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1. INTRODUCTION 

In a recent paper, Kremer (1982)(2) has shown how the classical chain ladder 
method for estimating outstanding claims on general insurance business is 
strongly related to a two-way analysis of variance. It can be argued that the 
estimation methods in a standard chain ladder analysis are inefficient from a 
statistical viewpoint and that an analysis of variance is more appropriate. Once 
the chain ladder method is identified with a standard statistical method, the well- 
known statistical theory can be used to the advantage of the claims reserver. For 
a further discussion of the use of main stream statistical theory applied to the 
least squares estimation of the linear model which is close to the chain ladder 
method, the reader is referred to Renshaw (1989)(4). 

In this paper, the analysis of variance model is used (in a slightly different form 
from that given in Kremer(2)) as a basis for a method which allows the 
practitioner to enter prior information or to estimate the parameters dynami- 
cally. A Bayesian method is used and the data are analysed recursively. The 
method uses the Kalman filter: a full specification and discussion of the different 
modelling possibilities will be given. The Bayesian estimation of the parameters 
of the analysis of variance model using a non-recursive method has been derived 
by Verrall (1988)(6), in which paper the theory is extended to include empirical 
Bayes or credibility theory estimation. A comparison between the state space 
representation and the credibility type analysis will be made. 

The machinery for recursive estimation is based on the Kalman filter, and has 
been used in a claims reserving context by de Jong & Zehnwirth (1983)(3). The 
present paper uses the same basic form of the Kalman filter, but concentrates 
exclusively on the two-way analysis of variance model which was not discussed 
by de Jong & Zehnwirth(3). The various modelling assumptions will be discussed 
in detail, including the case of distinct parameters and static Bayesian estimation. 
It is, of course, also possible to relate the parameters to each other recursively and 
use a dynamic estimation method, and this will also be described and compared 
with the empirical Bayes method. In order to incorporate prior information into 
a static model, stochastic input vectors have to be introduced which contain the 
prior distributions of the new parameters introduced at each stage. 
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The methods described in this paper should be of use to practitioners who are 
interested in more sophisticated methods of claims reserving which retain the 
same basic intuitive appeal as the chain ladder technique. The particular use of 
the recursive Bayesian estimation method is that it allows the practitioner to 
incorporate information from other sources such as collateral data sets. The 
dynamic Kalman filter estimation does not necessarily require prior estimates of 
the parameters, but it does need the state and observation variances to be 
specified. There are no variance specifications required for the empirical Bayes 
method. It will be seen that these last two methods give estimates which are more 
stable than those from ordinary least-squares estimation. 

2. THE MODEL AND PARAMETER ESTIMATION 

This section follows Sections 2 and 3 of Kremer(2). The claims run-off triangle 
consists of data indexed by two variables: the first represents the year in which the 
business was written, and the second the delay until a claim is made. Hence Xij 
represents claims on business written in year i with delay index j and Xij are the 
incremental claims data, not the cumulative data. 

(Note that j ∈ {1,2,3, . . .} and is an index only—it does not necessarily equal 
the delay.) 

The triangle takes the form 

X11 X12 X13 X14 
X21 X22 X23 
X31 X32 
X41 

(Note that there is no loss of generality by considering a triangle—the methods 
apply equally to other shapes, e.g. a rhombus.) 

After the business has been running for t years, the data available are 

{Xij:j ≤ t–i+1,i ≤ t} (2.1) 

and it is assumed that Xij > 0, i, j. 
The model which is applied to the raw data has a multiplicative form: 

Xij=: Ui Sj Rij (2.2) 

where E(Rij) = 1 
Ui is a parameter for row i 

and Sj is a parameter for row j. 

Rij are random errors: the error term is assumed to be multiplicative. 
A natural assumption is that the data have a log-normal distribution and this 

implies that a logarithmic transformation is appropriate: 

Yij = log Xij 
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Now if Yij is assumed to have a normal distribution, Xij has a log-normal 
distribution. By taking logs of (2.2), the following model is arrived at: 

(2.3) 

where eij are assumed to be independent, identically distributed normal 
disturbances with mean zero and variance ². 

The parameters have also undergone a logarithmic transformation. Kremer 
defines µ as the mean of the log Uis and log Sjs, so that the restriction 

is imposed. 

An alternative assumption is that In this case 

(2.4) 

(2.5) 

(2.6) 

The following lemma shows how the normal equations turn out for the chain 
ladder linear model. This lemma gives the classical least squares estimates for the 
two-way analysis of variance model, and it is used to relate this linear model to 
the familiar chain ladder method. 

2.1 Lemma 
Based on t years’ data, the best linear unbiased estimators of µ, i, ßj, are the 

solutions of 

with 

(2.7) 

(2.8) 

(2.9) 

Proof 
The theorem can be proved using the Gauss-Markov theorem. The normal 
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equations are the same as those used in Kremer (²), but the restrictions differ 
slightly; this gives the parameters a slightly different interpretation. 

It is also shown by Kremer that the chain ladder method will produce results 
which are similar to those produced by the analysis of variance method. The 
latter has been studied in great depth in the statistical literature, and in the 
remaining sections the methods will be based on the analysis of variance version 
of the chain ladder technique. The analysis of variance method has the advantage 
of a great deal of theoretical background, and this theory will be applied to the 
insurance data, bearing in mind that the main method in use in the industry is the 
chain ladder method. 

In the comparison of the chain ladder method with the two-way analysis of 
variance, Kremer reverses the transformation given by (2.4)–(2.6) to obtain the 
total claims for year of business i as 

(2.10) 

Up to this point, the change from the chain ladder method to the multiplicative 
model given by (2.2) is only a reparameterization. Kremer now estimates Ei by 
substituting the estimates of the parameters into (2.10). Thus 

(2.11) 

While this serves to identify the chain ladder method with the two-way analysis of 
variance, the estimators obtained are not the maximum likelihood estimators, 
nor are they unbiased. The unbiased estimates for the classical analysis are 
derived in Verrall (1989b)(8). However, since the methods in this paper are based 
on Bayesian models, the Bayesian estimates will be derived and used. 

Since the errors in the linear model are assumed to be jointly normally 
distributed, it is implicitly assumed that the data, are 
lognormally distributed. 

The Bayes estimate of a future observation is 

(2.12) 

and the Bayes estimate of its variance is 

(2.13) 

where Xkl is yet to be observed. 
For ease of notation, will be denoted by D. 

2.2 Lemma 
Suppose that Xkl has a lognormal distribution with parameters and , and 

that the posterior distribution of , given D, is normal with mean m and variance 
², 
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Suppose also that ² and ² are known. Then 

and 
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Proof 

using the m.g.f. of the normal distribution 

Similar methods can be used to calculate the other elements of the covariance 
matrix, 

The Bayes estimate of outstanding claims for year of business i is 

and the Bayes estimate of the variance is 

3. RECURSIVE MODELS AND ESTIMATION 

(2.14) 

(2.15) 

In order to consider the Kalman filter and dynamic estimation methods, it is 
necessary to set up the two-way analysis of variance model in a recursive form. 
This takes advantage of the natural causality of the data. The data which makes 
up the claims run-off triangle are received in the form: 
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(3.1) 

and in year t the data which are received are 

(3.2) 

Thus, the direction of propagation of time is along the diagonal: 

A recursive approach must use the data sequentially and must use the data 
at time t to update the parameter estimates based on the data available before 
time t. 

The data vector at time t is Xt, where 

The set of data vectors which together make up the whole triangle form a time 
series: 

X1, X2, . . .,Xt, . . . 

In this time series, the data vector expands with t: for a triangular set of data, 

dim (Xt) = t. 

If the data are in the shape of a rhombus, which occurs when the early years of 
business are fully run off, then Xt will reach a point when its dimension does not 
increase. 

The analysis can be approached from the context of multivariate time series. 
However, the special relationships between the elements of consecutive data 
vectors mean that it is simpler to generalize the theory of classical and Bayesian 
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time series to two-dimensional processes. For a fuller discussion of the use of 
classical time series, the reader is referred to Verrall (1989a)(7). 

There are two methods for calculating the forecast values and their standard 
errors. The simplest is to use the final parameter estimates and variance- 
covariance matrix as would be the case in a standard least-squares analysis. The 
more proper method calculates one-step-ahead, two-step-ahead, . . ., (t–1)- 
steps-ahead forecasts at time t and their variance-covariance matrices. However, 
since the recursive approaches do not store covariances between, for example, 
the one-step-ahead and the (I- I)-step-ahead forecasts, the calculation of the 
variances of the forecasts causes problems. For this reason the first method will 
be used. 

The analysis of variance model, given by (2.3), takes the following form when 
three years’ data have been received: 

where Yij = log Xij. 

When the data are handled recursively, the model becomes: 

(3.3) 

etc. 

In general, the state vector at time t is defined by: 
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(3.4) 

A State Space Representation of 

and (3.3) is called the observation equation. The state vector at time t is related to 
the state vector at time t – 1 by the system equation. A recursive version of the 
chain ladder method is achieved by defining the system equation matrices as 

(3.5) 

where ut contains the prior distribution of 

The new parameters at time t + 1 are 

and (3.5) says that the existing parameters are unchanged, while the new 
parameters are treated as stochastic inputs. If the variance of the errors, eij, is 
known and vague priors are used for the parameters, this method gives exactly 
the same results as ordinary least-squares estimation. It has the advantage that 
the data can be handled recursively. Also, it gives a method of implementing 
Bayesian estimation on some or all of the parameters. It has been assumed that 
the prior estimates of the parameters are uncorrelated: in other words that the 
stochastic input vector, ut, and the state vector, t, are independent. 

The equations above are an example of a state space system; a more general 
form is now considered. The models for Y1, Y2, . . ., Yt, . . ., which together make 
up the triangle can be written as 

where 

(3.6) 
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Equation (3.6) is an observation equation and forms one part of a state system to 
which the Kalman filter can be applied in order to obtain recursive estimates of 
the parameters. t is known as the state vector and is related to t – 1 by the system 
equation. The observation equation and the system equation together make up 
the state space representation of the analysis of variance model. The system 
equation relates t to t–1 and defines how the state vector evolves with time. 
Thus, the time evolution of the system is defined on the state vector and the 
observation vector is then related to the state vector by the observation equation. 
There are many choices of system equation, the most general being: 

(3.7) 

where ut is a stochastic input vector 
and wt is a disturbance vector 

and the distributions of ut and wt are: 

The choices of Gt, Wt and the distribution of ut govern the dynamics of the 
system, and some useful cases are now described. 

The simplest case is to set ut and wt to 0 for all t. In this case (3.7) becomes: 

(3.8) 

If Gt is chosen such that the parameters at time t + 1 are the same as the 
parameters at time t, and the prior distribution of the parameters is vague, (3.8) 
defines recursive least squares estimation when the parameters are identical for 
each row and for each column. The case when the new parameters entering at 
time t + 1 are distinct from those at time t can be achieved by setting 

(3.9) 

where ut has the prior distribution of the new parameters. If this prior 
distribution is vague, least squares estimation with distinct parameters is 
achieved. Otherwise, Bayesian estimation with distinct parameters results. This is 
the arrangement which was used in (3.5). 

Between the cases of identical and distinct parameters comes dynamic 
parameter estimation, where the parameters at time t + 1 are related to, but not 
necessarily the same as, the parameters at time t. A sequential relationship 
between the parameters can be achieved by setting 

(3.10) 

where wt is a disturbance. 

This is the form of system equation considered by de Jong and Zehnwirth(³). 
The updating of the estimates of the state vector (which contains the 
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parameters), as each new data vector is received is carried out by the Kalman 
filter. 

The updating equations are derived for the most general state system which 
will be used: 

where 

and 

and are independent. 

Further et, ut, wt are sequentially independent. 

Suppose 

i.e. the distribution of the parameters, based on the data up to time 
with mean and variance-covariance matrix Ct. 

(3.11) 

(3.12) 

(3.13) 

– 1 is normal t 

From (3.11) and (3.12), the distribution of Yt given information up to time t – 1 
is 

(3.14) 

When the observed value of Yt is received, the state estimate can be updated to 
and the distribution of the state vector at time t forecast using (3.12). 

The recursion is given by the following theorem, a proof of which can be found 
in (for example) Davis & Vinter (1985)(¹). 

3.1 Theorem 
If the system and observation equations are given by (3.11) and (3.12), and the 

distribution of t given information at time t – 1 is given by (3.13), then the 
distribution of the state vector can be updated when Yt is received using the 
following recursion: 

(3.15) 

where (3.16) 

(3.17) 

and (3.18) 

4. EXAMPLES 

In this section, the models referred to above are applied to the data in Taylor 
and Ashe (1983)(5). The state space models are compared with least squares and 
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empirical Bayes models. For each model, the observation equation is the same 
and is given by (3.6). 

The data are 

357848 766940 610542 482940 527326 574398 146342 139950 227229 67948 
352118 884021 933894 1183289 445745 320996 527804 266172 425046 
290507 1001799 926219 1016654 750816 146923 495992 280405 
310608 1108250 776189 1562400 272482 352053 206286 
443160 693190 991983 769488 504851 470639 
396132 937085 847498 805037 705960 
440832 847631 1131398 1063269 
359480 1061648 1443370 
376686 986608 
344014 

with exposure factors 

610 721 697 621 600 552 543 503 525 420 

The exposures for each year of business are divided into the claims data before 

the analysis is carried out. 

For comparison purposes the results from a static model with no prior 

information are given. The parameter estimates are the same as those which arise 

when classical least squares analysis is used, although in a classical estimation 

problem unbiased predictors might be used (see Verrall (1986b)(8)). 

The parameter estimates and their standard errors are: 

Table 4.1 

Parameter Estimate 

6·106 
·194 
·149 
·153 
·299 
·412 
·508 
·673 
·495 
·602 
·911 
·939 
·965 
·383 

– ·005 
– ·118 
– ·439 
– ·054 

Standard 
Error 

·165 
·161 
·168 
·176 
·186 
·198 
·214 
·239 
·281 
·379 
·161 
·168 
·176 
·186 
·198 
·214 
·239 
·281 
·379 – 1·393 



600 A State Space Representation of 

The fitted values and predicted values are set out in Table 4.2. The actual data 
values are also shown. 

Table 4.2 

273714 680804 699807 718428 401531 272374 243232 176409 259453 67948 
357848 766940 610542 482940 527326 574398 146342 139950 227229 67948 

392716 976794 1004059 1030776 576104 390793 348981 253106 372255 110927 
352118 884021 933894 1183289 445745 320996 527804 266172 425046 

362971 902881 928011 952705 532469 361194 322549 233936 379508 102650 
290507 1001799 926219 1016654 750816 146923 495992 280405 

324822 807924 830475 852574 476506 323232 288648 228731 340091 91988 
310608 1108250 776189 1562400 272482 352053 206286 

362965 902795 927995 952688 532460 361187 351067 256033 380684 102968 
443160 693190 991983 769488 504851 470639 

373842 929849 955804 981237 548416 404479 362429 264319 393004 106300 
396132 937085 847498 805037 705960 

405100 1007596 1035720 1063280 646825 439787 394066 287392 427310 115580 
440832 847631 1131398 1063269 

442462 1100526 1131245 1268870 710402 483014 432799 315640 469311 126940 
359480 1061648 1443370 

386545 961445 1090101 1120657 627422 426594 382246 278771 414492 112113 
376686 986608 

344014 973601 1001989 1030076 576709 392113 351349 256238 380990 103051 
344014 

In Table 4.2, the fitted values have been calculated as suggested by Kremer, but 

the predicted values use the Bayesian estimation theory of lemma 2.2. 

The values which are of most interest when comparing the methods are the row 

totals and overall totals. In the following examples, the fitted values and 

predicted values will be omitted. 

Row 

2 
3 
4 
5 
6 
7 
8 
9 

10 

Table 4.3 

Predicted Bayes 
Outstanding Standard 

Claims Error 

110927 60216 
482157 189896 
660810 210040 

1090752 304721 
1530532 401125 
2310959 601536 
3806976 1056660 
4452396 1375446 
5066116 2049337 



the Chain Ladder Linear Model 601 

The row totals and their standard errors are given in Table 4.3. The predicted 
overall total outstanding claims is 19511632 and the standard error of this 
estimate is 3194056. It is justifiable to use a normal approximation in this case 
since the total is a sum of over 40 random variables. Thus an approximate 95% 
upper bound on the total outstanding claims is 

19511632 + 1·645 x 3194056 = 24765854 

4.1 Static Estimation 
Firstly, the recursive Bayes estimation model is considered, The state equation is 
given-by (3.5), and is 

Suppose that there is prior information which suggests that the prior distribution 
of the row parameters has mean ·3 and variance ·05, but that there is no prior 
information about the other parameters. 

Table 4.4 shows the parameter estimates and their standard errors. It can be 
seen, by comparison with Table 4.1, that the estimates of the row parameters 

Table 4.4 

Parameter Estimate 
6·177 
·200 
·166 
·170 
·275 
·349 
·402 
·479 
·362 
·369 
·893 
·911 
·915 
·320 

– ·080 
– ·199 
– ·518 
– ·128 

– 1·464 

Standard 
Error 
·123 
·118 
·121 
·126 
·131 
·137 
·145 
·156 
·170 
·191 
·158 
·164 
·171 
·180 
·191 
·207 
·231 
·271 
·362 
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have generally been drawn towards the prior mean. For example the estimate of 
9 is now ·362, compared with the estimate of ·495 when there was no prior 
information. It should also be noted that the estimates of the column parameters 
have only changed as a result of the change in the estimates of the row 
parameters. 

The row totals and their standard errors are given in Table 4.5. The predicted 
overall total outstanding claims in this case is 16770131 and the standard error of 
this estimate is 1953764. Table 4.5 should be compared with Table 4.3. The effect 
of the prior distribution can be seen clearly in the predicted outstanding claims 
for each row: the earlier ones have increased and the later ones decreased. The 
prior distribution has also affected the standard errors of the predicted 
outstanding claims for each year of business. 

Table 4.5 

Row 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Predicted Bayes 
Outstanding Standard 

Claims Error 
131413 69379 
596992 228013 
812958 246552 

1157631 302566 
1450615 346525 
1992212 457084 
2796170 655781 
3911910 926180 
3920230 968366 

4.2 Dynamic Estimation of the Row Parameters 
A model which applies dynamic estimation to the row parameters has the 

following system equation: 

where ut has the prior distribution of ßt + 1 
and wt is a disturbance term. 

Thus the new row parameter, t + 1, is related to a, by: 

(4.1) 

and a sophisticated smoothing method is produced. 
The row parameters are related recursively and the column parameters are left 

as they were if their prior distribution is vague (although the estimates change 
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because of the change in the estimation of the row parameters). The state 
variance is set as ·0289, for reasons which will become clear. 

In this case the parameter estimates are as in Table 4.6. 

Table 4.6 

Parameter Estimate 
6·119 

·187 
·170 
·196 
·296 
·396 
·482 
·550 
·536 
·546 
·906 
·940 
·951 
·364 

– ·028 
– ·145 
– ·457 
– ·062 

– 1·406 

Standard 
Error 
·163 
·151 
·148 
·152 
·158 
·164 
·171 
·183 
·202 
·238 
·158 
·165 
·173 
·183 
·195 
·212 
·236 
·278 
·378 

The row totals and their standard errors are given in Table 4.7. 

Table 4.7 

Row 

2 
3 

4 

5 
6 
7 
8 
9 

10 

Predicted Bayes 
Outstanding Standard 

Claims Error 

109955 59278 
491787 
686441 

187134 
206954 

1076957 277162 
1486991 347441 
2217311 491998 
3309887 
4545466 

744931 
1048855 

4591188 1169469 

The predicted overall total outstanding claims is 18515984 and the standard 
error of this estimate is 2660211. The standard error is lower than that when no 
prior knowledge is assumed because of the recursive relationship between the 
parameters. The effect of the Kalman filter on the parameter estimates will be 
illustrated by Figure 4.1, but it is interesting to compare the results with another 
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estimation method. This is an empirical Bayes approach and was derived by 
Verrall(1988)(6). The empirical Bayes approach assumes that the row parameters 
are independent observations from a common distribution, 

i.e. 

This can be compared with (4.1) which can be written as 

(4.2) 

(4.3) 

Equation ‘(4.3) assumes a recursive relationship, while (4.2) simply assumes that 
the row parameters are all independent observations of the same random 
variable. 

The empirical Bayes parameter estimates are as in Table 4.8. The method also 
produces an estimate of the variance of the distribution of the row parameters, 
which in this case is ·0289. This value was used in the dynamic estimation 
method, as the state variance of the row parameters. 

Table 4.8 

Parameter Estimate 
6·157 
·225 
·193 
·198 
·300 
·371 
·421 
·493 
·383 
·391 
·893 
·911 
·915 
·319 

– ·080 
–·199 
–·515 
–·120 

– 1·444 

Standard 
Error 
·131 
·124 
·129 
·133 
·138 
·144 
·150 
·159 
·170 
·185 
·128 
·133 
·139 
·147 
·156 
·170 
·190 
·224 
·306 

The row totals and their standard errors are given in Table 4.9. The predicted 
overall total outstanding claims is 16280338 and the standard error of this 
estimate is 1313997. 

Figure 4.1 shows the parameter estimates for the three cases above. It can be 
seen from the graph that the Kalman filter and empirical Bayes estimates have 
both smoothed the estimates of the row parameters to a certain degree. The 
empirical Bayes estimates have been drawn towards the overall estimate, with the 
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Figure 4.1 

amount of change depending on the data through the variation in each row and 
between the rows. The differences in the estimates of the row parameters have 
affected the estimates of outstanding claims, as illustrated by Tables 4.7 and 4.9. 
The standard errors have been reduced because the estimation has involved more 
of the data for each parameter. This is a beneficial effect of any of the Bayesian 
methods. 

Row 
2 109448 
3 479568 

Table 4.9 

Predicted 
Outstanding 

Claims 

4 
5 
6 
7 
8 
9 
10 

655656 
1033109 
1388261 
2002772 
3018896 
3780759 
3811869 

Bayes 
Standard 

Error 
46963 

148617 
162104 
220459 
270730 
374041 
572899 
720836 
752593 
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4.3 Dynamic Estimation of the Row and Column Parameters 
The dynamic estimation method can be extended to the column parameters. 

The system equation becomes: 

where 

The latter model is the closest to those considered in de Jong and Zehnwirth(³), 
although the analysis of variance method was not discussed. 

This model was applied with state variance for the row parameters -0296 and 
for the column parameters ·4135. Again, these were the figures obtained from the 
empirical Bayes method which will be described later in this section. The 
parameters estimates are as in Table 4.10. 

Table 4.10 

Parameter Estimate 
Standard 

Error 
6·102 ·163 

·211 ·150 
·186 ·148 
·212 ·152 
·313 ·158 
·414 ·164 
·502 ·171 
·569 ·183 
·553 ·202 
·564 ·239 
·908 ·157 
·939 ·162 
·929 ·170 
·313 ·179 

– ·012 ·189 
– ·151 ·204 
– ·411 ·224 
– ·215 ·256 

– 1·132 ·342 

The row totals and their standard errors are given in Table 4.11. The predicted 
overall total outstanding claims is 18417296 and the standard error of this 
estimate is 2627190. 
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Row 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Table 4.11 

Predicted 
Outstanding 

Claims 
143834 
465847 
673175 

1060794 
1479407 
2218738 
3287633 
4517179 
4570683 

Bayes 
Standard 

Error 
72675 

166438 
194229 
266228 
339755 
487975 
735669 

1040596 
1167068 

Again, the results can be compared with the empirical Bayes results. In this 
case the row parameters are assumed to be independent observations from a 
common distribution, as before, and the column parameters also are; 

i.e. (4.4) 

and (4.5) 

The parameters estimates are as in Table 4.12. 

Table 4.12 

Parameter Estimate 
6·122 

·254 
·225 
·235 
·341 
·415 
·466 
·537 
·424 
·429 
·878 
·894 
·896 
·317 

–·066 
–·175 
–·464 
–·081 

–1·168 

Standard 
Error 
·131 
·125 
·129 
·134 
·139 
·144 
·151 
·159 
·171 
·186 
·129 
·133 
·139 
·146 
·156 
·168 
·187 
·218 
·286 

The estimate of the variance of the distribution of the row parameters is -0296, 
and the estimate of the variance of the column parameters is ·4135. 

The row totals and their standard errors are given in Table 4.13. The predicted 
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overall total outstanding claims is 16827488 and the standard error of this 

estimate is 1346017. 

Table 4.13 

Row 

Predicted Bayes 
Outstanding Standard 

Claims Error 

2 
3 
4 
5 
6 
7 
8 
9 
10 

142697 59015 
465847 157033 
710746 172221 

1104778 233349 
1470739 285575 
2094885 390731 
3098807 587274 
3838265 733542 
3841936 763092 

5. CONCLUSIONS 

This paper has attempted to show how Bayesian methods can be applied to the 

chain ladder linear model. The Kalman filter and a state space approach have 

been concentrated upon and some other possibilities illustrated. It is envisaged 

that the practitioner will find all of these of use. The following points are of 

particular note. 

Firstly, any of the Bayesian methods will improve upon the least squares (or 

uninformative prior) approach on the basis of parameter stability. This is 

because more information is used in estimating each parameter. For example, in 

the least squares case, there is only one datum point from which to estimate the 

last row parameter; the Bayesian methods use the datum from the other rows as 

well. To illustrate the effect of this, consider a change in the datum point in the 

last row from its present value of 344014 to 544014. Table 5.1 shows the predicted 

outstanding claims for each row from the different models. The first column 

shows the original results with no prior information. 

Table 5.1 

Original Results 

No prior 
Row Information 

2 110927 
3 482157 
4 660810 
5 1090752 
6 1530532 
7 2310959 
8 3806976 

9 4452396 
10 5066116 

Dynamic Empirical 
Estimation Bayes 

109955 109448 
491787 479568 
686441 655656 

1076957 1033109 
1486991 1388261 
2217311 2002772 
3309887 3018896 
4545466 3780759 
4591188 3811869 

Revised Results 

Dynamic 
Estimation 

109958 
491822 
686637 

1078058 
1491978 
2239482 
3399256 
4847221 
5261069 

No prior 
Information 

110927 
482157 
660810 

1090752 
1530532 
2310959 
3806976 
4452396 
8011412 

Empirical 
Bayes 

110094 
481329 
657998 

1039692 
1400466 
2024720 
3063229 
3819051 
4411270 
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The last row prediction using no prior information has changed in proportion 
with the change in the datum point. The other methods have dampened down 
this change because they use more information in the estimation of the 
parameter. They therefore exhibit greater predictor stability. 

The Kalman filter requires the state variances to be specified before the 
analysis begins. In the examples above, figures from the empirical Bayes analysis 
have been used although these may not always be appropriate, or available. 
There is no such requirement for the empirical Bayes method, which estimates 
the variances from the data. 

The empirical Bayes estimation method has the advantage that no prior 
information is needed: the ‘prior’ distribution is estimated from the data (hence 
the term ‘empirical’). The predictions from the Kalman filter estimates have been 
obtained using the same method as in the other analyses, although it may be more 
proper to use the n-step-ahead forecasts. Either of the Bayesian methods has the 
advantage of predictor stability over the ordinary chain-ladder linear model. It is 
important to realize that the results must be used correctly. For example it is 
often not necessary to produce a 95% upper confidence bound (a ‘safe’ reserve) 
on outstanding claims for each row, but only for the whole triangle, although the 
‘safe’ reserve for the whole triangle may be allocated among the rows. This is 
important since it can be seen that the standard errors for each row are, in 
general, relatively large. The standard error of the overall total is more 
reasonable. To extend this further, the practitioner may be required to set a ‘safe’ 
reserve for the whole company, rather than for each triangle; this would reduce 
the relative size of the standard error still further. 

There are now a number of Bayesian methods which are available to the claims 
reserver, all of which have particular advantages over the classical estimation 
method. The chain ladder linear model represents a great step forward from the 
crude chain ladder technique and has opened the way to more sophisticated 
estimation methods. 
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