parameters introduced at each stage.

# A State Space Representation of

The methods described in this paper should be of use to practitioners who are interested in more sophisticated methods of claims reserving which retain the same basic intuitive appeal as the chain ladder technique. The particular use of the recursive Bayesian estimation method is that it allows the practitioner to incorporate information from other sources such as collateral data sets. The dynamic Kalman filter estimation does not necessarily require prior estimates of the parameters, but it does need the state and observation variances to be specified. There are no variance specifications required for the empirical Bayes method. It will be seen that these last two methods give estimates which are more stable than those from ordinary least-squares estimation.

### 2. THE MODEL AND PARAMETER ESTIMATION

This section follows Sections 2 and 3 of Kremer<sup>(2)</sup>. The claims run-off triangle consists of data indexed by two variables: the first represents the year in which the business was written, and the second the delay until a claim is made. Hence  $X_{ij}$  represents claims on business written in year *i* with delay index *j* and  $X_{ij}$  are the incremental claims data, not the cumulative data.

(Note that  $j \in \{1, 2, 3, ...\}$  and is an index only—it does not necessarily equal the delay.)

The triangle takes the form

$$\begin{array}{ccccccc} X_{11} & X_{12} & X_{13} & X_{14} \\ X_{21} & X_{22} & X_{23} \\ X_{31} & X_{32} \\ X_{41} \end{array}$$

(Note that there is no loss of generality by considering a triangle—the methods apply equally to other shapes, e.g. a rhombus.)

After the business has been running for t years, the data available are

$$\{X_{ij}: j \le t - i + 1, i \le t\}$$
(2.1)

and it is assumed that  $X_{ij} > 0, \forall i, \forall j$ .

The model which is applied to the raw data has a multiplicative form:

$$X_{ij} = U_i S_j R_{ij} \tag{2.2}$$

where  $E(R_{ij}) = 1$ 

 $U_i$  is a parameter for row i

and  $S_j$  is a parameter for row j.

 $R_{ij}$  are random errors: the error term is assumed to be multiplicative.

A natural assumption is that the data have a log-normal distribution and this implies that a logarithmic transformation is appropriate:

$$Y_{ij} = \log X_{ij}$$

Now if  $Y_{ij}$  is assumed to have a normal distribution,  $X_{ij}$  has a log-normal distribution. By taking logs of (2.2), the following model is arrived at:

$$Y_{ij} = \mu + \alpha_i + \beta_j + e_{ij} \tag{2.3}$$

591

where  $e_{ij}$  are assumed to be independent, identically distributed normal disturbances with mean zero and variance  $\sigma^2$ .

The parameters have also undergone a logarithmic transformation. Kremer defines  $\mu$  as the mean of the log  $U_{s}$  and log  $S_{s}$ , so that the restriction

$$\sum_{i=1}^{n} \alpha_i = \sum_{j=1}^{n} \beta_j = 0 \text{ is imposed.}$$

An alternative assumption is that  $\alpha_1 = \beta_1 = 0$ . In this case

$$\alpha_i = \log U_i - \log U_1 \tag{2.4}$$

$$\beta_i = \log S_i - \log S_1 \tag{2.5}$$

$$\mu = \log U_1 + \log S_1 \tag{2.6}$$

The following lemma shows how the normal equations turn out for the chain ladder linear model. This lemma gives the classical least squares estimates for the two-way analysis of variance model, and it is used to relate this linear model to the familiar chain ladder method.

#### 2.1 Lemma

Based on t years' data, the best linear unbiased estimators of  $\mu$ ,  $\alpha_i$ ,  $\beta_j$  are the solutions of

$$\hat{\alpha}_{i} = \frac{1}{t-i+1} \sum_{j=1}^{t-i+1} \left( Y_{ij} - \frac{1}{t-j+1} \sum_{l=1}^{t-j+1} (Y_{ij} - \hat{\alpha}_{l}) \right)$$
(2.7)

$$\hat{\beta}_{i} = \frac{1}{t-j+1} \sum_{j=1}^{t-j+1} \left( Y_{ij} - \frac{1}{t-i+1} \sum_{l=1}^{t-i+1} (Y_{il} - \hat{\beta}_{l}) \right)$$
(2.8)

$$\hat{\mu} = \frac{2}{t(t+1)} \sum_{i=1}^{t} \sum_{j=1}^{t-i+1} (Y_{ij} - \hat{\alpha}_i - \hat{\beta}_j)$$
(2.9)

with  $\hat{\alpha}_1 = \hat{\beta}_1 = 0$ .

## Proof

The theorem can be proved using the Gauss-Markov theorem. The normal

equations are the same as those used in Kremer<sup>(2)</sup>, but the restrictions differ slightly; this gives the parameters a slightly different interpretation.

It is also shown by Kremer that the chain ladder method will produce results which are similar to those produced by the analysis of variance method. The latter has been studied in great depth in the statistical literature, and in the remaining sections the methods will be based on the analysis of variance version of the chain ladder technique. The analysis of variance method has the advantage of a great deal of theoretical background, and this theory will be applied to the insurance data, bearing in mind that the main method in use in the industry is the chain ladder method.

In the comparison of the chain ladder method with the two-way analysis of variance, Kremer reverses the transformation given by (2.4)-(2.6) to obtain the total claims for year of business *i* as

$$E_i = e^{\mu} e^{\alpha_i} \sum_{j=-1}^n e^{\beta_j}.$$
 (2.10)

Up to this point, the change from the chain ladder method to the multiplicative model given by (2.2) is only a reparameterization. Kremer now estimates  $E_i$  by substituting the estimates of the parameters into (2.10). Thus

$$\hat{E}_{i} = e^{\hat{\mu}} e^{\hat{\alpha}_{i}} \sum_{j=1}^{n} e^{\hat{\beta}_{j}}.$$
(2.11)

While this serves to identify the chain ladder method with the two-way analysis of variance, the estimators obtained are not the maximum likelihood estimators, nor are they unbiased. The unbiased estimates for the classical analysis are derived in Verrall (1989b)<sup>(8)</sup>. However, since the methods in this paper are based on Bayesian models, the Bayesian estimates will be derived and used.

Since the errors in the linear model are assumed to be jointly normally distributed, it is implicitly assumed that the data,  $\{X_{ij}: j \le t-i+1, i \le t\}$ , are lognormally distributed.

The Bayes estimate of a future observation is

$$E(X_{kl}|\{X_{ij}: j \le t - i + 1, i \le t\})$$
(2.12)

and the Bayes estimate of its variance is

$$Var(X_{kl}|\{X_{ij}: j \le t - i + 1, i \le t\})$$
(2.13)

where  $X_{kl}$  is yet to be observed.

For ease of notation,  $\{X_{ij}: j \le t - i + 1, i \le t\}$  will be denoted by D.

# 2.2 Lemma

Suppose that  $X_{kl}$  has a lognormal distribution with parameters  $\theta$  and  $\sigma$ , and that the posterior distribution of  $\theta$ , given D, is normal with mean m and variance  $\tau^2$ ,

i.e.

$$\theta | D \sim N(m, \tau^2).$$

Suppose also that  $\sigma^2$  and  $\tau^2$  are known. Then

$$E(X_{kl}|D) = e^{m + \frac{1}{2}\sigma^2 + \frac{1}{2}\tau^2}$$

and

$$Var(X_{kl}|D) = e^{2m + \sigma^2 + \tau^2} (e^{\sigma^2 + \tau^2} - 1).$$

Proof

$$E(X_{kl}|D) = E_{\theta|D}(E(X_{kl}|\theta,D))$$
  
=  $E_{\theta|D}(e^{\theta + \frac{1}{2}\sigma^2})$   
=  $e^{\frac{1}{2}\sigma^2}E_{\theta|D}(e^{\theta})$   
=  $e^{\frac{1}{2}\sigma^2}e^{ml + \frac{1}{2}\tau^2}$  using the m.g.f. of the normal distribution  
=  $e^{m + \frac{1}{2}\sigma^2 + \frac{1}{2}\tau^2}$ 

$$\begin{aligned} \operatorname{Var}(X_{k|}|D) &= E_{\theta|D}(\operatorname{Var}(X_{k|}|\theta,D)) + \operatorname{Var}_{\theta|D}(E(X_{k|}|\theta,D)) \\ &= E_{0|D}(e^{2\theta + \sigma^{2}}(e^{\sigma^{2}} - 1)) + \operatorname{Var}_{\theta|D}(e^{\theta + \frac{1}{2}\sigma^{2}}) \\ &= E_{\theta|D}(e^{2\theta + \sigma^{2}}(e^{\sigma^{2}} - 1)) + E_{\theta|D}(e^{2\theta + \sigma^{2}}) - (E_{\theta|D}(e^{\theta + \frac{1}{2}\sigma^{2}}))^{2} \\ &= e^{2\sigma^{2}}E_{\theta|D}(e^{2\theta}) + (e^{\frac{1}{2}\sigma^{2}}E_{\theta|D}(e^{\theta}))^{2} \\ &= e^{2\sigma^{2}}e^{2m + .2\tau^{2}} - (e^{\frac{1}{2}\sigma^{2}}e^{m + \frac{1}{2}\tau^{2}})^{2} \\ &= e^{2m + \tau^{2} + \sigma^{2}}(e^{\tau^{2} + \sigma^{2}} - 1). \end{aligned}$$

Similar methods can be used to calculate the other elements of the covariance matrix,  $Cov(X_{kl}, X_{pn}|D)$ .

The Bayes estimate of outstanding claims for year of business i is

$$\sum_{j>n-i+1} E(X_{ij}|D)$$
 (2.14)

and the Bayes estimate of the variance is

$$\sum_{j>n-i+1} [\operatorname{Var}(X_{ij}|D) + 2\sum_{k>j} \operatorname{Cov}(X_{ij}, X_{ik}|D)].$$
(2.15)

# 3. RECURSIVE MODELS AND ESTIMATION

In order to consider the Kalman filter and dynamic estimation methods, it is necessary to set up the two-way analysis of variance model in a recursive form. This takes advantage of the natural causality of the data. The data which makes up the claims run-off triangle are received in the form: A State Space Representation of

$$X_{1,1}, \begin{bmatrix} X_{1,2} \\ X_{2,1} \end{bmatrix}, \begin{bmatrix} X_{1,3} \\ X_{2,2} \\ X_{3,1} \end{bmatrix}, \dots,$$
 (3.1)

and in year t the data which are received are

$$\begin{bmatrix} X_{1,t} \\ X_{2,t-1} \\ \vdots \\ X_{t,1} \end{bmatrix}$$
(3.2)

Thus, the direction of propagation of time is along the diagonal:



A recursive approach must use the data sequentially and must use the data at time t to update the parameter estimates based on the data available before time t.

The data vector at time t is  $X_t$ , where

$$\boldsymbol{X}_{t} = \begin{bmatrix} \boldsymbol{X}_{1,t} \\ \boldsymbol{X}_{2,t-1} \\ \vdots \\ \boldsymbol{X}_{t,1} \end{bmatrix}$$

The set of data vectors which together make up the whole triangle form a time series:

$$X_1, X_2, \ldots, X_t, \ldots$$

In this time series, the data vector expands with t: for a triangular set of data,

$$\dim (X_t) = t.$$

If the data are in the shape of a rhombus, which occurs when the early years of business are fully run off, then  $X_t$  will reach a point when its dimension does not increase.

The analysis can be approached from the context of multivariate time series. However, the special relationships between the elements of consecutive data vectors mean that it is simpler to generalize the theory of classical and Bayesian

594

time series to two-dimensional processes. For a fuller discussion of the use of classical time series, the reader is referred to Verrall  $(1989a)^{(7)}$ .

There are two methods for calculating the forecast values and their standard errors. The simplest is to use the final parameter estimates and variance-covariance matrix as would be the case in a standard least-squares analysis. The more proper method calculates one-step-ahead, two-step-ahead, ..., (t-1)-steps-ahead forecasts at time t and their variance-covariance matrices. However, since the recursive approaches do not store covariances between, for example, the one-step-ahead and the (t-1)-step-ahead forecasts, the calculation of the variances of the forecasts causes problems. For this reason the first method will be used.

The analysis of variance model, given by (2.3), takes the following form when three years' data have been received:

$$\begin{bmatrix} Y_{11} \\ Y_{12} \\ Y_{21} \\ Y_{13} \\ Y_{22} \\ Y_{31} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \mu \\ \alpha_2 \\ \beta_2 \\ \beta_2 \\ \alpha_3 \\ \beta_3 \end{bmatrix} + \begin{bmatrix} e_{11} \\ e_{12} \\ e_{21} \\ e_{13} \\ e_{22} \\ e_{31} \end{bmatrix}$$

where  $Y_{ii} = \log X_{ii}$ .

When the data are handled recursively, the model becomes:

$$Y_{1,1} = \mu + e_{1,1}$$

$$\begin{bmatrix} Y_{1,2} \\ Y_{2,1} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} \mu \\ \alpha_2 \\ \beta_2 \end{bmatrix} + \begin{bmatrix} e_{1,2} \\ e_{2,3} \end{bmatrix}$$

$$\begin{bmatrix} Y_{1,3} \\ Y_{2,2} \\ Y_{3,1} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \mu \\ \alpha_2 \\ \beta_2 \\ \alpha_3 \\ \beta_3 \end{bmatrix} + \begin{bmatrix} e_{1,3} \\ e_{2,2} \\ e_{3,1} \end{bmatrix}$$
etc.
$$(3.3)$$

In general, the state vector at time t is defined by:

$$\boldsymbol{\theta}_{t} = \begin{bmatrix} \boldsymbol{\mu} \\ \boldsymbol{\alpha}_{2} \\ \boldsymbol{\beta}_{2} \\ \vdots \\ \boldsymbol{\alpha}_{t} \\ \boldsymbol{\beta}_{t} \end{bmatrix}$$
(3.4)

and (3.3) is called the observation equation. The state vector at time t is related to the state vector at time t-1 by the system equation. A recursive version of the chain ladder method is achieved by defining the system equation matrices as

$$\theta_{t+1} = \begin{bmatrix} 1 & & & \\ & 1 & & \\ & & \ddots & \\ & & & 1 \\ 0 & \dots & \dots & 0 \\ 0 & \dots & \dots & 0 \end{bmatrix} \quad \theta_t + \begin{bmatrix} 0 & 0 \\ \vdots & \vdots \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} u_t$$
(3.5)

where  $\boldsymbol{u}_{t}$  contains the prior distribution of  $\begin{bmatrix} \alpha_{t+1} \\ \beta_{t+1} \end{bmatrix}$ .

The new parameters at time t + 1 are  $\begin{bmatrix} \alpha_{t+1} \\ \beta_{t+1} \end{bmatrix}$ 

and (3.5) says that the existing parameters are unchanged, while the new parameters are treated as stochastic inputs. If the variance of the errors,  $e_{ij}$ , is known and vague priors are used for the parameters, this method gives exactly the same results as ordinary least-squares estimation. It has the advantage that the data can be handled recursively. Also, it gives a method of implementing Bayesian estimation on some or all of the parameters. It has been assumed that the prior estimates of the parameters are uncorrelated: in other words that the stochastic input vector,  $u_{ij}$  and the state vector,  $\theta_{ij}$ , are independent.

The equations above are an example of a state space system; a more general form is now considered. The models for  $Y_1, Y_2, \ldots, Y_t, \ldots$ , which together make up the triangle can be written as

$$Y_{1} = F_{1}\theta_{1} + e_{1}$$

$$Y_{2} = F_{2}\theta_{2} + e_{2}$$

$$\vdots$$

$$Y_{t} = F_{t}\theta_{t} + e_{t}$$

$$Y_{t} = \log X_{t}.$$
(3.6)

where

Equation (3.6) is an observation equation and forms one part of a state system to which the Kalman filter can be applied in order to obtain recursive estimates of the parameters.  $\theta_t$  is known as the state vector and is related to  $\theta_{t-1}$  by the system equation. The observation equation and the system equation together make up the state space representation of the analysis of variance model. The system equation relates  $\theta_t$  to  $\theta_{t-1}$  and defines how the state vector evolves with time. Thus, the time evolution of the system is defined on the state vector and the observation vector is then related to the state vector by the observation equation. There are many choices of system equation, the most general being:

$$\boldsymbol{\theta}_{t+1} = \boldsymbol{G}_t \boldsymbol{\theta}_t + \boldsymbol{H}_t \boldsymbol{u}_t + \boldsymbol{w}_t \tag{3.7}$$

where  $u_i$  is a stochastic input vector and  $w_i$  is a disturbance vector

and  $w_i$  is a disturbance vector

and the distributions of  $u_t$  and  $w_t$  are:

$$u_t \sim N(\hat{u}_t, U_t)$$
$$w_t \sim N(\theta, W_t).$$

The choices of  $G_i$ ,  $W_i$  and the distribution of  $u_i$  govern the dynamics of the system, and some useful cases are now described.

The simplest case is to set  $u_t$  and  $w_t$  to  $\theta$  for all t. In this case (3.7) becomes:

$$\boldsymbol{\theta}_{t+1} = G_t \boldsymbol{\theta}_t. \tag{3.8}$$

If  $G_t$  is chosen such that the parameters at time t+1 are the same as the parameters at time t, and the prior distribution of the parameters is vague, (3.8) defines recursive least squares estimation when the parameters are identical for each row and for each column. The case when the new parameters entering at time t+1 are distinct from those at time t can be achieved by setting

$$\boldsymbol{\theta}_{t+1} = \boldsymbol{G}_t \boldsymbol{\theta}_t + \boldsymbol{H}_t \boldsymbol{u}_t \tag{3.9}$$

where  $u_i$  has the prior distribution of the new parameters. If this prior distribution is vague, least squares estimation with distinct parameters is achieved. Otherwise, Bayesian estimation with distinct parameters results. This is the arrangement which was used in (3.5).

Between the cases of identical and distinct parameters comes dynamic parameter estimation, where the parameters at time t+1 are related to, but not necessarily the same as, the parameters at time t. A sequential relationship between the parameters can be achieved by setting

$$\boldsymbol{\theta}_{t+1} = \boldsymbol{G}_t \boldsymbol{\theta}_t + \boldsymbol{w}_t \tag{3.10}$$

where  $w_i$  is a disturbance.

This is the form of system equation considered by de Jong and Zehnwirth<sup>(3)</sup>. The updating of the estimates of the state vector (which contains the

parameters), as each new data vector is received is carried out by the Kalman filter

The updating equations are derived for the most general state system which will be used.

$$Y_t = F_t \theta_t + e_t \tag{3.11}$$

$$\boldsymbol{\theta}_{t+1} = \boldsymbol{G}_t \boldsymbol{\theta}_t + \boldsymbol{H}_t \boldsymbol{u}_t + \boldsymbol{w}_t \tag{3.12}$$

where  $e_i \sim N(0, V_i)$ , 1/A 1/

$$\boldsymbol{u}_{l} \sim N(\boldsymbol{u}_{l}, \boldsymbol{U}_{l}),$$

and  $W_{i} \sim N(\theta, W_{i})$ 

and are independent.

Further  $e_i$ ,  $u_i$ ,  $w_i$  are sequentially independent.

 $\boldsymbol{\theta}_{d}(\boldsymbol{Y}_{1}, \boldsymbol{Y}_{2}, \ldots, \boldsymbol{Y}_{t=1}) \sim N(\boldsymbol{\theta}_{dt=1}, C_{t})$ Suppose (3.13)

i.e. the distribution of the parameters, based on the data up to time t-1 is normal with mean  $\theta_{dl-1}$  and variance-covariance matrix  $C_l$ .

From (3.11) and (3.12), the distribution of  $Y_t$  given information up to time t-1is

$$\hat{Y}_{t|t-1} \sim N(F_t \hat{\theta}_{t|t-1}, F_t C_t F'_t + V_t).$$
(3.14)

When the observed value of  $Y_t$  is received, the state estimate can be updated to  $\theta_{tt}$  and the distribution of the state vector at time t forecast using (3.12).

The recursion is given by the following theorem, a proof of which can be found in (for example) Davis & Vinter (1985)<sup>(1)</sup>.

#### 3.1 Theorem

...

If the system and observation equations are given by (3.11) and (3.12), and the distribution of  $\theta_t$  given information at time t-1 is given by (3.13), then the distribution of the state vector can be updated when  $Y_i$  is received using the following recursion:

$$\hat{\theta}_{t+1|t} = G_t \hat{\theta}_{t|t-1} + H_t \hat{\theta}_t + K_t (Y_t - \hat{Y}_t)$$
(3.15)

where

$$K_{t} = G_{t}C_{t}F_{t}(F_{t}C_{t}F_{t} + V_{t})^{-1}$$
(3.16)

$$C_{t+1} = G_t C_t G_t' + H_t U_t H_t' - G_t C_t F_t' (F_t C_t F_t' + V_t)^{-1} F_t C_t G_t' + W_t \quad (3.17)$$

and

$$\hat{\mathbf{Y}}_{t} = F_{t} \hat{\boldsymbol{\theta}}_{t|t-1} \tag{3.18}$$

#### 4. EXAMPLES

In this section, the models referred to above are applied to the data in Taylor and Ashe (1983)<sup>(5)</sup>. The state space models are compared with least squares and empirical Bayes models. For each model, the observation equation is the same and is given by (3.6).

The data are

| 396132         937085         847498         805037         705960           440832         847631         1131398         1063269           359480         1061648         1443370           376686         986608           344014 | 357848<br>352118<br>290507<br>310608<br>443160<br>396132<br>440832<br>359480<br>376686<br>344014 | 766940<br>884021<br>1001799<br>1108250<br>693190<br>937085<br>847631<br>1061648<br>986608 | 610542<br>933894<br>926219<br>776189<br>991983<br>847498<br>1131398<br>1443370 | 482940<br>1183289<br>1016654<br>1562400<br>769488<br>805037<br>1063269 | 527326<br>445745<br>750816<br>272482<br>504851<br>705960 | 574398<br>320996<br>146923<br>352053<br>470639 | 146342<br>527804<br>495992<br>206286 | 139950<br>266172<br>280405 | 227229<br>425046 | 67948 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------|--------------------------------------|----------------------------|------------------|-------|
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------|--------------------------------------|----------------------------|------------------|-------|

with exposure factors

610 721 697 621 600 552 543 503 525 420

The exposures for each year of business are divided into the claims data before the analysis is carried out.

For comparison purposes the results from a static model with no prior information are given. The parameter estimates are the same as those which arise when classical least squares analysis is used, although in a classical estimation problem unbiased predictors might be used (see Verrall  $(1986b)^{(8)}$ ).

The parameter estimates and their standard errors are:

| Parameter      | Estimate | Standard<br>Error |
|----------------|----------|-------------------|
| μ              | 6.106    | ·165              |
| α2             | ·194     | ·161              |
| α3             | ·149     | ·168              |
| α4             | ·153     | ·176              |
| αs             | ·299     | -186              |
| α6             | -412     | -198              |
| α7             | ·508     | -214              |
| α8             | ·673     | .239              |
| αg             | ·495     | -281              |
| α10            | ·602     | .379              |
| $\beta_2$      | ·911     | ·161              |
| B <sub>3</sub> | .939     | -168              |
| β <sub>4</sub> | .965     | .176              |
| Bs             | -383     | -186              |
| B              | 005      | -198              |
| $\beta_{1}$    |          | ·214              |
| BR             | 439      | -239              |
| Bo             | 054      | -281              |
| $\beta_{10}$   | 1.393    | .379              |

| 1 4010 4.1 | Tal | ble | 4.1 |  |
|------------|-----|-----|-----|--|
|------------|-----|-----|-----|--|

The fitted values and predicted values are set out in Table 4.2. The actual data values are also shown.

|                  |                    |                    |                    | Table            | 4.2              |                  |                  |                  |                |
|------------------|--------------------|--------------------|--------------------|------------------|------------------|------------------|------------------|------------------|----------------|
| 273714<br>357848 | 680804<br>766940   | 699807<br>610542   | 718428<br>482940   | 401531<br>527326 | 272374<br>574398 | 243232<br>146342 | 176409<br>139950 | 259453<br>227229 | 67948<br>67948 |
| 392716<br>352118 | 976794<br>884021   | 1004059<br>933894  | 1030776<br>1183289 | 576104<br>445745 | 390793<br>320996 | 348981<br>527804 | 253106<br>266172 | 372255<br>425046 | 110927         |
| 362971<br>290507 | 902881<br>1001799  | 928011<br>926219   | 952705<br>1016654  | 532469<br>750816 | 361194<br>146923 | 322549<br>495992 | 233936<br>280405 | 379508           | 102650         |
| 324822<br>310608 | 807924<br>1108250  | 830475<br>776189   | 852574<br>1562400  | 476506<br>272482 | 323232<br>352053 | 288648<br>206286 | 228731           | 340091           | 91988          |
| 362965<br>443160 | 902795<br>693190   | 927995<br>991983   | 952688<br>769488   | 532460<br>504851 | 361187<br>470639 | 351067           | 256033           | 380684           | 102968         |
| 373842<br>396132 | 929849<br>937085   | 955804<br>847498   | 981237<br>805037   | 548416<br>705960 | 404479           | 362429           | 264319           | 393004           | 106300         |
| 405100<br>440832 | 1007596<br>847631  | 1035720<br>1131398 | 1063280<br>1063269 | 646825           | 439787           | 394066           | 287392           | 427310           | 115580         |
| 442462<br>359480 | 1100526<br>1061648 | 1131245<br>1443370 | 1268870            | 710402           | 483014           | 432799           | 315640           | 469311           | 126940         |
| 386545<br>376686 | 961445<br>986608   | 1090101            | 1120657            | 627422           | 426594           | 382246           | 278771           | 414492           | 112113         |
| 344014<br>344014 | 973601             | 1001989            | 1030076            | 576709           | 392113           | 351349           | 256238           | 380990           | 103051         |

In Table 4.2, the fitted values have been calculated as suggested by Kremer, but the predicted values use the Bayesian estimation theory of lemma 2.2.

The values which are of most interest when comparing the methods are the row totals and overall totals. In the following examples, the fitted values and predicted values will be omitted.

# Table 4.3

| Row | Predicted<br>Outstanding<br>Claims | Bayes<br>Standard<br>Error |
|-----|------------------------------------|----------------------------|
| 2   | 110927                             | 60216                      |
| 3   | 482157                             | 189896                     |
| 4   | 660810                             | 210040                     |
| - 5 | 1090752                            | 304721                     |
| - 6 | 1530532                            | 401125                     |
| 7   | 2310959                            | 601536                     |
| 8   | 3806976                            | 1056660                    |
| 9   | 4452396                            | 1375446                    |
| 10  | 5066116                            | 2049337                    |

600

The row totals and their standard errors are given in Table 4.3. The predicted overall total outstanding claims is 19511632 and the standard error of this estimate is 3194056. It is justifiable to use a normal approximation in this case since the total is a sum of over 40 random variables. Thus an approximate 95% upper bound on the total outstanding claims is

$$19511632 + 1.645 \times 3194056 = 24765854$$

4.1 Static Estimation

Firstly, the recursive Bayes estimation model is considered. The state equation is given by (3.5), and is

$$\boldsymbol{\theta}_{t+1} = \begin{bmatrix} 1 & & & \\ & 1 & & \\ & & \ddots & \\ & & & 1 \\ 0 & \dots & \dots & 0 \\ 0 & \dots & \dots & 0 \end{bmatrix} \boldsymbol{\theta}_{t} + \begin{bmatrix} 0 & 0 \\ \vdots & \vdots \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \boldsymbol{u}_{t}$$

Suppose that there is prior information which suggests that the prior distribution of the row parameters has mean  $\cdot 3$  and variance  $\cdot 05$ , but that there is no prior information about the other parameters.

Table 4.4 shows the parameter estimates and their standard errors. It can be seen, by comparison with Table 4.1, that the estimates of the row parameters

|                |          | Standard |
|----------------|----------|----------|
| Parameter      | Estimate | Error    |
| μ              | 6.177    | ·123     |
| α2             | ·200     | -118     |
| α3             | ·166     | ·121     |
| α4             | ·170     | -126     |
| α5             | ·275     | ·131     |
| α <sub>6</sub> | -349     | -137     |
| α7             | ·402     | ·145     |
| α8             | ·479     | -156     |
| α9             | ·362     | ·170     |
| a10            | .369     | ·191     |
| β2             | ·893     | ·158     |
| β3             | ·911     | ·164     |
| β4             | ·915     | ·171     |
| βs             | ·320     | ·180     |
| $\beta_6$      | 080      | ·191     |
| β              | ·199     | ·207     |
| $\beta_8$      | • 518    | ·231     |
| β              | - 128    | -271     |
| $\beta_{10}$   | 1.464    | ·362     |

|  | Τ | à | bl | e | 4. | 4 |
|--|---|---|----|---|----|---|
|--|---|---|----|---|----|---|

have generally been drawn towards the prior mean. For example the estimate of  $\alpha_9$  is now  $\cdot 362$ , compared with the estimate of  $\cdot 495$  when there was no prior information. It should also be noted that the estimates of the column parameters have only changed as a result of the change in the estimates of the row parameters.

The row totals and their standard errors are given in Table 4.5. The predicted overall total outstanding claims in this case is 16770131 and the standard error of this estimate is 1953764. Table 4.5 should be compared with Table 4.3. The effect of the prior distribution can be seen clearly in the predicted outstanding claims for each row: the earlier ones have increased and the later ones decreased. The prior distribution has also affected the standard errors of the predicted outstanding claims for each year of business.

|     | Predicted   | Bayes    |
|-----|-------------|----------|
|     | Outstanding | Standard |
| Row | Claims      | Error    |
| 2   | 131413      | 69379    |
| 3   | 596992      | 228013   |
| 4   | 812958      | 246552   |
| 5   | 1157631     | 302566   |
| 6   | 1450615     | 346525   |
| 7   | 1992212     | 457084   |
| 8   | 2796170     | 655781   |
| 9   | 3911910     | 926180   |
| 10  | 3920230     | 968366   |

| Table | e 4. | 5 |
|-------|------|---|
|-------|------|---|

# 4.2 Dynamic Estimation of the Row Parameters

A model which applies dynamic estimation to the row parameters has the following system equation:

$$\theta_{t+1} = \begin{bmatrix} 1 & & & \\ & 1 & & \\ & & \ddots & \\ & & & 1 \\ 0 & \dots & 1 & 0 \\ 0 & \dots & \dots & 0 \end{bmatrix} \theta_t + \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 1 \end{bmatrix} u_t + \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \end{bmatrix} w_t$$

where  $u_t$  has the prior distribution of  $\beta_{t+1}$ and  $w_t$  is a disturbance term.

Thus the new row parameter,  $\alpha_{t+1}$ , is related to  $\alpha_t$  by:

$$\alpha_{t+1} = \alpha_t + w_t \tag{4.1}$$

and a sophisticated smoothing method is produced.

The row parameters are related recursively and the column parameters are left as they were if their prior distribution is vague (although the estimates change because of the change in the estimation of the row parameters). The state variance is set as 0289, for reasons which will become clear.

In this case the parameter estimates are as in Table 4.6.

|                |          | Standard |
|----------------|----------|----------|
| Parameter      | Estimate | Error    |
| μ              | 6.119    | ·163     |
| α2             | ·187     | ·151     |
| α3             | ·170     | ·148     |
| <b>\$</b> 4    | ·196     | ·152     |
| α5             | ·296     | ·158     |
| Ø.6            | ·396     | ·164     |
| α7             | ·482     | ·171     |
| α8             | ·550     | ·183     |
| αg             | ·536     | ·202     |
| αίο            | ·546     | ·238     |
| $\beta_2$      | ·906     | ·158     |
| β <sub>1</sub> | ·940     | ·165     |
| B₄             | ·951     | ·173     |
| ßs             | .364     | -183     |
| Be             | 028      | ·195     |
| Br             |          | ·212     |
| B              | 457      | ·236     |
| B              | 062      | ·278     |
| $\beta_{10}$   | - 1.406  | •378     |

# Table 4.6

The row totals and their standard errors are given in Table 4.7.

|     | 1 auto 4.7  |          |
|-----|-------------|----------|
|     | Predicted   | Bayes    |
|     | Outstanding | Standard |
| Row | Claims      | Error    |
| 2   | 109955      | 59278    |
| 3   | 491787      | 187134   |
| 4   | 686441      | 206954   |
| 5   | 1076957     | 277762   |
| 6   | 1486991     | 347441   |
| 7   | 2217311     | 491998   |
| 8   | 3309887     | 744931   |
| 9   | 4545466     | 1048855  |
| 10  | 4591188     | 1169469  |

Table 47

The predicted overall total outstanding claims is 18515984 and the standard error of this estimate is 2660211. The standard error is lower than that when no prior knowledge is assumed because of the recursive relationship between the parameters. The effect of the Kalman filter on the parameter estimates will be illustrated by Figure 4.1, but it is interesting to compare the results with another

estimation method. This is an empirical Bayes approach and was derived by Verrall (1988)<sup>(6)</sup>. The empirical Bayes approach assumes that the row parameters are independent observations from a common distribution,

i.e.  $\alpha_i \sim N(\theta, \sigma_a^2)$ . (4.2)

This can be compared with (4.1) which can be written as

$$\alpha_{i+1} \sim N(\alpha_i, w_\alpha). \tag{4.3}$$

Equation (4.3) assumes a recursive relationship, while (4.2) simply assumes that the row parameters are all independent observations of the same random variable.

The empirical Bayes parameter estimates are as in Table 4.8. The method also produces an estimate of the variance of the distribution of the row parameters, which in this case is 0289. This value was used in the dynamic estimation method, as the state variance of the row parameters.

|                |          | Standard |
|----------------|----------|----------|
| Parameter      | Estimate | Error    |
| μ              | 6.157    | -131     |
| α2             | ·225     | ·124     |
| α3             | ·193     | ·129     |
| α4             | ·198     | ·133     |
| αs             | ·300     | -138     |
| Ø6             | ·371     | ·144     |
| Ø7             | -421     | ·150     |
| α8             | •493     | ·159     |
| αo             | ·383     | ·170     |
| αιο            | ·391     | ·185     |
| B              | -893     | ·128     |
| β <sub>3</sub> | -911     | -133     |
| B₄             | ·915     | ·139     |
| Bs             | -319     | -147     |
| B.             | 080      | -156     |
| β-0<br>β-7     | - 199    | ·170     |
| B              |          | -190     |
| Bo             | - 120    | ·224     |
| $\beta_{10}$   | - 1.444  | ·306     |

#### Table 4.8

The row totals and their standard errors are given in Table 4.9. The predicted overall total outstanding claims is 16280338 and the standard error of this estimate is 1313997.

Figure 4.1 shows the parameter estimates for the three cases above. It can be seen from the graph that the Kalman filter and empirical Bayes estimates have both smoothed the estimates of the row parameters to a certain degree. The empirical Bayes estimates have been drawn towards the overall estimate, with the



amount of change depending on the data through the variation in each row and between the rows. The differences in the estimates of the row parameters have affected the estimates of outstanding claims, as illustrated by Tables 4.7 and 4.9. The standard errors have been reduced because the estimation has involved more of the data for each parameter. This is a beneficial effect of any of the Bayesian methods.

Table 4.9

|     | Predicted<br>Outstanding | Bayes<br>Standard |
|-----|--------------------------|-------------------|
| Row | Claims                   | Error             |
| 2   | 109448                   | 46963             |
| 3   | 479568                   | 148617            |
| 4   | 655656                   | 162104            |
| 5   | 1033109                  | 220459            |
| 6   | 1388261                  | 270730            |
| 7   | 2002772                  | 374041            |
| 8   | 3018896                  | 572899            |
| 9   | 3780759                  | 720836            |
| 10  | 3811869                  | 752593            |

4.3 Dynamic Estimation of the Row and Column Parameters

The dynamic estimation method can be extended to the column parameters. The system equation becomes:

$$\boldsymbol{\theta}_{t+1} = \begin{bmatrix} 1 & & & \\ & 1 & & \\ & & \ddots & \\ & & & 1 \\ 0 & \cdots & 1 & 0 \\ 0 & \cdots & 0 & 1 \end{bmatrix} \boldsymbol{\theta}_{t} + \begin{bmatrix} 0 & 0 \\ \vdots & \vdots \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \boldsymbol{w}_{t}$$

where  $w_t \sim N(\theta, W_t)$ 

The latter model is the closest to those considered in de Jong and Zehnwirth<sup>(3)</sup>, although the analysis of variance method was not discussed.

This model was applied with state variance for the row parameters 0296 and for the column parameters 04135. Again, these were the figures obtained from the empirical Bayes method which will be described later in this section. The parameters estimates are as in Table 4.10.

|                | The state of the s | Standard |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Parameter      | Estimate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Error    |
| μ              | 6.102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ·163     |
| α2             | ·211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ·150     |
| α3             | ·186                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -148     |
| α4             | ·212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ·152     |
| α5             | -313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ·158     |
| α6             | ·414                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ·164     |
| α7             | ·502                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ·171     |
| α8             | ·569                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -183     |
| α9             | ·553                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ·202     |
| α10            | ·564                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ·239     |
| $\beta_2$      | ·908                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ·157     |
| $\beta_3$      | .939                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ·162     |
| β4             | ·929                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ·170     |
| β5             | ·373                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ·179     |
| $\beta_6$      | 012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ·189     |
| β <sub>7</sub> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -204     |
| $\beta_8$      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·224     |
| β9             | -·215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ·256     |
| $\beta_{10}$   | -1.132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ·342     |

The row totals and their standard errors are given in Table 4.11. The predicted overall total outstanding claims is 18417296 and the standard error of this estimate is 2627190.

| Тя  | hle | 4       | 1 | n |
|-----|-----|---------|---|---|
| 1 a |     | · • • . | 1 | υ |

|     | Predicted   | Bayes    |
|-----|-------------|----------|
|     | Outstanding | Standard |
| Row | Claims      | Error    |
| 2   | 143834      | 72675    |
| 3   | 465847      | 166438   |
| 4   | 673175      | 194229   |
| 5   | 1060794     | 266228   |
| 6   | 1479407     | 339755   |
| 7   | 2218738     | 487975   |
| 8   | 3287633     | 735669   |
| 9   | 4517179     | 1040596  |
| 10  | 4570683     | 1167068  |

Again, the results can be compared with the empirical Bayes results. In this case the row parameters are assumed to be independent observations from a common distribution, as before, and the column parameters also are;

i.e. 
$$\alpha_i \sim N(\theta, \sigma_a^2)$$
 (4.4)

and 
$$\beta_i \sim N(\eta, \sigma_\beta^2)$$
. (4.5)

The parameters estimates are as in Table 4.12.

| Parameter      | Estimate | Standard<br>Error |
|----------------|----------|-------------------|
| μ              | 6.122    | ·131              |
| α2             | ·254     | ·125              |
| α3             | -225     | ·129              |
| Ø.4            | ·235     | ·134              |
| α.             | ·341     | ·139              |
| a              | -415     | ·144              |
| α,             | •466     | -151              |
| Ω.e            | ·537     | ·159              |
| α              | ·424     | ·171              |
| Q 10           | .429     | ·186              |
| B <sub>1</sub> | .878     | .129              |
| B1             | -894     | -133              |
| R.             | -896     | .139              |
| P4<br>8:       | -317     | ·146              |
| P S<br>R       | 066      | -156              |
| P0<br>87       | - 175    | -168              |
| B.             | •464     | ·187              |
| Ro             | 081      | -218              |
| $\beta_{10}$   | 1.168    | ·286              |

# Table 4.12

The estimate of the variance of the distribution of the row parameters is  $\cdot 0296$ , and the estimate of the variance of the column parameters is  $\cdot 4135$ .

The row totals and their standard errors are given in Table 4.13. The predicted

overall total outstanding claims is 16827488 and the standard error of this estimate is 1346017.

. . .

|     | Table 4.13                         |                            |
|-----|------------------------------------|----------------------------|
| Row | Predicted<br>Outstanding<br>Claims | Bayes<br>Standard<br>Error |
| 2   | 142697                             | 59015                      |
| 3   | 465847                             | 157033                     |
| 4   | 710746                             | 172221                     |
| 5   | 1104778                            | 233349                     |
| 6   | 1470739                            | 285575                     |
| 7   | 2094885                            | 390731                     |
| 8   | 3098807                            | 587274                     |
| 9   | 3838265                            | 733542                     |
| 10  | 3841936                            | 763092                     |

### 5. CONCLUSIONS

This paper has attempted to show how Bayesian methods can be applied to the chain ladder linear model. The Kalman filter and a state space approach have been concentrated upon and some other possibilities illustrated. It is envisaged that the practitioner will find all of these of use. The following points are of particular note.

Firstly, any of the Bayesian methods will improve upon the least squares (or uninformative prior) approach on the basis of parameter stability. This is because more information is used in estimating each parameter. For example, in the least squares case, there is only one datum point from which to estimate the last row parameter; the Bayesian methods use the datum from the other rows as well. To illustrate the effect of this, consider a change in the datum point in the last row from its present value of 344014 to 544014. Table 5.1 shows the predicted outstanding claims for each row from the different models. The first column shows the original results with no prior information.

| Original Results |                         |                       | Revised Results    |                         |                       |                    |
|------------------|-------------------------|-----------------------|--------------------|-------------------------|-----------------------|--------------------|
| Row              | No prior<br>Information | Dynamic<br>Estimation | Empirical<br>Bayes | No prior<br>Information | Dynamic<br>Estimation | Empirical<br>Bayes |
| 2                | 110927                  | 109955                | 109448             | 110927                  | 109958                | 110094             |
| 3                | 482157                  | 491787                | 479568             | 482157                  | 491822                | 481329             |
| 4                | 660810                  | 686441                | 655656             | 660810                  | 686637                | 657998             |
| 5                | 1090752                 | 1076957               | 1033109            | 1090752                 | 1078058               | 1039692            |
| 6                | 1530532                 | 1486991               | 1388261            | 1530532                 | 1491978               | 1400466            |
| 7                | 2310959                 | 2217311               | 2002772            | 2310959                 | 2239482               | 2024720            |
| 8                | 3806976                 | 3309887               | 3018896            | 3806976                 | 3399256               | 3063229            |
| ğ                | 4452396                 | 4545466               | 3780759            | 4452396                 | 4847221               | 3819051            |
| 10               | 5066116                 | 4591188               | 3811869            | 8011412                 | 5261069               | 4411270            |

| The second secon | 1 1                     |     | ~        | 1 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----|----------|---|
| 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n                       | 0   | <u>٦</u> |   |
| 1 a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\boldsymbol{\upsilon}$ | · • |          |   |

The last row prediction using no prior information has changed in proportion with the change in the datum point. The other methods have dampened down this change because they use more information in the estimation of the parameter. They therefore exhibit greater predictor stability.

The Kalman filter requires the state variances to be specified before the analysis begins. In the examples above, figures from the empirical Bayes analysis have been used although these may not always be appropriate, or available. There is no such requirement for the empirical Bayes method, which estimates the variances from the data.

The empirical Bayes estimation method has the advantage that no prior information is needed: the 'prior' distribution is estimated from the data (hence the term 'empirical'). The predictions from the Kalman filter estimates have been obtained using the same method as in the other analyses, although it may be more proper to use the *n*-step-ahead forecasts. Either of the Bayesian methods has the advantage of predictor stability over the ordinary chain-ladder linear model. It is important to realize that the results must be used correctly. For example it is often not necessary to produce a 95% upper confidence bound (a 'safe' reserve) on outstanding claims *for each row*, but only for the whole triangle, although the 'safe' reserve for the whole triangle may be allocated among the rows. This is important since it can be seen that the standard errors for each row are, in general, relatively large. The standard error of the overall total is more reasonable. To extend this further, the practitioner may be required to set a 'safe' reserve for the whole company, rather than for each triangle; this would reduce the relative size of the standard error still further.

There are now a number of Bayesian methods which are available to the claims reserver, all of which have particular advantages over the classical estimation method. The chain ladder linear model represents a great step forward from the crude chain ladder technique and has opened the way to more sophisticated estimation methods.

# 6. REFERENCES

- (1) DAVIS, M. H. A. & VINTER, R. B. (1985) Stochastic Modelling and Control. Chapman & Hall.
- (2) KREMER, E. (1982) IBNR-Claims and the Two-Way Model of ANOVA. Scand. Act. J. 1, 47-55.
- (3) DE JONG, P. & ZEHNWIRTH, B. (1983) Claims Reserving, State-space Models and The Kalman Filter. J.I.A. 110, 157-182.
- (4) RENSHAW, A. E. (1989) Chain Ladder and Interactive Modelling. J.I.A. 116, 559.
- (5) TAYLOR, G. C. & ASHE, F. R. (1983) Second Moments of Estimates of Outstanding Claims. J. of Econometrics, 23, 37-61.
- (6) VERRALL, R. J. (1988) Bayesian Linear Models and the Claims Run-off Triangle. Actuarial Research Paper No 7, The City University, London.
- (7) VERRALL, R. J. (1989a) Modelling Claims Runoff Triangles with Two-Dimensional Time Series. Scand. Act. J. (to appear).
- (8) VERRALL, R. J. (1989b) On the Unbiased Estimation of Reserves from Loglinear Models. (Under review).