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ABSTRACT 

The paper gives details of statistical modelling techniques which can be used to estimate risk and 
office premiums from past claims data. The methods described allow premiums to be estimated for 
any combinaton of rating factors, and produce standard errors of the risk premium. The statistical 
package GLIM is used for analysing claims experience, and GLIM terminology is used and explained 
thoughout the paper. 

Arguments are put forward for modelling frequency and severity separately for different claim 
types. Pitted values can be used to estimate risk premiums, and the incorporation of expenses allows 
for the estimation of office premiums. Particular attention is given to the treatment of no claim 
discount. 

The paper also discusses possible uses of the modelled premiums. These include the construction of 
‘standardised’ one way tables and the analysis of experience by postal code and model of vehicle. Also 
discussed is the possibility of using the results for assessing the impact of competition, and for finding 
‘niche’ markets in which an insurer can operate both competitively and profitably. 
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1. INTRODUCTION 

1.1.1 There have been a large number of papers written on motor insurance 
which make use of statistical modelling. Many of these papers were published 
well over twenty years ago (Almer, 1957; Bailey & Simon, 1960; Jung, 1966). 
Further progress was made during the 1970s with papers by Johnson & Hey 
(1971) and Bennett (1978) and more recently papers by Baxter, Coutts & Ross 
(1980) and Coutts (1984). These papers are reviewed in more detail in Section 1.7. 
It is rather surprising, therefore, that actuaries have not established themselves 
more firmly or been more widely accepted by the market as having an essential 
role to play in the pricing process of motor business. Surely motor insurance, the 
largest single class of personal lines business in the U.K., is one line of business 
where the talents of actuaries should be utilised to the full. 

1.1.2 Current practice and methodology in the U.K. market can be consi- 
dered, on the whole, statistically unsophisticated. The authors believe that a full 
statistical analysis of a company’s data is essential in the pricing decision-making 
process, where it can be combined with careful underwriting control to help 
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improve profitability. Recent developments in micro computer technology have 
meant that detailed statistical analyses can now be carried out quickly and 
efficiently on a micro computer, and that there is no longer any need for extensive 
mainframe processing. For very large accounts, the mainframe need only be used 
for the initial data processing stages. A data transfer to a micro based database 
can provide the flexibility required for statistical analysis. 

1.1.3 Profit margins in the U.K. motor market over the period 1984–1990 
have been extremely small. During this period, the average return after 
investment income has amounted to little more than 2% of premiums before tax. 
It is doubtful whether this level of profitability can justify the substantial amount 
of capital which is required to support the business. In order to provide an 
acceptable return on capital, a company must now aim to be a consistent above- 
average performer. 

1.1.4 This paper outlines a statistical approach which, we believe, can help a 
company achieve improved profitability. Our approach requires substantial data 
analysis, in which statistical modelling techniques help unravel the trends and 
patterns in the data. We have found that such an exercise can provide the 
underwriter with much additional information on all the relevant factors which 
are driving the claims experience of the account. It is essential to get the theory 
right, and, unavoidably, this paper is rather more theoretical than some might 
hope. However, it is important not to lose sight of reality and that the theoretical 
results are capable of practical application. Also, the methodology must be 
capable of adapting to the constant changes in market practice. These points 
were firmly in our minds when we developed the theory in this paper. 

1.2 The Two Main Aspects of Premium Rating 
1.2.1 There arc two main aspects of premium rating. First, the relative 

premium levels need to be determined; for example, it is important to charge the 
correct premium for old drivers relative to young drivers, new cars relative to old 
cars, or high car groups relative to low car groups. Secondly, the overall premium 
levels must be adequate in order to meet particular profit objectives. 

1.2.2 It is this first aspect which we address in this paper, indeed we do not 
believe that the second can be tackled effectively using a statistical analysis of 
past claims data. All that is required for the second aspect is to adjust the overall 
level of premiums to meet a particular profit objective, taking into account short- 
term economic effects and other external factors. If the broad structure of rates is 
correct, then the second aspect, that of determining the overall level of premium 
rates, becomes much easier. 

1.3 The Importance of Getting the Rating Structure Right 
1.3.1 We emphasised in the previous section the importance of getting the 

broad rating structure right. There are two reasons for this. First, the motor 
market is highly competitive. If a company does not broadly charge the correct 
premium rate in a particular part of its portfolio, it will be selected against. 
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Secondly, it allows a company to operate profitably in particular ‘niches’ of the 
market. 

1.3.2 It is essential that a company minimises the possibility of adverse 
selection, since it could otherwise lead to a spiral of unstable pricing action. 
Suppose a company charges too little for low car groups and too much for high 
car groups. Over the whole portfolio the premiums may be deemed to be at the 
correct level. However, eventually the company will tend to gain low car group 
policies and lose high car group policies. The overall profitability of the portfolio 
will begin to deteriorate, since low car groups are undercharged. If, in future, an 
overall premium increase is applied in order to address the deterioration in 
profitability the situation will be further aggravated, and the profitability will 
continue to deteriorate. Unless the root cause is corrected, and premiums are 
increased for low car groups relative to high car groups, the portfolio will not be 
profitable or produce stable results. If the broad structure of premium rates is 
right, then overall premium increases can be applied with more confidence and a 
more stable pattern of premium increase can be achieved. It is usually sufficient to 
concentrate on the primary rating factors if selection is to be minimised. These 
are usually considered to be cover, vehicle group, vehicle age, policyholder age, 
district, no claims discount (NCD), and vehicle use. However, we have found 
that the sex of policyholder and voluntary driving restrictions also have an 
important influence. 

1.3.3 There has been much recent comment on the ‘search for the niche’ and 
‘niche underwriting’. Much of the comment has focused on hunches and market 
‘feel’. We believe that, if the techniques advocated in this paper are followed, it 
will help an underwriter to use his own data to identify the combination of rating 
factors which will enable him to operate both profitably and competitively. We 
have no doubt that an underwriter’s ‘gut feeling’ will always be important in the 
pricing decision; however it is one thing to think you know, another to know you 
know. Even in the current extremely competitive market there are clear segments 
where companies could improve their profitability considerably. 

1.4 The Multifactor Approach 
1.4.1 This paper outlines a multifactor approach to premium rating. The 

historical claims experience is analysed on a multi-way rating factor basis. That 
is, for every possible combination of rating factors or ‘cell’, the historical claims 
experience is used to calculate a claim frequency and an average cost. Statistical 
models are fitted to the raw claim frequency and raw average costs, and the 
results are used to calculate an expected frequency and average cost for each cell, 
Separate models are chosen for each type of claim: for example, windscreen, 
accidental damage, third party property damage, third party bodily injury, fire, 
theft and zero claims. The expected claim frequencies and average costs for each 
type of claim are combined to produce theoretical premium rates for each cell. 

1.4.2 It is worth considering at this point the size of the estimation problem. 
Suppose we limit the analysis to the seven principal rating factors mentioned in 
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Section 1.3. The cells are constructed by defining a number of levels for each of 
the rating factors. One possibility is shown in Table 1.4.2. 

Table 1.4.2. Multifactor breakdown of data 

Cover Vehicle Vehicle Policyholder District NCD Vehicle 
group age age use 

Comprehensive 1 0–1 17–19 A SDP 
Non-comprehensive 2 2–3 20–22 B 

0 
30 Class 1 

3 4–6 23–25 C 40 Class 2/3 
4 7–9 26–30 D 50 
5 10+ 31–35 E 60 
6 36–45 F Protected 
7+ 46–60 

61+ 

This produces over 60,000 cells of information. The statistical estimation 
problem appears immense. One solution would be to reduce the number of 
factors analysed: a second to introduce wider bands within each factor. However, 
this seriously reduces the effectiveness of the statistical modelling approach. The 
underwriter needs to know the shape of the rating structure in increasingly fine 
detail. Recently the ABI has proposed the introduction of 20 vehicle groups. This 
trend is likely to continue. We therefore believe it is essential to provide the 
underwriter with the relative premium rates in as much detail as possible. In 
order to achieve this it is essential that statistical models are chosen very 
carefully, so that sensible results can be estimated from the small exposures in 
each cell. In particular, it is important to take full advantage of possible 
relationships between adjacent cells: for example, the likely progression in 
experience from age to age of policyholder or vehicle. 

1.4.3 We have included NCD level as one of the ‘rating factors’ in § 1.4.2, 
because both claim frequency and severity differ significantly between NCD 
levels for most claim types. Therefore, the inclusion of NCD level as an 
explanatory variable in the statistical models will allow a closer fit to the data. 
However, the fitted models usully indicate that the true relativities of expected 
loss between levels of the NCD scale are not the same as those implied by the 
existing percentage discounts. Unless the percentage discounts for each NCD 
level are changed to correspond to these estimated relativities, the other 
parameters of the fitted model will not indicate the correct relativities for the 
other rating factors. The NCD relativities indicated by the model will not 
necessarily be round percentages and, although they will represent the ‘true’ 
relationship between NCD level and risk, it is often undesirable to adopt them. 
For this reason, we believe it is often better not to include NCD level as an 
explanatory variable in practice, especially in cases where the difference in the 
true and existing percentage discounts is not material. If these differences are 
material, a change to the scale and stepback rules may be more appropriate. 
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1.5 Why Fit Statistical Models? 

461 

There will be many patterns which will ‘fit’ the claims data. Some will tit better 
than others, although none of them will be ‘right’. Amongst these will be the 
underwriter’s current rating structure. The statistical model will attempt, in 
engineering terminology, to separate the signal from the noise: in other words, 
extract the underlying pattern from the actual claims experience. The parameters 
of the model can help in understanding the patterns in the data. The relative 
importance of the underwriting factors can be tested statistically, as can the 
existence of ‘interaction’ effects between underwriting factors. There will always 
be a trade off between finding the simplest model and the model which fits the 
data closest. The aim of statistical modelling is to find the best compromise 
between these two objectives. We believe that the methods outlined in this paper 
go a long way towards achieving this aim. 

1.6 One-Way Tables 
1.6.1 Most companies regularly produce underwriting factor summary tables 

from their statistical databases. These generally show the key underwriting 
statistics for each underwriting factor on a one-way basis. Hence statistics such as 
claim frequency, average cost, risk premium and loss ratio are monitored, for 
each underwriting factor and level within each underwriting factor. 

1.6.2 These ‘one-way’ tables are a useful means of monitoring the relative 
profitability of the levels within each underwriting factor, but will not give an 
accurate indication of the relative profitability between levels. Indeed, they can 
often be misleading and result in incorrect rating action. 

1.6.3 The first problem is that there may be important ‘interactions’ between 
different underwriting factors, which will produce misleading results if presented 
on a one-way basis. This can be overcome by analysing the underwriting statistics 
on a multi-dimensional basis. Provided that the dimensions do not exceed about 
three, this should be manageable. For example, if the relative claims experience 
of males and females varies by policyholder age, then separate one-way tables for 
policyholder age can be produced for males and females. However this assumes a 
priori knowledge that there is an ‘interaction effect’ between sex and policyholder 
age. 

1.6.4 The second problem is that the distribution of business is not identical 
within each level of each underwriting factor. For instance, the claims experience 
on a one-way basis may show that young females are more profitable than young 
males. However, a further inspection of the data may reveal that young females 
tend to drive vehicles in lower classified groups. Hence the apparent improved 
profitability may well be intrinsically related to the relative profitability of vehicle 
groups. There may well be no difference in the relative profitability between 
young males and young females insuring the same type of vehicle. 

1.6.5 This problem is more difficult to overcome. The traditional actuarial 
solution to this problem is to ‘standardise’ the claims experience in an attempt to 
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eliminate the distorting effects of the uneven distribution of business within each 
level of each underwriting factor, so that valid comparisons of the claims 
experience can be made on a one-way basis. The standardisation approach 
requires careful application; we discuss this issue further in Section 9. 

1.6.6 The modelling approach, as advocated in this paper, deals with both 
these problems automatically. If the approach is integrated with a system of 
careful control using both traditional one-way tables and standardised one-way 
tables, an effective underwriting control system can be developed. 

1.7 Review of Previous Papers 
1.7.1 The early papers on statistical modelling in motor insurance focused on 

claim numbers with little consideration of the size of claims. The debate centred 
mainly on whether an additive or multiplicative model should be used in relating 
claim frequency to rating factors. Almer (1957) suggested a multiplicative model 
and this was taken up and developed by a series of subsequent authors, notably 
Jung (1968), whereas Johnson & Hey (197 1) in an influential paper, advocated an 
additive model. These early papers were very well summarised by Bennett (1978), 
who compared the various fitting methods which had been proposed at that time 
for both the additive and multiplicative models. Bennett came down in favour of 
the additive model, largely on the grounds that it could be fitted relatively simply. 

1.7.2 These early papers might now be considered statistically unsophisticated 
(which perhaps accounts for the plethora of estimation methods which evolved). 
Baxter, Coutts & Ross (1980) attempted to remedy this. They advocated a 
statistically more rigorous approach in which assumptions concerning the 
structure of the random variation are explicitly stated, fitting is carried out in 
accordance with those assumptions, and the assumptions are critically examined 
after fitting by means of a residual analysis. They used the Royal Statistical 
Society’s computer package GLIM (first released in 1977) to implement this 
approach, which they applied to both claim numbers and claim sizes. 

1.7.3 For claim numbers Baxter et al. carried out an empirical comparison of 
several models using a single data-set. In our opinion, such an investigation 
cannot be conclusive and should not lead to any general recommendations, 
because the findings may depend on peculiarities of the particular data-set used. 
We think that the use of a small number of levels for each rating factor in their 
analysis renders generalisations particularly unsafe. However, Baxter et al. 
finished by recommending a method called OWLS (for which GLIM was not 
used) on the grounds that, for their single data-set, it gave results in close 
agreement with those from other models fitted using GLIM, but was computa- 
tionally simpler than the GLIM models. The matter of computational simplicity 
was important in 1980 largely because of the limits on computer memory space. 
Today, with increased memory space, the GLIM models (which Baxter et al. 
implicitly accepted as technically superior to the OWLS approach) are 
computationally very simple, as we will show. For claim sizes, Baxter et al. used 



Statistical Motor Rating: Making Effective Use of Your Data 463 

an additive model, but failed to find a satisfactory error structure (a fact clear 
from their paper, but only later made explicit by Coutts (1984)). 

1.7.4 Coutts (1984) continued with the OWLS model recommended in Baxter 
et al. for claim frequency. For claim sizes he accepted that the model of Baxter et 
al. was not satisfactory, and tried to formulate a model based on a suggestion by 
Nelder. This was unsuccessful and he settled for an additive model, again fitted 
using his own OWLS technique. One area in which Coutts (1984) made 
significant progress was in the calculation of office premiums (from the results of 
the component frequency and severity models) for input to a final modelling 
stage to produce a ‘smooth’ structure, which can easily be compared with the 
existing rate book, or with theoretical rates obtained using different assumptions. 

1.8 GLIM 

1.8.1 We make extensive use of GLIM in motor-rating analyses in practice. 
The problems encountered in motor-rating are of precisely the type for which 
GLIM was designed. Models which would appear complex if tackled manually 
or using ad hoc computer programs can be fitted quickly and simply using GLIM. 
This allows models to be selected solely on the basis of their technical suitability. 
GLIM code is used throughout Sections 2-8 as a concise means of describing our 
models. A brief outline of GLIM, covering only what is necessary for an 
understanding of this paper, is given in Appendix A. Appendix A also shows how 
the claim frequency models described by Bennett (1978) can be fitted very easily 
using GLIM. We strongly recommend that readers unfamiliar with GLIM study 
Appendix A before proceeding to Section 2. Apart from the papers by Baxter et 
al. and Coutts mentioned above, there have been several other papers advocating 
the use of GLIM in actuarial work, for example Haberman & Renshaw (1988) 
and Renshaw (1991). The theory behind GLIM is very general, and the program 
is used widely outside the actuarial world. A good example is Little (1987): this 
paper includes a lucid account of the underlying ideas. A more comprehensive 
account of the theory, with example applications, is given by McCullagh & 
Nelder (1989). For the details of how to use the software, reference should be 
made obviously to the GLIM manual (NAG, l985), but we also recommend 
Aitkin et al. (1989) and Healy (1988). 

1.9 Summary of Later Sections 
1.9.1 The particular models which we advocate in this paper have been 

selected mainly on theoretical grounds, but are supported by empirical 
experience. For claim frequency we advocate the use of Bennett’s model C, that 
is, the multiplicative model with a Poisson error structure (See Appendix A). This 
is also one of the models considered by Baxter et al. (1980): they used it to 
illustrate GLIM in their appendix. Our reasons for favouring this model are 
given in Section 2 and Appendices B and C. For claim sizes, we favour a 
multiplicative model with a Gamma error structure (i.e. V(µ) = µ2: see Appendix 
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A). This is the error structure suggested by Nelder (see McCullagh & Nelder 
(1983, 1989)), which Coutts (1984) tried and found to be unsatisfactory. Full 
details on this model, including prior reasons for favouring it, are given in 
Section 3, whilst Appendices E and F give details of techniques which can be used 
to check its validity. 

1.9.2 By using these models for frequency and severity we have been able to 
introduce a number of innovations to the modelling process, which increase the 
reliability of estimated risk and office premiums, and which give significant 
practical advantages. These are dealt with in Sections 4, 5 and 6. Having obtained 
estimated office premiums (Section 7), we follow Coutts (1984) in carrying out a 
final stage of modelling to smooth these into a simple structure (Section 8). Our 
methodology for this stage is, however, very different from that used by Coutts, 
because we allow for the fact that the distribution of policies over NCD levels 
may be different for each cell defined by the other rating factors. We consider two 
possibilities: 

(i) the structure of the NCD scale is to remain unchanged, but the percentage 
discounts for each level of the scale are to be changed to reflect the true 
relationship with loss as indicated by the data, and 

(ii) both the structure of the NCD system and the percentage discounts for each 
level of the scale are to remain unchanged. 

The former possibility is the simpler. It can be tackled by having NCD level as an 
explanatory variable in both the frequency and severity models. The second 
option, which is often required in practice (for the reasons outlined in § 1.4.3), 
cannot be handled in the same way (this is proved in Appendix J). Rather than 
including NCD level as an explanatory variable, we propose a separate model to 
estimate the average NCD within each cell (Section 7.2 and Appendix H). The 
numerical examples in the paper all relate to an analysis of type (ii). 

1.9.3 In Section 9 we show how the results from the modelling can be used to 
build an effective standard table, which can also be used to investigate the 
importance of the underwriting factors not included in the modelling process, We 
also discuss how the standard table can be used to investigate the appropriateness 
of postal code to district classifications, and make/models to vehicle group 
classifications. 

1.9.4 Finally, in Section 10 we show how the results of the modelling can be 
used in conjunction with an analysis of competitors’ rates to test how far a 
company can move its existing rating structure to that indicated by the 
theoretical analysis. The objective is to improve profitability by identifying areas 
of the market where profit margins are likely to be larger, and by increasing 
exposure in these more profitable areas. 

1.9.5 Although the paper deals specifically with motor insurance rating, the 
methods may be applied more generally, for example to health and household 
insurance, where the premium rates depend on several factors. 
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2. BASIC CLAIM FREQUENCY MODEL 

2.1 The Case for a Multiplicative Model 
2.1.1 In the past there has been much debate over whether an additive or 

multiplicative model should be used in relating claim frequency to rating factors: 
a brief history is given in Section 1.7. We believe that there are clear and 
substantive reasons for preferring a multiplicative model. First, it should be 
noted that an additive model can give rise to negative fitted values for the claim 
frequency, whereas a multiplicative model cannot. However, this is merely a 
symptom of the inappropriateness of the additive model: we attempt to explain 
our reasoning in the remainder of this sub-section. 

2.1.2 Car age is now widely recognised as an important risk factor: risk 
generally decreases quite substantially with car age. The reason is probably a 
negative association between car age and annual mileage. (Clearly it would be 
preferable to use annual mileage directly as the rating factor, but this is not 
common practice, owing to the difficulty in obtaining a reliable and objective 
forecast. If annual mileage were used as the rating factor, it would strengthen the 
argument given here.) Focus attention on car group and car age: suppose all 
other factors are held constant. Suppose that for car group 1 the claim frequency 
is 0·05 for cars aged 10 years, and 0·10 for cars aged 1 year. Now consider car 
group 6 and suppose that the claim frequency is 0·10 for cars aged 10 years. What 
should we expect the frequency to be for cars aged 1 year? Under the additive 
assumption the figure would be 0·15, whereas under the multiplicative assump- 
tion it would be 0·20. Given the belief that car age is a surrogate for annual 
mileage, the multiplicative model is clearly more plausible (the explanation is 
that 10-year-old cars cover about half the mileage of 1 -year-old cars, for each car 

group). 
2.1.3 Of course car age is a special case (in that it is believed to be highly 

associated with the exposure in terms of annual mileage), so the above argument 
in favour of the multiplicative model does not generalise directly to other rating 
factors. However, consider policyholder age and car group. For policyholder age 
30, suppose we have claim frequencies of 0·05 for car group 1 and 0·10 for car 
group 6, and suppose that for policyholder age 17 we have a claim frequency of 
0·20 for car group 1. For car group 6 the additive assumption gives a frequency of 
0·25, whilst the multiplicative assumption gives 0·40. We find it much more 
plausible a priori that ‘a car in group 6 has twice the risk of a car in group 1 
whatever the drivers age’ than that ‘a car in group 6 is likely to have one more 
accident every 20 years than a car in group 1 regardless of the safety of the driver’. 
The same argument applies to any other combination of rating factors. 

2.1.4 On these grounds it should be expected that an additive model may need 
interaction terms to provide a good fit (in the example, we need a policyholder 
age 17 x car group 6 interaction of 0·15 in order to give the figure expected under 
the multiplicative model). An empirical investigation of these points is described 
in Appendix B. As mentioned in Section 1.5, modelling is always a matter of 
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finding the best compromise between accuracy and simplicity. In the present 
context, the multiplicative model is superior to the additive model in this respect: 
simplicity can be achieved (fewer interaction terms) without a major sacrifice in 
accuracy. 

2.2 The Case for a Poisson Error Structure 
2.2.1 The Poisson model for the incidence of claims (in any type of insurance) 

is so well known that there is no need to discuss it in full detail here. Chapter 2 of 
Beard et al. (1984) gives a comprehensive account. Given the suitability and 
general acceptance of the Poisson model, it is somewhat puzzling that it has not 
often been invoked when attempting to relate claim frequency to rating factors in 
motor insurance. Johnson & Hey (1971) is a case in point: in most sections of the 
paper they implicitly assume that the claims arising from each policy follow a 
Poisson process, but in the section which deals with a model relating claim 
frequency to rating factors, the Poisson assumption is dropped, and the model 
fitted on the basis that the number of claims on each policy has constant variance 
rather than a variance equal to the mean. 

2.2.2 Of course, there are problems with the Poisson assumption, and these 
are discussed below, but initially an idealised situation will be considered. We 
suppose, for the purpose of this discussion, that there are two rating factors and 
their levels are indexed by i and j. Each particular combination of i and j is 
referred to as a rating cell (for example, all those policyholders aged 20–25 and 
driving cars in group 4). We use the following notation: 

xij=exposure in rating cell (i,j) (this could be the number of vehicle years for 
example), and 

nij= number of claims arising from the xij units of exposure in cell (i,j). 

2.2.3 In an idealised situation, the rating factors are selected so that we have 
perfect homogeneity throughout each cell: that is, each unit of exposure in cell 
(i,j) has the same chance of yielding 1, 2, 3, etc. claims as any other unit of 
exposure in the same cell. Further, the distribution of the number of claims from 
a single unit of exposure is an exact Poisson distribution, and so has a variance 
equal to its mean. Thus, if fij denotes the mean of this Poisson distribution for cell 
(ij), and mijk denotes the number of claims arising from the kth unit of exposure 
in this cell then we have: 

E(mijk) = fij and Var(mijk)=fij. 

Now, nij the sum Of the mijk for all xij units in cell (i,j). SO, if we further assume 
that these units are mutually independent, we can apply elementary results on the 
mean and variance of a sum of independent random variables to obtain: 

E(nij) = xij•fij and Var(nij) = xij•fij 

(and in fact, nij is exactly Poisson distributed). 
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Dividing by xij and writing rij for the observed claim frequency in cell (i,j) 
(rij = nij/xij) WC have: 

E(rij)=fij and Var(rij) =fij/xij. 

Thus, apart from the divisor xij, which is a known quantity, the variance of the 
data rij is equal to the mean. In the terminology of generalised linear models, rij 
has a Poisson error structure with prior weights xij and scale parameter f = 1 (see 
Appendix A). 

2.2.4 We aim to discover the relationship between the mean claim frequency 
and the levels i and j of the two rating factors. For the intuitive reasons given in 
Section 2.1, this is usually best done using a multiplicative model, which can be 
expressed as: 

fij=exp( a i+ b j). 

If the data rij and xij have been read into vectors R and X, and corresponding 
levels of the rating-factors have been named A and B, then this model can be 
fitted in GLIM using: 

$YVAR R ! claim-frequency data R to be the y-variate 
$ERROR P ! Poisson error structure 
$LINK L ! log link function gives multiplicative model 
$WEIGHTS X ! exposure data X to be prior weights 
$FIT A+B ! estimate main effect of each rating factor 

(Note that when $ERROR P is declared, GLIM automatically assumes the value 
f = 1 for the scale parameter.) 

2.2.5 In practice, none of the assumptions made above is likely to hold exactly. 
Most importantly, we will not be able to find rating factors such that we have 
perfect homogeneity of risk within each cell. It is well known that if the 
heterogeneity of risks follows a Gamma distribution (also known as Pearson type 
III), then the total number of claims (nijabove) is negative-binomially distributed 
(see for example Johnson & Hey (197 1) or Beard et al. (1984)). This result is used 
in Appendix C to show that within-cell heterogeneity can be largely taken into 
account simply by allowing for over dispersion (that is by allowing f > 1). This is 
achieved in GLIM by inserting the command $SCALE 0 before the fit command. 
This makes no difference to the parameter estimates given by GLIM, but it 
increases their standard errors. The GLIM code given above remains valid for 
investigating the relationship between the mean claim frequency and the rating 
factors. Note, however, that it is desirable to select rating factors which minimise 
within-cell heterogeneity, as this will maximise the explanatory power of the 
model. Further discussion on this point is given in Appendix D. 

2.2.6 The assumption that each unit of exposure generates claims according to 
a Poisson process is violated in reality, because the risk intensity tends to decrease 
for a period after an accident: the vehicle may be out of service for repairs, or the 
driver, sobered by the experience, may drive more carefully for a while. It is 
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shown in Appendix C that these effects will merely tend to decrease the scale 
parameter, and that the decrease cannot possibly be substantial. 

2.2.7 The assumption that the incidence of claims is mutually independent for 
the units within a cell is violated, because each vehicle covered is at risk from 
other vehicles covered by the same insurer and in the same rating cell: that is two 
or more of the vehicles may be involved in the same accident. It is shown in 
Appendix C that this tends to increase the scale parameter. However, the data 
will usually cover only a small proportion of the vehicles on the road, and the 
effect will be extremely slight. Note that effects such as weather conditions, which 
tend to increase claim frequencies for all units simultaneously, are not relevant 
here: such effects increase the mean claim frequencies fij, but we are concerned 
here with the question of mutual independence of the random variations about 
these means. 

2.3 Model Testing in GLIM 
2.3.1 The GLIM commands given in Section 2.2.4 will cause the main effects 

of the factors A and B to be estimated. In general, there may be more than two 
rating factors, and we may be interested in testing the significance of interaction 
terms, or in testing the suitability of other models such as those described in 
Section 6. For all these alternatives, it is the $FIT command which varies: the 
arguments given in Sections 2.1 and 2.2 continue to apply, so the other parts of 
the model specification should remain unchanged. 

GLIM estimates the parameters of the linear predictor specified in the $FlT 
command by minimising an objective function known as the deviance. It then 
displays the minimised value of the deviance, together with the number of 
degrees of freedom (this is the number of data points less the number of 
parameters in the linear predictor). These quantities can be used to compare the 
quality of fit obtained using different linear predictors and hence to find the 
model which is in closest agreement with the data. 

2.3.2 In this paper, the minimised deviance is denoted Q and the correspond- 
ing number of degrees of freedom D. In the idealised situation described in 
Section 2.2, if the linear predictor includes all those terms which genuinely 
influence claim frequency, then Q is approximately from the chi-squared 
distribution with D degrees of freedom. The quality of this approximation 
depends on the number of claims in each rating cell: if these are all sufficiently 
large, the approximation is good. In such a case, the value of Q could be used to 
test whether all terms which genuinely influence claim frequency have been 
included in the linear predictor: a value which is in the extreme right tail of the 
chi-squared distribution is evidence against this hypothesis. In other words, a 
large value of the deviance Q indicates that a significant amount of variation in 
the data is not explained by the current model. However, this test is not valid in 
practice for two reasons: 

(1) We may not have a large enough number of claims in each cell for the chi- 
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squared approximation to be valid. This is particularly likely if we do not use 
broad categories for levels of the rating factors, but instead have a larger 
number of smaller categories (we advocate this in Section 6). It is well known 
that in such cases the deviance tends to be reduced. Thus, a value which is 
small compared to the chi-squared distribution would not necessarily imply a 
good fit, but a large value could still be taken as indicative of a poor fit. 

(2) For the reasons given in Section 2.2. (the main one being within-cell 
heterogeneity) we are likely to have random errors which are over-dispersed 
relative to the idealised situation. This implies that the deviance will be 
increased by some unknown scale factor f > 1. 

These two effects work in opposite directions, so when they both apply (as is 
likely in practice), nothing can be deduced about the quality of tit of a single 
model regardless of whether the deviance is large or small compared to the chi- 
squared distribution. 

2.3.3 However, there is an alternative to the chi-squared test, namely the F- 
test. This is much more robust, and will be reasonably reliable despite the effects 
mentioned in the previous paragraph. It cannot be used to test objectively 
whether a particular model taken in isolation provides a good fit, but only to 
compare two models, one of which is a simplified version of the other. This is not 
a problem in practice, for we can usually start with a model which contains so 
many terms in the linear predictor that we are quite confident that all those 
genuinely affecting claim frequency have been included, so the fit will be good. 
Let Q1 and D1 be the minimised deviance and the degrees of freedom for such a 
model, and let Q2 and D2 be the values obtained by fitting a simplified version of 
the model (terms may be removed from the linear predictor, or levels of one of the 
rating factors may be combined, for example). Note that we necessarily have 
Q2 > Q1 and D2 > D1. The F-statistic is given by: 

This should be compared to values from the theoretical F-distribution with 
(D2–D1) and D1 degrees of freedom. If the F-statistic appears unreasonably 
large in this comparison, then we would conclude that the simplified model is not 
valid: the increase in the minimised deviance is so large that it must partly be 
attributed to a significant loss of fit (i.e. the terms removed from the linear 
predictor are, in fact, significant in explaining the variation in claim frequency). 
On the other hand, if the F-statistic appears to be consistent with the theoretical 
F-distribution, then the simplified model can be accepted. Q2 and D2 can then be 
renamed as Q1 and D1 and further simplifications to the model investigated. Note 
that the quantity Q1/D1 in the denominator of the F-statistic is an estimate of the 
scale parameter f , but a more reliable estimate when some claim numbers are 
small is the mean square of the standardised residuals (defined below). 
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2.3.4 When a model has been selected using a sequence of F-tests as described 
above, the assumptions it relies on can be checked by examining the standardised 
residuals. This is a standard procedure in good statistical practice, and is stressed 
by Baxter, Coutts & Ross (1980). They state that the standardised residuals 
should be approximately normally distributed. However, we believe that this is 
not necessarily true if many cells have a small number of claims. When allowance 
is made for over-dispersion (Appendix C) the model (§ 2.2.3) becomes: 

E(rij)=fij and Var(rij)= fij/xij 

This implies that the quantity eij defined by: 

has 

eij=(rij–fij)/ (fij/xij) 

E(eij)=0 and Var(eij)= . 

After fitting, these quantities eij can be estimated by using the estimated mean 
claim frequencies obtained from the model in place of the unknown true values 
fij. The resulting values are known as standardised residuals and, if the model is 
good, their mean and variance are approximately 0 and f . Since the variance 
does not depend on the levels i and j of the rating factors, we should see an evenly 
spread scatter of values around the mean value of zero in any plot of the 
standardised residuals (but the distribution is not necessarily Normal, and with 
small claim numbers, we would expect it to be skewed). We have always found 
these residual plots to be satisfactory in applications of this model. 

2.4 Numerical Example 
2.4.1 The data used for this and later examples are for own-damage claims 

arising from about 17,000 comprehensive policies over the three-year period 
1986 to 1988, and have been chosen for illustrative purposes only. The rating 
factors are: district (DI), policyholder age (PA), car age (CA) and car group 
(CG). The levels of these factors are given in Table 2.4.1. 

Table 2.4.1. Rating factor levels 

Level DI 
1 A 
2 B 
3 C 
4 D 
5 E 
6 F 
7 G 
8 N 

PA CA CG 
17-18 0-3 1 
19-21 45 2 
22- 24 6-7 3 
25-29 8-9 4 
30-34 10+ 5 
35-44 6 
45-54 7 
55+ 8 
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Districts A to G are areas of the mainland U.K. categorised in order of 
increasing risk, as assessed by the insurer. Similarly, car-groups 1 to 8 contain 
models of car sorted in order of increasing risk. District N is Northern Ireland. 

The total number of rating cells is 8 x 8 x 5 x 8 = 2,560, but there is no exposure 
in 670 of these cells over the period concerned, so there are only 1,890 data points 
for the claim frequency analysis. Each data point consists of six items: the level of 
each of the four rating factors, the exposure x (the number of policy years) and 
the number n of own-damage claims. 

2.4.2 Table 2.4.2 gives some results of fitting multiplicative Poisson models to 
the observed claims frequency r = n/x, using the GLIM commands given in 
§ 2.2.4. Several models have been fitted by including different terms in the $FIT 
command: first the main effects only $FIT DI + PA + CA + CG), then the main 
effects plus each two-factor interaction in turn. 

Table 2.4.2. Analysis of deviance 

Model D Q F 
DI+PA+CA+CG 1864 1892·1 
DI+PA+CA+CG+DI·CG 1815 1828·8 1·28 
DI+PA+CA+CG+PA·CG 1815 1848·2 0·88 
DI+PA+CA+CG+CA·CG 1836 1861·8 1·07 
DI+PA+CA+CG+DI·CA 1836 1857·3 1·23 
DI+PA+CA+CG+PA·CA 1836 1850·5 1·46 
DI+PA+CA+CG+DI·PA 1815 1834·3 1·17 

Using the minimised deviance Q and the residual degrees of freedom D, the 
F-statistic has been calculated to compare the model with only main effects, to 
each of the other models. For example: 

The most significant interaction term on this basis is PA·CA: tables show that 
the F-value of 1.46 corresponds to a probability of just over 5%. Because 
interaction terms make a fitted model considerably more difficult to interpret, we 
prefer not to include them unless the probability is less than 5%. None of the two- 
factor interactions is significant on this basis. 

It would be more satisfactory to start by fitting a model with all two-factor 
interactions present simultaneously (and perhaps some three-factor interac- 
tions), and to test the significance of the interaction terms by removing each one 
in turn and carrying out an F-test as described in §2.3.3. However, this is 
sometimes impractical when there is a large number of factors. 

2.4.3 The standardised residuals of the model with main effects only are 
plotted against fitted claim frequencies in Figure 2.4a, and against PA in Figure 
2.4b. These plots show no evidence of heteroscedasticity, nor do similar plots of 
the residuals against the other rating-factors. The plots do show evidence of 
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Fitted Claim Frequency 

Figure 2.4a. 

Figure 2.4b. 
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positive skewness in the data: this is quite consistent with the modelling 
assumptions. 

N.B. These plots and all other residual plots in this paper show the residuals 
for only one of the 8 districts. This is because of technical problems in 
reproducing the complete plots. We have tried to select a typical district for each 
residual plot. 

The parameter estimates from the model with main effects only are given in 
Table 2.4.3. 

Table 2.4.3. Parameter estimates 

Factor Estimate Standard error 
1 –1·816 0·1216 

DI(2) 
DI(3) 
DI(4) 
DI(5) 
DI(6) 
DI(7) 
DI(8) 

PA(2) 
PA(3) 
PA(4) 
PA(5) 
PA(6) 
PA(7) 
PA(8) 

CA(2) 
CA(3) 
CA(4) 
CA(5) 

CG(2) 
CG(3) 
CG(4) 
CG(5) 
CG(6) 
CG(7) 
CG(8) 

0·0812 0·0424 
0·1515 0·0443 
0·2102 0·0437 
0·0836 0·2274 
0·4095 0·0721 
0·4869 0·0701 

–0·2041 0·0892 

–0·3957 
–0·4808 
–0·3587 
–0·4566 
–0·5678 
–0·6068 
–0·8150 

0·1308 
0·1207 
0·1148 
0·1214 
0·1162 
0·1161 
0·1148 

–0·1090 0·0335 
–0·2862 0·0439 
–0·3287 0·0609 
–0·5391 0·0753 

0·0433 0·0580 
0·0704 0·0546 

0·1252 

0·0529 

0·2050 

0·2096 

0·5737 

0·0606 
0·0617 

0·0564 

0·0811 

0·0571 

The first parameter is for the cell with each factor at level 1, that is, DI = A, 
PA = 17–18, CA = 0–3, CG = 1. The estimated claim frequency for each policy 
year in this cell is exp( –1·816) = 0·163. The remaining parameters represent the 
claim frequency in other cells relative to this first cell: the parameters are the 
natural logarithms of the multiplicative relativities. For example, claim fre- 
quency is higher in a cell with DI at level 2 than in a cell with DI at level 1 by 
a factor exp(0·0812) = l·085. Similarly, claim frequency is lower for PA level 2 
(19–21) than PA level 1 by a factor exp(–0·3957) = 0·673. 
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2.4.4 Levels 1 to 7 of DI represent areas of the mainland U.K. in order of 
ascending risk, as assessed by the insurer. However, the results indicate a 
decrease in claim frequency between DI levels 4 and 5, by a factor exp(0.0836- 
0·2102)=0·881. This unexpected decrease is explained by the large standard 
error of the estimate for level 5 of DI. The estimate 0·0836 is very unreliable: the 
reason is that the data contain only a small sample of policies for level 5 of DI. It 
may be better to pool the data for levels 5 and 6 of DI, on the grounds of a prior 
belief that the claim frequency should not vary much between these two levels. 
This can easily be done in GLIM as follows: 

$ASSXDI = 1,2,3,4,5,5,6,7 ! new levels of the district factor 
corresponding to previous levels 1 to 8 

$FAC DI7 7 ! new factor DI7 to have 7 levels 
$CAL DI7 = XDI(DI) ! calculation of new factor DI7 

Similarly, the results indicate a decrease in claim frequency between car groups 
3 to 4 and 5 to 6. These decreases appear to be insignificant (they arc small 
compared to the standard errors) and, as they contradict prior beliefs, it may be 
better to pool the data for car groups 3 and 4 and for car groups 5 and 6 instead of 
attempting to estimate a separate parameter for each car group. This can be done 

Table 2.4.5. Parameter estimates 

Factor Estimate Standard error 
1 –1·819 0·1217 
DI7(2) 
DI7(3) 
DI7(4) 
DI7(5) 
DI7(6) 
DI7(7) 

PA(2) 
PA(3) 
PA(4) 
PA(5) 
PA(6) 
PA(7) 
PA(8) 

CA(2) 
CA(3) 
CA(4) 
CA(5) 
CG6(2) 
CG6(3) 
CG6(4) 
CG6(5) 
CG6(6) 

0·0814 0·0424 
0·1521 0·0443 
0·2114 0·0437 
0·3814 0·0700 
0·4866 0·0702 

–0·2035 0·0892 

–0·3906 
–0·4760 
–0·3557 
–0·4557 
–0·5673 
–0·6065 
–0·8128 0·1149 

–0·1100 0·0335 

0·1308 
0·1207 
0·1149 
0·1215 
0·1162 
0·1162 

–0·2882 
–0·3305 
–0·5401 

0·0433 
0·0628 
0·1731 
0·2057 
0·5751 

0·0438 
0·0608 
0·0753 

0·0580 
0·0503 
0·0522 
0·0617 
0·0812 
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by creating a new car group factor with only 6 levels to replace the original 8 level 
factor: 

$ASS XCG = l, 2, 3, 3, 4, 4, 5, 6 
$FAC CG6 6 
$CAL CG6 = XCG(CG) 

2.4.5 The new main effects model $FIT DI7+PA+CA+CG6, gives a 
minimum deviance of 1896·8: an increase of 4·7. There are 3 fewer parameters 
than in the original main effects model, so the F-statistic for comparing the 
present model with the original is 1·54, on 3 and 1864 degrees of freedom. This is 
insignificant, confirming that the pooling of districts and car groups is consistent 
with the data. The parameter estimates are given in Table 2.4.5. 

There remains an unexpected increase in estimated claim frequency between 
PA levels 3 and 4. The construction of factor levels such that the parameter 
estimates increase or decrease in a manner consistent with prior beliefs is 
somewhat arbitrary: more satisfactory models are introduced in Section 6. 

3. BASIC CLAIM SEVERITY MODEL 

3.1 The Model: Multiplicative with Gamma Error Structure 
3.1.1 The reasons for preferring a multiplicative model to an additive model 

for claim numbers (given in Section 2.1) apply equally to claim severity. For 
example, if own damage claims made by young policyholders tend to be z-times 
as expensive for cars in group 8 as for cars in group 1, it seems plausible that the 
same car group factor will apply for older drivers also. In the same way as for 
claim frequency, empirical comfirmation that the multiplicative model is suitable 
is provided by the lack of significance of interactions between rating factors. 

3.1.2 The question of what error structure to assume for the claim severity 
model needs more care. Baxter, Coutts & Ross (1980) assumed that the 
distribution of individual claim sizes had the same variance for all rating cells. 
They fitted a model on the basis of this assumption, and then examined residuals 
in the usual way to check the assumption. They concluded that the residuals did 
not conflict with the assumption. However, Coutts (1984) refers to the analysis in 
Baxter et al. saying that, in fact, there was clear evidence that the variance of the 
residuals increased with the mean claim size. Thus, it appears that in cells where 
the mean claim size is large the variance of the individual claim sizes is 
correspondingly large. 

We think that this makes intuitive sense, and that one can reasonably go 
further on intuitive grounds to postulate the nature of the relationship between 
mean and variance of the claim sizes. Suppose we know that, in a certain rating 
cell, the mean claim size. is £l,000 and the standard deviation of the claim sizes is 
£800. If, in another cell, claims tend to be twice as severe so that the mean size is 
£2,000, then we would expect to find a proportionate standard deviation of about 
£1,600. Thus, it seems plausible to assume that the variance is proportional to the 
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mean squared, in other words that the coefficient of variation rather than the 
variance is constant across cells. Nelder has also advocated this assumption for 
the size of motor claims (McCullagh & Nelder 1989). We have empirically 
investigated the assumption and found that it provides a good starting point for 
severity models (see Section 3.3 and Appendices E and F). In GLIM, such an 
assumption is implemented by specifying a Gamma error structure, using the 
command $ERROR G. As mentioned in Appendix A, this does not necessarily 
imply a belief that claim sizes follow a Gamma distribution. 

3.1.3 We are now in a position to formulate our claim severity model in detail. 
As in Section 2.2, we suppose for simplicity that we have only two rating factors, 
and these are indexed by i and j. The data consist of: 

nij = number of claims arising from cell (i,j), and 

Yij = total amount of the nij claims in cell (i,j). 

If Zijk denotes the size of the kth claim in cell (i,j) and mij denotes the mean 
claim size, then by the assumption of constant coefficient of variation we have: 

E(Zijk) = mij and Var(Zijk) = σ 2·m2ij 

for some constant σ (the coefficient of the variation). 
NOW Yij is the sum of the Zijk for all nij claims in cell (i,j), so if we further 

assume that these claim sizes are mutually independent, we can apply elementary 
results on the mean and variance of a sum of independent random variables to 
obtain: 

E( Yij) = nij mij and Var( Yij) = nij σ 2 m2ij . 

Dividing by nij and writing Sij for the observed mean claim size in cell (i,j) 

E(Sij) = mij and Var(Sij) = σ 2 m2ij /nij. 

Thus the data Sij have a Gamma error structure with weights nij and scale 
parameter ø = σ 2(see Appendix A). 

3.1.4 We aim to discover the relationship between the mean claim size and the 
levels i and j of the two rating factors. As in Section 2.2, this is best done using a 
multiplicative model, which can be expressed as: 

mij=exp( α i+/ β j). 

If the data Sij and nij have been read into vectors S and N, and corresponding 
levels of the rating factors have been named A and B, then this model can be fitted 
in GLIM using: 

$YVAR S 
$ERROR G 
$LINK L 
$WEIGHTS N 
$FIT A+B 
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GLIM will give both the parameter estimates (with standard errors) and an 
estimate of the scale parameter, which, for this model, is the square of the within- 
cell coefficient of variation of individual claim sizes. In any application, the best 
form for the linear predictor can be found by using a sequence of F-tests in the 
standard way as described in Section 2.3 for the claim frequency model. This is 
considered further in Section 6. 

3.2 Testing the Assumptions 
3.2.1 Coutts (1984) pointed out that the claim severity model of Baxter et al. 

(1980) was suspect, because the scale parameter given by GLIM (which for their 
model was an estimate of the within-cell variance of claim sizes, assumed 
constant) was about twice as large as a direct estimate of the within-cell variance 
obtained from data on individual claim sizes. This is not surprising in view of the 
intuitive argument given in Section 3.1 that the within-cell variance cannot, in 
fact, be constant (thus the two problems mentioned by Coutts in relation to the 
model of Baxter et al. are intimately related). 

However, for our model, we should attempt to verify that the scale parameter 
given by GLIM agrees with a direct estimate of the within-cell coefficient of 
variation obtained from data of individual claim sizes. A direct estimate can be 
obtained as described in Appendix E. We have never found a substantial 
discrepancy between these two estimates of the within-cell coefficient of 
variation. See § 3.3.2 for example. 

3.2.2 The only assumption of our claim severity model, other than that claims 
are mutually independent, is that the coefficient of variation σ is the same for all 
cells. In any application of the model, this assumption can and should be checked 
by examining plots of the standardised residuals. From the model of Section 3.1: 

we define 

E(Sij) = mij and Var(Sij) = σ 2·m2ij/nij 

eij=(Sij-mij) nij/mij. 

The standardised residuals are obtained by replacing the unknowns mij by 
their fitted values. We should then find E(eij) = 0 and Var(eij = σ 2 approximately. 
Thus, the variance should not depend on the values of the rating factors, and 
should appear constant in any plot. Any significant variation in the variance 
(heteroscedasticity) implies that the assumption of constant coefficient of 
variation is false. In such a case, it is necessary to model the variation of σ 2 across 
cells in order that the assumption can be modified. This is not as straightforward 
as it may appear at first sight. We could use the individual claim size data to 
calculate for each cell the observed mean and sample standard deviation, and 
hence an estimate of the within-cell coefficient of variation. However, in view of 
the small number of claims likely in some cells and the large amount of variation 
in individual claim sixes, a great deal of between-cell random variation in this 
estimate should be expected, and it would be extremely difficult to judge whether 
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or not the observed variation were significant. Thus such an exercise would not 
be conclusive. 

3.2.3 In Appendix F we give a formal statistical test of the hypothesis that the 
within-cell coefficient of variation is constant. The techniques described there 
also allow the coefficient of variation to be modelled, giving estimates ij². If these 
are read into a GLIM variate V the statement $WEIGHTS N should be replaced 
by $WEIGHTS N/V, when fitting the severity model as in § 3.1.4. 

There is a general technique for fitting generalised linear models whilst allowing 
for the possibility that the scale parameter may depend on the explanatory 
variables. Details are given in Chapter 10 of McCullagh & Nelder (1989). This 
general technique can always be applied in fitting claim severity models; the 
method given in Appendix F is a relatively simple alternative applicable in cases 
where claim sizes are approximately log-Normally distributed. 

3.3 Numerical Example 
3.3.1 The data are the own-damage claim amounts corresponding to the claim 

numbers used in Section 2.4. Out of the 1,890 cells with non-zero exposure, 736 
yielded no claims over the three-year period 1986 to 1988. There are, therefore, 
1,154 data points for the claim severity analysis. Each data point consists of six 
items: the level of each of the four rating factors, the number n of own-damage 
claims, and the total amount Y of these claims. Estimates of amounts 
outstanding were included in the individual claim amounts. These, along with all 
part payments, were totalled to give a single figure for each claim. For each claim 
originating in 1986 or 1987, this figure was inflated using factors 1.10 and 1.21 
respectively (to put the amounts in the same terms as the 1988 claims), before 
calculating the total Y for each cell. 

3.3.2 Multiplicative models with a Gamma error structure have been fitted to 
the observed mean claim sizes S = Y/n using the GLIM commands given in 
§3.1.4. As for claim frequency, none of the two-factor interactions are 
significant. The main effects model gives a minimised deviance of 1314.1 on 1128 
degrees of freedom. The scale parameter (estimated by GLIM as the deviance per 
degree of freedom) is therefore 1·165. Taking the square-root gives an estimate 
for the coefficient of variation of individual claim amounts within each cell of 
1·08. This is reasonably close to the direct estimate of 1·19 obtained using the 
method described in Appendix E. (The discrepancy is much smaller than that 
noted by Coutts, discussed in § 3.2.1,) 

3.3.3 Table 3.3.3 gives the parameter estimates for the main effects model 
($FIT DI + PA + CA + CG). 

These results suggest that there is no significant difference in own-damage 
claim severity between levels 2 to 5 of DI, or between levels 1 to 3 of CG. This 
could be tested by defining a new DI factor with only 5 levels (level 2 
corresponding to districts B to E), and a new CG factor with 6 levels (level 1 being 
for car groups 1 to 3 combined) and refitting the model in the same way as was 
done for claim frequency (Section 2.4). 
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Table 3.3.3. Parameter estimates 

479 

Factor Estimate Standard error 

1 6.33 0.1301 

DI(2) 
DI(3) 
DI(4) 
DI(5) 
DI(6) 
DI(7) 
DI(8) 

PA(2) 
PA(3) 
PA(4) 
PA(5) 
PA(6) 
PA(7) 
PA(8) 

CA(2) 
CA(3) 
CA(4) 
CA(5) 

CG(2) 
CG(3) 
CG(4) 
CG(5) 
CG(6) 
CG(7) 
CG(8) 

–0·0315 0·0452 
–0·0258 0·0472 
–0·0305 0·0465 
–0·0469 0·2445 

0·0453 0·0770 
0·1635 0·0746 
0·6521 0·0946 

0·3123 
0·2497 
0·1693 
0·1542 
0·1181 
0·0868 

–0·0012 

0·1395 
0·1289 
0·1227 
0·1296 
0·1241 
0·1240 
0·1228 

–0·0392 0·0357 
–0·0617 0·0467 
–0·1890 0·0643 
– 0·2928 0·0796 

– 0·0095 0·0616 
–0·0041 0·0581 

0·0873 0·0600 
0·2262 0·0608 
0·3543 0·0644 
0·5679 0·0658 
0·7812 0·0867 

Own-damage severity appears to increase monotonically with car group (from 
group 3 onwards) and decreases steadily with car age. The estimated severity is 
higher for level 2 than for level 1 of PA by a factor of exp(0.3123) = 1·37, but for 
higher values of PA the mean severity decreases monotonically. These patterns 
could be investigated further using the methods of Section 6. The most striking 
feature of the DI relativities is that the severity is much higher in Northern 
Ireland (level 8) than elsewhere. 

3.3.4 Figure 3.3a shows the standardised residuals plotted against the 
estimated severity for each cell. This shows no clear evidence of heteroscedasti- 
city: the coefficient of variation does not appear to depend on the mean claim 
size. This confirms that the Gamma variance function V(µ) α µ2 is correct for this 
data set. However, a plot of the same residuals against car age (Figure 3.3b) 
suggests that the variance decreases with car age. This implies that the coefficient 
of variation of individual claims is not, in fact, constant over all cells, but 
decreases with car age. A detailed analysis confirms this. Full details, including 
the effect on the parameter estimates of allowing for this variation, are given in 
Appendix F. 
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Figure 3.3a. 

Figure 3.3b. 
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4. MODELLING THE DEPENDENCE ON TIME 

4.1 Theory 
4.1.1 In selecting the data to be used for a premium rating analysis, there are 

two conflicting criteria: the volume of data should be large to reduce random 
variation in the estimates, but the data should all relate to exposure periods that 
are sufficiently recent that future claims experience can be expected to be similar. 
Usually a reasonable compromise is achieved by using data covering the most 
recent three- or four-year period. It is often argued that very recent claim severity 
data should not be used in premium calculations, because many claims will not be 
finalised. However, this is not a problem when the methods proposed in this 
paper are used, provided the severity data comprise both amounts paid and case 
estimates of amounts outstanding. The theory of Section 3 is hardly affected if 
Zijk denotes the incurred amount (i.e. paid plus estimated outstanding), rather 
than the fully developed paid amount, for an individual claim. 

4.1.2 It is desirable to allow for time as an explanatory variable when 
modelling the data for two reasons: 

(1) As premiums should be based on a forecast of future levels of claims, it is 
desirable to identify and quantify any current trends. A trend will usually 
exist in the size of claims because of inflation, but the magnitude of this 
cannot be assumed the same as for inflation in the RPI, earnings, or claims in 
some other class of insurance. If the latest claim-size data contain substantial 
estimated components on claims outstanding, then the trend may not give a 
good indication of true claims inflation: it will indicate the combined effect of 
inflation and any bias in case estimates (which will affect the most recent data 
most). There may also be a trend or seasonal variation in claim frequency. 

(2) If a time effect has been accompanied by a change in the mix of business, the 
rating-cell relativities could be distorted. For example, suppose we have data 
for three consecutive past years, the last of which had many more claims than 
the other two owing to bad weather. Consider two rating-cells C1 and C2, 
and suppose that the claim frequency has remained constantly twice as high 
for C2 as for C1 (it is this relativity which we aim to estimate). Suppose that 
over the three years concerned, exposure (number of policies) increased in 
cell C2 but decreased in cell C1. Thus, perhaps 40% of the total exposure in 
C2 relates to the most recent year, whereas the figure for C1 may be only 
30%. If the dependence of the claim frequency on time is not taken into 
account, the relativity of cell C2 to cell C1 will appear to be greater than the 
true value of two. 

The basic models proposed in Sections 2 and 3 can easily be enhanced to allow 
for dependence on time. This eliminates the problems mentioned above. In 
particular, the level of claims inflation can be estimated directly from the claim- 
size data at the same time as estimating the relativities: there is no need to attempt 
to remove inflation from the claim-size data by making prior adjustments. 
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4.1.3 Suppose we have data for three years, indexed by t = 1,2,3. Each claim is 
assigned to the year in which the accident occurred. Claim frequency will be 
considered first. The basic model (Section 2) is: 

E(rij)=fij and Var (rij)= ø ·fij/xij. 

The main effects fij=exp( i+/ ßj) can be fitted in GLIM using: $YVAR R 
$ERROR P $LINK L $WEIGHTS X $FIT A+B. The possibility that claim 
frequency may depend on time in a multiplicative manner across all cells (a 
reasonable assumption for the effects of weather, petrol prices, road conditions, 
economic activity, etc.) can be expressed as fijt = exp( i+ß j+ t). To fit this model 
we need data rijt, and xijt for each (i,j,t) combination: it is assumed that these are 
read into vectors R and X as before. We also need an additional vector T holding 
the corresponding values of t (T must be a ‘factor’ in GLIM terminology). The 
GLIM commands are as above, except $FIT A+B is replaced by $FIT 
A+B+T. This will give estimates of the parameters ( i, ßj, t). Of these, the a i and 
ßj give the required rating-cell relativities. 

The t describe the relative experience of past years. Usually there is no clear 
trend in claim frequency and these parameter estimates are of little value in 
themselves: the underwriter’s judgement on the overall level of claim incidence in 
future years cannot be dispensed with. The primary reason for including these 
time parameters in the frequency model is to ensure that the rating factor 
estimates i and ßj are not distorted by any change in the mix of business as 
described in § 4.1.2 (see also § 7.1.2). 

4.1.4 Now, consider claim severity. The basic model (Section 3) is: 

E(Sij) = mij and Var(Sij) = 2·m2ij/nij 

The main effects mij=exp( i+ ßi) can be fitted in GLIM using: $YVAR S 
$ERROR G $LINK L $WEIGHTS N $FIT A+B. A time factor can be 
introduced exactly as described above for claim frequency. For each claim, the 
total of paid amounts plus estimates of amounts outstanding is assigned to the 
year of accident. However, in the case of severity we may expect to find a trend 
(corresponding to inflation) in the estimated parameters 1, 2, 3. For example, 
the values 0·07, 0·15, 0·21, would suggest that the force of claims inflation had 
been about 0·07 p.a. This hypothesis can be tested and, if true, a more accurate 
estimate of the constant force of inflation obtained by redeclaring T to be a 
variate (rather than a factor). This has the effect of fitting the model mij=exp 
( i+ ßj+ t· ) instead of mij=exp( i+ ßj+ t). That is, instead of estimating three 
separate parameters t we estimate a single parameter , representing the average 
force of inflation per annum. The latter model is a restricted case of the former, so 
can be tested using an F-test in the usual way. Whichever model is accepted, the 
estimates of i and ßj give the required rating cell relativities free from any 
distortion which might have been caused by a change in the mix of business with 
time. 

4.1.5 In the above, it was assumed that time was indexed by the calendar year 
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of accidents. The same modelling techniques could, of course, be used with a finer 
time scale, using quarters perhaps. However, any changes in the mix of business 
over periods of less than a year will usually be so slight that they can reasonably 
be ignored. Also, we have found that inflation can be reliably estimated using 
claim severity data spanning three consecutive years indexed by the year only. 
Every further subdivision of the time scale increases the volume of data 
substantially, and computer-memory limitations may be exceeded. For these 
reasons, we recommend the use of a yearly scale. 

4.1.6 If very recent data are included in the analysis, the coefficient of variation 
for the claim severities may vary with the time index: later claim amounts may be 

subject to greater random variation, because there are larger estimated 
components on average than the more fully developed claim amounts for earlier 
exposure intervals. This should be monitored by plotting the standardised 
residuals against the time index. If this plot suggests that the variance increases 
with time, this can be formally tested and allowed for using the methods of 
Appendix F. 

5. SELECTION OF CLAIM SETS 

5.1 Practical Aspects 
5.1.1 A motor claim can give rise to multiple claim types such as fire, theft, 

vehicle own damage, third party vehicle damage and third party bodily injury. 
Fundamental to the successful application of our methodology is the separate 
treatment of each identifiable claim type. The theory discussed in Sections 2 and 3 
applies equally to each claim type. Not only are there strong statistical reasons 
for following this approach, but there are strong practical reasons. 

5.1.2 The parameters from the models applied to each claim type provide 
valuable help in the interpretation of the patterns and trends within the data. This 
gives the underwriter a much deeper insight into the factors driving the claims 
experience. In particular, the time parameter, as discussed in Section 4, will 
provide useful information on the claims inflation for each claim type and any 
trends in claim frequency for each claim type. Recently the industry has seen a 
rapid rise in theft frequency. The modelling approach will accurately reflect this 
trend, independent of any changes in mix of business during the investigation 
period. 

5.1.3 The handling of large claims is simplified since these are mainly for 
bodily injury. We have found that the average cost of bodily injury claims does 
not usually vary significantly with the various underwriting factors. Indeed, we 
have found generally that it is only policyholder age and vehicle group which 
have an important influence. In practice, however, it is usually sensible to cap 
bodily injury claims at an appropriate level. The capping level will depend on the 
size of portfolio, although for a medium sized portfolio in the U.K. (excluding 
Northern Ireland), a capping level of about £25,000 in 1990 money is likely to be 
reasonable. The cost of the excess claims will be important only in the assessment 
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of the overall level of premiums, and will not affect the relative premiums 
between cells. 

5.1.4 Changing ‘knock-for-knock’ agreements can significantly distort the 
relative claim costs between different cells. However, the distortion will be limited 
to vehicle damage costs which are relatively short tailed. Hence the statistical 
analysis can be linked to the period since the last major change in agreements. 

5.1.5 Finally, a thorough understanding of the factors which are driving the 
claims experience of each claim type is invaluable to the actuary/statistician when 
carrying out a statistical review of the company’s claim reserves. 

5.2 Statistical Aspects 
5.2.1 Consider the following categories of claims, all of which are usually 

covered by a comprehensive policy: 

(i) fire and theft, 
(ii) damage to the windscreen of the policyholder’s vehicle not caused by a third 

party, 
(iii) other damage to the policyholder’s own vehicle arising from incidents not 

involving a third party, 
(iv) damage to property of both the policyholder and the third party, arising 

from incidents involving a third party, and 
(v) bodily injury. 

5.2.2 In general, the relativities may differ for each of these types of claim. For 
example, claims of types (ii) and (iii) may be more frequent in rural districts than 
urban districts (because speeds are often greater), whereas claims of type (iv) may 
be more frequent in urban areas than rural areas (because traffic is denser). If the 
average claim size were the same for all these types of claim (but varying across 
rating cells), this would not be important: risk premium relativities could be 
obtained by multiplying the average claim size for each cell by the total frequency 
for all types of claim combined, with no regard to how this total frequency breaks 
down. 

5.2.3 However, the average claim size generally differs for each of these types 
of incident. Furthermore, the between-cell relativities for claim size may also 
differ. For example, the severity of bodily injury claims does not depend greatly 
on car age, whereas the severity of material damage claims does. Therefore, to 
obtain reliable risk premium relativities, it is advisable to apply the basic models 
for claim frequency and claim severity to each identifiable class of claims 
separately. The claim frequency model should also be applied to nil claims (i.e. 
claims for which the severity is zero), because these involve an expense to the 
insurer. 

5.2.4 If there is any doubt a priori about whether either the frequency or 
severity for two types of claim is likely to differ, it is advisable to assume initially 
that they may differ, and to obtain separate data sets for the two claim types. It is 
then possible to test formally the hypotheses that the relativities and the overall 
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level are the same for both types (this can be done for both frequency and severity 
separately). 

5.3 Implementation in GLIM 
5.3.1 Subscript t will be used to denote the claim type, t=1, 2, etc. For 

simplicity of presentation, it is assumed that the data cover a single time period or 
(equivalently) that the data for all time periods have been aggregated. In 
principle, there is no reason why the methods described here should not be 
applied to data indexed also by time, as described in Section 4, but in practice, 
computing limitations are likely to militate against this approach. 

5.3.2 Initially the frequency and severity models are fitted separately for each 
type of claim. For frequency the following GLIM commands are used: 

$YVAR R $ERROR P $LINK L $WEIGHTS X $FIT A + B 

and for severity: 

$YVAR S $ERROR G $LINK L $WEIGHTS N $FIT A+B. 

5.3.3 Suppose that, for two claim types, the frequency relativities for one of 
the rating factors, factor A say, appear to be similar. That is the estimates i1 are 
close to the estimates i2 (the second subscript here is for claim type t = 1, 2). We 
wish to test the hypothesis that these two sets of relativities are in fact identical, 
and if so, to obtain a single set of estimates from both data sets. The first step is to 
concatenate the data vectors for the two claim types to give a single large data set, 
R, X, A and B. An extra data-vector T must then be created holding values 1 and 
2 to indicate the claim type of each entry in R, X, A and B (and T must be declared 
to be a factor in GLIM). The separate frequency models for each claim type can 
then be fitted simultaneously for both claim types using: 

$YVAR R $ERROR P $LINK L $WEIGHTS X $FIT T*(A+B). 

The command $FIT T*(A + B) allows interactions between the claim type T 
and the factors A and B: this is essentially the same as allowing the A and B 
parameters complete freedom to differ for each level of T. This command is 
equivalent to $FIT T+A+B+T·A+T·B. The hypothesis that the factor A 
relativities are the same for both claim types is represented by $FIT 
T+A+B+T·B (the interaction T·A has been removed). The hypothesis can 
therefore be tested using an F-test in the usual way, after fitting both these 
models. If the hypothesis is accepted, the parameter estimates given by $FIT 
T+A+B+T.B will include the best estimates for i obtained from both data 
sets simultaneously. One can then go on to test whether the factor B relativities 
are also the same for both claim types by using $FIT T+A+B. 

5.3.4 In §5.3.3 we considered testing the equality of frequency relativities for 
two claim types. The same techniques can be used for testing equalities of severity 
relativities, and also for comparing more than two claim types simultaneously, 
computer memory space permitting. Particularly when looking at severity, the 
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hypothesis that the overall level of the dependent variable (claim size) is the same 
for two claim types may also be of interest. This can be tested by using the usual 
F-test to compare $FIT A + B with $FIT T + A + B. 

5.3.5 It might be asked why we are interested in testing the equality of 
parameters for different claim types. Why not be satisfied with separate models 
for each type of claim, as this would give reasonable estimates whether or not two 
of the claim types are similar in some way? The reason is the principle of 
parsimony: unnecessary parameters should not be included in a model. The more 
parameters in a model, the less reliably each of them is estimated. For each 
genuinely different set of relativities we should seek estimates based on the largest 
possible amount of data, by combining data for different claim types if possible. 

6. CURVE FITTING 

6.1 Practical Aspects 
6.1.1 To be useful to an underwriter the statistical analysis should aim to 

provide premium relativities in as much detail as possible. 
An underwriter is generally not interested to know the relative premiums 

between a group of policyholders aged 17–20 compared to a group aged 21–24. 
The underwriter requires the premium relativities for individual ages, at least 
over the age ranges where the risk is likely to vary most. Similar considerations 
will apply to vehicle age, as indeed they will to all the underwriting factors. 

6.1.2 It may be thought, in the first instance, that this not unreasonable 
request will produce immense statistical difficulties, owing to the limited 
exposures which arise in many of the cells. 

We define below the statistical problem and discuss how this apparent conflict 
can be resolved routinely within the analysis. 

6.2 Statistical Aspects 
6.2.1 In previous sections, the rating factors have been treated, in GLIM 

terms, as factors rather than variates. This means that separate parameters are 
estimated for each of a number of levels of each rating factor. This approach has 
also been adopted in all previous papers on quantitative motor rating methods 
known to us. For example, Bennett (1978) treats policyholder age as having 4 
levels: 17–22, 23–26, 27–65 and 66–80, and estimates a separate frequency level 
for each of these. The other rating factors used by Bennett: car age and level of 
NCD, have 4 and 3 levels respectively, giving a total of 48 rating cells. 

6.2.2 There are difficulties with this approach, as can be appreciated by 
considering the following points: 

(i) Each level of each factor should cover a range sufficiently narrow that we 
have approximate homogeneity of risk among the units of each cell. 

(ii) The ranges for each level of each factor should be narrow also, because 
information is lost by aggregation of data. 
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Figure 6.1. Claim frequency results from Baxter et al. (y-scale is log of 
multiplicative relativity). 

(iii) The number of exposure units and the number of claims in the data at each 
level of each rating factor should be sufficiently large that reasonably 

(iv) 
reliable estimation of the parameters is possible. 
The total number of rating cells (hence the volume of data) must not exceed 
computer memory limitations. 

Clearly, objectives (i) and (ii) are in conflict with objectives (iii) and (iv) and, 
unless we have a vast volume of data and very powerful computing facilities, 
some sort of compromise is necessary if we use the conventional factor approach. 

6.2.3 However there is an alternative, and to illustrate this we consider the 
analysis of Baxter et al. (1980). Among other models for claim frequency Baxter 
et al. used the model advocated in this paper (Section 2.1). They fitted the main 
effects model (i.e. no interactions) using the rating factors: policyholder age, car 
group and district, each with 4 levels. Although they do not give their parameter 
estimates of the paper, we have repeated the analysis using their data. Each of the 
graphs of Figure 6.1 shows a set of rating factor parameters (i.e. the i or ßj, etc.) 
plotted against the corresponding rating factor. 

6.2.4 The claim frequency plots clearly suggest a functional relationship in the 
case of both policyholder age and car group. A similar analysis of their data for 
claim severity shows that a relationship is apparent for policyholder age and car 
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age. It should be noted that, in common with all models in which the explanatory 
variables are factors, no assumption was made in either case of any relationship 
between the parameters; they were free to take any values relative to each other, 
and the obvious patterns displayed are purely reflections of the data. 

6.2.5 These relationships should not be surprising. The very fact that 
contiguous ages are grouped to form the levels of factors: policyholder age and 
car age, implies a prior belief of continuous relationships with risk. The age 
bands provide a discrete approximation to what is really a continuous 
relationship. The situation is much the same for district and car group; in reality 
there is almost a continuous spectrum of neighbourhoods/car models, from 
those with the lowest risk to those with the highest risk. This spectrum is 
approximated by placing each neighbourhood/car model into one of a small 
number of categories. 

6.2.6 Given these reasons for expecting continuous relationships between the 
rating factors and risk, it seems reasonable to model the relativities using 
continuous functions. This approach has substantial advantages: 

point (i) of §6.2.2 no longer applies: we propose fitting a continuous curve 
rather than approximating a continuous curve with a step function, 

point (iii) no longer applies: we no longer wish to estimate a separate 
parameter for each level of each rating factor, so there is no problem in having 
a small volume of data for some levels, and 

we may be able to fit a more parsimonious model: if the number of parameters 
needed to specify a continuous function is less than the number using a 
conventional model, then the parameters will be more reliably estimated. 

Points (ii) and (iv) of §6.2.2 continue to apply, so there is still a conflict, but this 
is relatively easy to resolve: we should simply choose the number of rating cells to 
make full use of the available memory space. 

Section 6.3 describes how the fitting of continuous relationships between risk 
and rating-factors can be implemented in GLIM, and how to test formally 
whether such models do indeed fit the data better than the conventional type of 
model. 

6.3 Implementation in GLIM 
6.3.1 To simplify the presentation, attention is restricted to the case of a single 

claim type, with only two rating factors, and no time index. The techniques can 
easily be used more generally. 

As usual, the levels of the two rating factors are assumed to be held in GLIM 
factors A and B. If there is no significant interaction between the factors (as is 
usually the case) the basic frequency model is: 

E(rij) = ƒij and Var(rij) = φ ƒij/xij 

where fij = exp( i + ßj). This is fitted in GLIM using the commands: $YVAR R 
$ERROR P $LINK L $WEIGHTS X $FIT A + B. 
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6.3.2 Suppose factor A is policyholder age, and that the parameter estimates 
for the different levels of A when plotted against policyholder age give a plot 
similar to that in Figure 6.1. In such a case we would wish to try a straight line 
relationship: 

i = µ + •a 

where a is the mean policyholder age (in years) corresponding to the it h level of 
factor A (for example, for i = 1 the age range may be 17–20, in which case the first 
value of a would be about 19), and µ and are the unknown parameters to be 
estimated from the data: is the slope of the straight line. 

6.3.3 To fit this model in GLIM, the factor A must be replaced by a variate VA 
say, holding the values for a (e.g. 19, 23·2, 32·7, 58·8 . . . .), instead of the factor 
levels 1, 2, 3, 4. . . . This is achieved using the following sequence of commands: 

$ASS XA = 19, 23·2, 32·7, 58·8 
$CAL VA = XA(A) (see GLIM manual for explanation) 

The straight line model for factor A can then be fitted using $FIT VA + B (the 
other commands remaining as before). Since the straight line model is a restricted 
case of the original model (the α i parameters are restricted to lie on a straight line) 
the quality of fit can be tested using the usual F-test: if the F-statistic is not too 
large the straight line model should be accepted. Note that, since the linear 
predictor is the log of the mean claim frequency (because we are using a 
multiplicative model), the straight line model corresponds to an exponential 
model for the claim frequencies. For example, if GLIM gives an estimate of 
– 0·02 for the slope parameter of the straight line, this implies that the mean 
claim frequency decreases by a factor of just over 0·98 for each 1 year increase in 
policyholder age. 

6.3.4 Although a straight line model fits well in some cases, much more 
flexibility is introduced by using a quadratic relationship. This allows for a fitted 
curve which is either strictly increasing or decreasing (with varying slope), or 
which has a minimum or a maximum at some value of the rating factor. To fit a 
quadratic in GLIM, it is necessary first to calculate a new variate holding the 
squares of the rating factor values a2: 

$CAL VA2 = VA*VA 

The quadratic model can then be fitted using $FIT VA + VA2 + B (the other 
commands remaining as before). Since the straight line model is a restricted 
version of the quadratic model, the quality of fit of the straight line model can be 
compared to that of the quadratic model using the usual F-test: if the F-statistic is 
not too large, then the quadratic term VA2 is not needed. Thus, the best strategy 
is first to fit the model with A as a factor, then fit the quadratic model, and if this is 
acceptable, try the straight line model. In some cases, a cubic and perhaps higher 
order terms may be needed. 

6.3.5 In general, the effect of any number of factors may be modelled in this 
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way, so we may have models such as $FIT VA + VA2 + VB + VB2 + VC for 
example. Interactions between rating factors can be included in such models, if 
necessary, by defining variates such as VAB = VA*VB for inclusion in the linear 
predictor. In a case where one of the rating factors cannot be modelled using a 
curve, so we have a factor such as D in the linear predictor, an interaction 
between this and another rating factor which is modelled using a curve is 
achieved by including a term such as VA•D in the linear predictor. This allows 
the straight line parameter of rating-factor A to take a different value for each 
level of rating factor D. 

6.3.6 If the ranges of values for the original rating factors are broad (e.g. 17– 
24, 25–44, 45+ for policyholder age) then the mean values for use in the 
corresponding variate may be very approximate (values of about 21, 35, 58 may 
be appropriate). However, if continuous relationships are to be used, point (iii) of 
§ 6.1.2 does not apply, so, subject to computer memory limitations, the width of 
the ranges can be reduced. As well as using more of the available information, the 
use of a larger number of narrower ranges allows more accurate estimation of the 
mean value for each range (needed to create the variates such as VA). 

6.3.7 Although we have considered only the claim frequency model in this 
section, the same modelling techniques can be used just as easily for claim severity: 
we simply have to replace R by S, X by N, and $ERROR P by $ERROR G. 

7. CALCULATION OF PREMIUMS 

7.1 Calculation of Risk and Office Premiums 
7.1.1 After fitting a model as described in Section 6 to each of frequency and 

severity for each claim type as described in Section 5, it is a simple matter to 
calculate the risk premium for any combination of rating factors. The risk 
premium for rating cell (i, j) is given simply by: 

where ƒijt is the fitted value obtained from the claim frequency model for claim 
type t, and mijt, is the fitted value obtained from the claim severity model for claim 
type t. 

For each rating cell (i, j), the estimates ƒijt and mijt are all asymptotically 
unbiased, and mutually independent (this is shown in Appendix G). Since each of 
the component models invariably has many degrees of freedom per estimated 
parameter, asymptotic results can be expected to give good approximations. 
Therefore, the estimate Pij obtained in this way is unbiased, that is, it is the 
expected total loss per policy in cell (i, j) (or ‘risk premium’ in other words). 

7.1.2 In using Pij to find the relativities for future premiums, the following 
assumptions are made: 

the relativities of both frequency and severity will be similar in the near future 
to their values in the recent past, for each claim type, and 
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the relative volumes of the different claim types will be similar in the future and 
the past. 

The plausibility of this second assumption can be checked by examining trends in 
the time parameter of the frequency models (see §4.1.3). If trends seem to differ 
between claim types, a suitable adjustment could be made in calculating Pij from 
the component models. 

7.1.3 The risk premiums Pij must next be converted to office premiums by 
including expenses. As described by Coutts (1984, Section 4), some expenses 
relate to each claim made, while others relate to each policy written. The latter 
type of expense can be either additive (new business, lapse, renewal and 
endorsement expenses) or multiplicative (commission). If ex1 denotes the total 
per claim expense, ex2 denotes the total additive per policy expense, and w 
denotes the commission, then the net office premium is given by: 

Values for ex1, ex2 and w have to be obtained from supplementary data: as 
indicated by the absence of subscripts, they do not usually depend on the rating 
cell. 

Other formulae for Oij may sometimes be appropriate. For example, expenses 
might depend on claim size also. 

7.1.4 In addition to giving estimates of the parameters for each component 
model, GLIM also gives standard errors for the estimates. Just as the fitted values 
ƒijt and mijt can be calculated for any rating cell using the parameter estimates, the 
standard errors of these fitted values can be calculated using the standard errors 
supplied by GLIM. These, in turn, can be used to calculate the standard errors of 
Pij and Oij: it can be very useful in interpreting these values to know how reliably 
they have been estimated. The standard error could also be used as the basis of 
safety loadings: the pure risk premium could be augmented by some multiple of 
its standard error. The necessary calculations are outlined in Appendix G. 

7.1.5 The remaining steps of the analysis depend on which of the two options 
for the treatment of NCD is being used (see § 1.9.2). 

If the percentage discounts are being reviewed (option (i) of § 1.9.2), then NCD 
level l will be an explanatory variable for each of the estimates ƒijlt, mijlt, SO 
estimates Pijl, and Oijl can be calculated for each NCD level l within each 
combination of the other rating factors i, j. It is highly unlikely that the 
dependence of Oijl on NCD level will be purely multiplicative, because the 
dependence on NCD level will be different for each component ƒijl and mijl. 
Therefore, in order to obtain new percentage discounts for the NCD scale, the 
best estimates of the office premiums Oijl obtained above must be approximated 
in such a way that the dependence on NCD level is multiplicative, and has no 
interactions with the other rating factors. This can be achieved using a final stage 
of modelling as described in Section 8. 
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If the percentage discounts are to remain unchanged (option (ii) of § 1.9.2), 
then the rating cells used in each component model should not be broken down 
by NCD level. (It is shown in Appendix J that this would not give the correct 
relativities unless the existing NCD percentages are exactly right, or the 
distribution of policies over NCD levels is the same for all rating factor 
combinations.) In this case, each estimate Pij (or Oij) is the average over all NCD 
levels of the expected loss per policy in rating cell (i, j). In other words, they are 
average ‘net premiums’, that is, average premiums after deduction of NCDs. To 
convert these to gross premiums (to which the existing percentage NCD can be 
applied for each individual policy), it is necessary to estimate the average NCD in 
each rating cell. This is described in Section 7.2. 

7.2 Calculation of Gross Office Premium from Average Net Office Premium 
7.2.1 By ‘gross office premium’ we mean the rate book premium applicable to 

all policyholders with identical rating factor values before deduction of 
individual NCDs: this is denoted Gij for rating cell (i, j). The remainder of this 
section describes how to convert the net office premium Oij (given in § 7.1.2) to 
Gij, in cases where NCD level is not an explanatory variable in the component 
models, because the existing NCD percentages are to remain unchanged. 

7.2.2 As in earlier sections, xij denotes the number of policy years in rating cell 
(i, j). Thus, the total premium necessary to cover pure risk and expenses for the 
cell is xij•Oij, where Oij is the average net office premium calculated as described 
in § 7.1.2. 

If Cijk denotes the NCD for the kth policyholder in cell (i, j) and xijk denotes the 
exposure for this policyholder, then the net premium for this individual is 
(1 – Cijk)•xijk•Gij. (Cijk may be 20% or 30% for example, xijk = 1 in most cases, 
but is often less than 1.) 

Gij is given by equating premium income to expected loss (pure risk plus 
expenses) for each cell: 

since 

This gives 

where 

= exposure weighted mean NCD, in cell i, j. 

However, if cells are small (in terms of total exposure) the observed means Cij 
will be very variable, both between cells and over time, so for the relativities of Gij 
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to be suitable for the future, it is better to use expected values of the Cij rather 
than the observed exposure-weighted means, in converting Oij to Gij. Appendix 
H describes a method for estimating these expected values from the observed 
value Cijk. 

7.2.3 Coutts (1984), does not include NCD level as an explanatory variable in 
frequency and severity models, and does not attempt any conversion of net office 
premium to gross office premium: he suggests basing the rating structure on 
relativities of the quantities we have denoted Oij. Thus, he makes an implicit 
assumption that the mean NCD Cij does not vary between rating cells. We have 
found in practice, using the model of Appendix H, that there is significant 
variation in the Cij between cells, and that this variation is quite substantial, so it 
should not be ignored. 

7.3 Numerical Example: Standard Errors of Risk Premiums 
7.3.1 To illustrate orders of magnitude of the standard errors in risk premiums 

and office premiums, the calculations of Appendix G have been carried out using 
the 17,000 comprehensive policies over 1986-1988 used in previous examples. 
Some of the results are given in Table 7.3.1. For the previous examples, only own- 
damage claims data were used: the figures given here incorporate the results of 

Table 7.3.1. Estimated theoretical premiums 

DI 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

1 
1 
1 
1 
1 
1 
1 
1 

PA CA CG 
18·0 1·5 1 
18·0 1·5 2 
18·0 1·5 3 
18·0 1·5 4 
18·0 1·5 5 
18·0 1·5 6 
18·0 1·5 7 
18·0 1·5 8 
27·5 
27·5 
27·5 
27·5 
27·5 
27·5 
27·5 
27·5 

1·5 
1·5 
1·5 
1·5 
1·5 
1·5 
1·5 
15 

5·0 
5·0 
5·0 

5·0 
5·0 
5·0 
5·0 
5·0 

1 206·66 9·73 299·36 
2 212·05 9·11 308·02 
3 225·40 8·83 321·23 
4 237·69 9·12 341·98 
5 270·38 9·99 382·75 
6 309·50 1·26 431·61 
7 382·97 17·62 519·87 
8 594·47 38·51 783·26 

27·5 
27·5 
27·5 
27·5 
27·5 
27·5 
27·5 
27·5 

1 180·07 8·55 264·49 
2 185·29 8·06 272·73 
3 197·31 7·86 289·99 
4 207·54 8·09 302·29 
5 234·62 8·76 336·12 
6 267·00 9·78 376·68 
7 329·59 15·44 451·89 

8 508·92 33·69 615·42 

Risk 
premium 

351·39 
360·22 
382·69 
402·97 
452·46 
514·90 
638·66 
959·59 

SE 
30·39 
30·21 
31·41 
33·31 
38·12 
44·32 
59·05 

100·62 

Net office 
premium 
487·73 
501·45 
532·75 
557·10 
618·85 
695·99 
844·58 

1242·72 
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modelling all claim types covered by the comprehensive policy. The units of the 
risk premium, its standard error, and the net office premium are 1988 pounds. 

The standard error is quite high for the combination PA = 18 and CA = 1.5, 
particularly for the higher car groups. This is the combined effect of low exposure 
in this region (a small volume of data) and high variability of the claim amounts 
for some types of claim (see Appendix F). 

8. SMOOTHING OF PREMIUMS 

8.1 Theory 
8.1.1 It is possible, using the techniques described in this paper, to calculate 

premiums for any combination of rating factors, with each rating factor being 
measured on a continuous scale. We could, for example, calculate the gross office 
premium for a driver aged exactly 34 in a two-and-a-half-year-old car in group 3, 
and also the standard error of this premium (Appendix G). In principle, there is 
no need to proceed any further. When a judgement has been made on the overall 
levels of claim frequency and severity likely for the coming year, values of the 
rating factors could be typed into a computer program holding the estimated 
relativity parameters for all the component models, to calculate the appropriate 
premium. However, there are four reasons why a further stage of modelling (to 
approximate the ‘best estimates’ obtained in Section 7 by some ‘smoothed’ 
structure) may be necessary in practice: 

If the NCD percentages are to be reviewed (case (i) of § 1.9.2), then NCD level 
will have been included as an explanatory variable in each of the component 
models. The resulting office premiums Oijl (obtained from the component 
models as described in Section 7.1) will depend on NCD level I in a complex 
way. The dependence is very unlikely to be purely multiplicative: that is, there 
will be interactions with other rating factors. To obtain new percentage 
discounts, a purely multiplicative dependence on NCD level is required. 

A simplified rating structure may be necessary in order to simplify the rate 
book for brokers. This requirement is likely to diminish with the increasing use 
of quotation systems and the trend towards direct selling. 

To facilitate comparison of the new estimated relativities with the existing 
relativities of the current rate book, the new estimates can be forced into the 
same overall structure, which may be, for example, a purely multiplicative 
structure (i.e. multiplicative with no interactions). 

To build a standard table which, under certain circumstances, can be used to 
further refine the relativities produced by the modelling process. This is 
discussed further in Section 9. 

Coutts (1984, Section 4) also advocated a final stage of modelling in order to 
approximate the ‘best estimates’ using a simple structure. 

8.1.2 The ‘data’ are either estimated office premiums Oijl for each NCD level l 
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(see § 7.1.3) or estimated gross office premiums Gij obtained as described in 
Section 7.2. Yijl will be used for both possibilities. If the rating factors are treated 
as continuous variates as proposed in Section 6, we can generate as many ‘data 
points’ as we wish. Intuitively, it seems that a good approximation will be 
obtained by having the density of these data points proportional to actual 
exposure: in this way, the discrepancy between the smoothed surface and the best 
estimates Yijl will be smallest where it matters most, i.e. where exposure is high. 
Equivalently, and more simply, one ‘data point’ can be used to represent each of 
the existing rating cells, and these weighted by exposure in fitting the simplified 
structure. It is not correct to use the inverse of the squared standard errors 
(Appendix G) for weights, because the Yijl are not mutually independent. 

8.1.3 Each data point for this final stage of modelling consists of: 

the dependent variable Yijl, and 

independent variables, being the values of the rating factors used to calculate 
the Yijl. 

If the independent variables are denoted A, B, etc., as in previous sections, the 
smoothing can be carried out in GLIM using: 

$YVAR Y $ERROR G $LINK L $WEIGHTS X $FIT A + B. 

The Gamma error structure is appropriate if we wish the percentage 
discrepancy between best estimates Yijl and the fitted surface to depend only on 
exposure (as specified by the $WEIGHTS command) and not on the magnitude 
of Yijl (all else being equal). The use of a log-link function gives a multiplicative 
approximating structure. An identity link would given an additive structure: this 
is unlikely to give such a good approximation to the best estimates Yijl because 
the component models are multiplicative. 

8.1.4 Conventional F-tests are not valid for determining which terms to 
include in the linear predictor: the ‘data’ are actually values obtained from the 
fitted values of other models so contain no mutually independent random 
components. The terms to be included, along with the link function, should 
depend mainly on the purpose of the model: if we wish to compare estimated 
values to rate book premiums which have an additive structure and no 
interactions, than we should use $LINK I and $FIT A + B + C + D. For the 
purpose of obtaining a multiplicative approximation to the dependence on NCD 
level, we should use $LINK L $FIT NCD + XXX where XXX represents any 
combination of terms involving the rating-factors other than NCD. 

9. BUILDING AN EFFECTIVE STANDARD TABLE 

9.1 Standardisation Techniques 
9.1.1 We briefly discussed in Section 1.6 how ‘one-way’ tables are generally 

used to summarise the relative claims experience of the levels within each 
underwriting factor. We commented that these tables can be misleading, since the 
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distribution of business is not identical within each level of each underwriting 
factor. 

9.1.2 A number of standardisation techniques have been developed in the past 
to cater for this specific problem. Most of these techniques are based around a 
standard table, which sets out the perceived relativities between the various 
underwriting factors and levels within underwriting factors. If there is no prior 
knowledge of an appropriate initial standard table, the starting point is often 
taken to be the relativities derived from the current underwriting guide or that of 
a competitor. 

9.1.3 The standard table is updated to take into account the emerging claims 
experience. The updated standard table can then be used to obtain the relative 
claims experience of the levels within each underwriting factor, independent of 
the distribution of business within each level. 

9.1.4 The structure of the standard table will determine the approach which 
can be taken in order to update the table. 

In principle, the standard table could be multiplicative, additive or perhaps 
mixed, with or without interactions. Assuming that the structure is multiplica- 
tive, the risk premiums in each cell can be multiplied by appropriate scaling 
factors (or relativities) which represent the relative difference in risk premium to a 
defined standard risk. The scaling factors are derived from the standard table. 
Standardised one-way tables can then be constructed for each underwriting 
factor, which will then provide an updated set of relativities. This procedure can 
be carried out iteratively until the relativities converge. The updated relativities 
can then be used to define a revised standard table. If the standard table allows 
for per policy expenses, then the above approach would be applied to the office 
premiums for each cell. 

9.1.5 One of the problems with the standardisation approach is that a 
structure is being imposed on the data. The statistical modelling approach, as 
described in this paper, attempts to extract the structure from the data. This is 
important, since the failure to identify an important interaction effect can result 
in an underwriting opportunity missed. Further, if the underlying structure of the 
standard table is wrong, for example an important interaction effect is omitted, 
then the relativities derived are likely to be unstable and they may not converge. 
It may also be difficult to identify and understand the cause of sudden changes in 
claims experience. A good example is the recent rapid increase in the frequency of 
theft claims, which will affect some parts of the portfolio to a greater extent than 
others. Furthermore, the standard table approach will not provide any measure 
of the reliability of the estimates produced or quantify the relative importance of 
each rating factor. 

9.1.6 However, the standard table approach does have some useful merits, 
since the relativities can be continually updated without the need for extensive 
statistical analysis. This will provide management with valuable additional 
information. 

We have found in practice that, if the standard table approach is combined 
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with the results of the statistical modelling approach, then the above criticisms 
can be overcome. Such a standard table can then form part of an effective pricing 
and underwriting control system. 

9.2 Developing A Standard Table 
9.2.1 The results of smoothing the estimated office premiums, as described in 

Section 8, can be used to build an effective standard table. The parameters 
derived from the modelling of the office premiums can be used as the starting 
relativities for an initial standard table. If important interaction effects had been 
identified in the data, these would be included in the standard table. The iterative 
procedure as described in §9.1.4, can be carried out in order to ‘refine’ the initial 
relativities produced from the modelling of the office premiums. 

9.2.2 For a large account, where all the major rating factors had been included 
in the modelling process, it would be expected that very few, if any, iterations 
would be required for convergence. This would be particularly true if the 
procedures of Section 6 had been carried out, where the initial standard table 
would include relativities for individual policyholder ages and vehicle ages. The 
standard table derived can then be used to update the relativities as the new 
claims experience emerges over time. This will also allow the consistency of the 
relativities to be monitored. 

9.2.3 For a smaller account, where it has not been possible to include all the 
underwriting factors in the modelling, or where the data have been grouped in 
some way before the modelling has been carried out, a number of iterations may 
be required before the relativities converge. However, the initial standard table, 
being based on the results of the modelling, will provide reasonably accurate 
relativities of the factors included in the modelling. This will be particularly true 
if the mix of business of the factors not included in the modelling is evenly spread 
throughout the portfolio. It would, therefore, be expected that few iterations 
would be needed for the relativities to converge. The final standard table derived 
provides the ‘refined’ relativities of the underwriting factors included in the 
modelling. In addition, the relativities of the underwriting factors which were not 
included in the modelling can be estimated. 

9.2.4 Whilst the standardisation approach provides a useful means of 
monitoring and updating the relativities as new claims experience emerges, we do 
not believe the approach should be used as a substitute for the more rigorous 
statistical modelling approach. The statistical approach entails detailed data 
analysis, which provides invaluable information on the factors which are driving 
the claims experience. In particular, any changing trends in the claims experience 
which can potentially affect the rating structure can be identified as quickly as 
possible, to enable appropriate rating action to be taken. 

9.3 Postal Code and Make/Model Analyses 
9.3.1 The analyses of the underwriting factors, district and vehicle group, give 

rise to special problems, since the district or vehicle group classifications have 
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been compiled from the allocation of individual postal codes or make/models. 
The objective is to classify individual postal codes or make/models to a 
manageable number of reasonably homogeneous risk groups. An underwriter 
may be satisfied with the existing classifications, and will be interested only in the 
adjustments required to the relativities for district or vehicle group. Alterna- 
tively, the underwriter may require to appraise the reasonableness of the existing 
classifications, indeed he may believe that further risk groups or classifications 
should be created. 

9.3.2 The standard table, as derived in Section 9.2, can be used for an analysis 
of the claims experience of individual postal code or make/models. The analysis 
requires particular care since there are approximately 1,300,000 separate postal 
codes (e.g. KT19 8HB), 2,700 postal districts (e.g. KT19), and on many 
companies’ systems over 7,000 different make/models. In the case of make/ 
models however, the claims experience tends to be heavily concentrated in the 
popular vehicles. 

9.3.3 Standardised office premiums can be calculated for each postal code (at 
postal district level) or make/model. This enables a valid comparison of the 
claims experience of each postal code or make/model, allowing for any 
differences in mix of business between risks. Ideally, these should be calculated 
for each of the last three years together with the average standardised office 
premium over the period. It is also advisable to calculate the vehicle year 
exposure, standardised claim frequency and loss ratio for each year, to be used as 
supporting underwriting information. For most companies there will be little 
exposure in many of the risk groups, and this will result in a high degree of 
statistical variation between years. It is, therefore, sensible to apply a fairly low 
capping level to the bodily injury claims for the calculation of the office 
premiums. We have found, in practice, that for a medium sized insurer a capping 
level of about £5,000 is reasonable. It is possible that a higher capping level for 
the make/model analysis can be justified, since the average bodily cost tends to 
increase with vehicle group. 

9.3.4 If the underwriter wishes to assess the reasonableness of the existing 
classifications, then the average standardised office premiums can be sorted by 
size within each of the existing classifications. Those postal codes or make/ 
models with relatively good or bad experience during the investigation period 
can be identified. It is important in the selection of the good or bad risks to choose 
those risks which have been consistently good or bad during the period. The 
underwriter can then decide to which new classification to allocate the risk. 

In reaching his decision the underwriter can also take into account the 
supporting underwriting information described above. 

9.3.5 The statistical analysis of postal codes and make/models is not an exact 
science, and much underwriting judgement is required. There will always be the 
problem of where to allocate new make/models or postal codes where there is 
little or no exposure. For the postal code analysis, we have found that the results 
of the statistical analysis is most usefully presented on mapping software which 
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can be purchased very cheaply. The good or bad postal codes can be colour 
coded, so that geographical trends can be easily identified. Local knowledge can 
normally be an invaluable aid to interpreting the trends. 

9.3.6 Since the standardised office premiums of different risks are all 
comparable, the analysis can be used to assess the impact of large scale 
reclassifications, such as those currently being recommended for vehicle groups 
by the ABI. 

10. USING THE RESULTS IN A COMPETITIVE MARKET 

10.1 Comparing with the Existing Rate Book 
10.1.1 The object of this paper has been to develop an approach to motor 

premium rating which can extract as much information as possible from the data, 
such that underwriters can clearly and easily assimilate the patterns and trends in 
the data, thereby helping them make better decisions. This is particularly 
important for companies with small portfolios, and companies which are 
planning to expand the size of their account. 

10.1.2 Table 10.1.2 shows how the results of the modelling can be used to 
assess the reasonableness of a company’s existing rating structure. We have taken 
as an example the analysis of premiums by vehicle age. 

Table 10.1.2 gives for each vehicle age band the vehicle year exposure, the 
theoretical relative premiums based on the company’s own data, the relative 
premiums currently being charged, and the theoretical premium adjustments 
necessary to move the existing structure to the rating structure implied by the 
theory. Although in this example we have shown the results for small bands of 
vehicle ages, our methodology produces relative premiums for each individual 
vehicle age, if required. 

For simplicity, the above example gives the premium adjustments which are 
required to produce an unchanged amount of premium income assuming that the 
mix of business by vehicle age remains unaltered. Alternative calculations could 
be made incorporating further assumptions or alternative mix of business 
assumptions. 

10.1.3 Table 10.1.2 shows that, on the basis of the company’s past claims 

Table 10.1.2. Analysis of vehicle age loadings/discounts 

Vehicle Exposure 
age (%) 

0–1 20.1 
2–3 27·5 
4–5 25·1 
6–7 13·5 
8–9 7·0 

10+ 6·8 

Relative premium 
Theoretical Actual 

1·060 1·000 
1·000 1·000 
0·934 0·950 
0·863 0·900 
0·789 0·850 
0·641 0·800 

Adjustment 
(%) 

7·4 
1·3 

–0·4 
–2·9 
–6·0 

–18·9 
Total: 100·0 
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experience, its current rating structure is unbalanced. There are substantial cross 
subsidies between vehicles of different ages. In general older vehicles, and in 
particular 10+ year-old vehicles, are subsidising the newer vehicles. 

Profitability could be significantly improved if the company could increase 
premium rates for new vehicles, and in particular 0–1 year-old vehicles, without 
significant loss of business volume. Similarly, profitability could be improved if 
an increase in business volume were obtainable for older vehicles following a 
small reduction in premium rates for these risks. 

10.1.4 These decisions cannot be made without knowledge of the competitive- 
ness of premium rates within the market for a variety of different risks. If it were 
possible to obtain a sample of premium quotations for different combinations of 
risks, then the financial implications of the theoretical recommendations above 
could be assessed. 

10.2 Assessing the Effect of Competition 
10.2.1 There are a number of premium quotation services available in the 

market, and these services can be used by companies to great advantage. Table 
10.2.1 shows how the results of the statistical analysis can be used in conjunction 
with the output from one of the many quotation services available. In this 
example we have compared the premium rates from 35 different companies for a 
typical comprehensive policy. In each case we have selected a quotation for six 
different vehicle ages, all other rating factors remaining unchanged. In practice, a 
much larger number of quotations would be required to produce an effective 
analysis. 

Table 10.2.1. Assessing the impact of competition 

Vehicle 
age 

Current 
premium 

(£) 
181 
181 

Ranking 

26 
26 

0 
2 
4 
6 
8 

11 

171 28 
164 28 
156 29 147 23 
149 26 121 12 

New 
premium 

(£) 
195 
183 
170 
159 

New 
ranking 

29 
27 
27 
26 

Table 10.2.1 shows the current premium for each of the six quotations. We also 
show the competitive ranking for each quotation. For example, the premium for 
a 0-year-old car is £181, and this was the 26th cheapest quotation out of the 35 
companies. We also show the theoretical premium, calculated by applying the 
recommended premium increases of Table 10.1.2 to the current premiums, 
together with the revised competitive ranking. 

10.2.2 Clearly, this company is currently very uncompetitive for each 
quotation. Furthermore, for the newer cars a move towards the theoretical 
premiums will not significantly affect its competitive position, although for older 
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cars a significant improvement in competitiveness is achievable. In practice, one 
would also look at the size of the proposed premium adjustment compared with 
the degree of change in competitive position. 

10.3 The Contribution towards Profit 
10.3.1 It is worth considering, at this stage, the current levels of profitability 

achievable. Table 10.3.1 shows the contribution towards profits of the company, 
assuming that its portfolio consists of the above policies with a mix of business 
similar to Table 10.1.2. 

Table 10.3.1. Analysis of profit 

Vehicle 
age premium 

0 
2 
4 
6 
8 

11 
Overall: 

Exposure 

201 
275 
251 
135 
70 
80 

1,000 

Current 

(£) 
181 
181 
171 
164 
156 
149 

Expected 
cost 
(£) 
195 
183 
170 
159 
147 
121 

172 172 

Profit 
(£) 

–2,134 
–666 
174 
648 
658 

1,918 
0 

10.3.2 Significant losses are being made on 0-year-old vehicles, with profits 
being made on the older vehicles, in particular for 11-year-old vehicles. The 
company’s profitability is, therefore, vulnerable to a change in mix of business 
towards new vehicles. Given the company’s present competitive position, this 
would appear unlikely, although the situation should be closely monitored. 

10.3.3 To improve profitability immediately, the premiums for 0-year-old 
vehicles could be increased by up to 7.4%. We have seen in Table 10.2.1 that this 
does not seriously affect the competitive position, although it is likely that a 
sizeable amount of business will be lost. In addition, sizeable reductions in 
premiums can be made for the older vehicles, in particular for vehicles aged 11 
years. This would significantly improve the company’s competitive position for 
these risks, with the opportunity to increase business volume. It should be 
remembered that, provided the theoretical premiums make some allowance for 
per policy expenses, it is more important to ensure that business volume is 
maintained than it is to ensure that premium income is maintained. 

10.3.4 A similar analysis can be carried out for each rating factor included in 
the analysis. The object will be to identify areas of the portfolio where both 
profitability and competitiveness can be improved. By considering various 
combinations of rating factors, it is quite possible to identify potentially 
profitable ‘niches’. We have found, in practice, that the motor market is not 
uniformly competitive, some areas of the market being much more sensitive to 
rate changes than others. The competitiveness for different areas of the market is 
constantly changing, hence close monitoring is essential. It is also important that 
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profits are not thrown away unnecessarily, and a balance must be struck between 
the business volumes achievable in different sectors of market and the achievable 
profit per policy. 

10.4 The Practical Advantages of the Approach 
10.4.1 Having discussed how the results of the detailed statistical approach 

which we have advocated in this paper can be used to help the underwriter in 
practice, it is worth reconsidering some of the advantages of our proposed 
methodology. 

Our analysis, being based on the company’s own data, will: 

(1) allow for the company’s individual underwriting standards, 
(2) allow for the company’s method of distribution, 
(3) allow for the ‘knock-for-knock’ agreements in operation, 
(4) allow for the treatment of per policy expenses, and 
(5) enable the company to use a flexible design of rating structure. 

10.4.2 The method of distribution has a significant effect on the amount of 
operational expenses. It is important that expenses are correctly allowed for in 
the analysis. For example, home service offices tend to pay lower rates of 
commission to their agents than those paid to brokers, but also tend to have 
higher overhead costs than the offices which obtain their business through 
brokers. Direct selling companies will have no commission, but relatively high 
fixed costs. It is important to build these expenses into the premium structure in a 
sensible manner, since it can affect the relative structure of premium rates. 

10.4.3 For all the reasons mentioned above, a ‘niche’ for one company may 
not necessarily be a ‘niche’ for another. We believe that a true ‘niche’ can be only 
identified with confidence by applying a sophisticated statistical analysis to a 
company’s own data. 
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APPENDIX A 

GLIM 

A.1 Theory 
A. 1.1. Suppose we have a set of data values Yi for i = 1,2, . . . . n (in the present 

context Yi would be either the actual number of claims per unit of exposure, or 
the actual mean claim size, for the ith combination of rating factors). GLIM 
deals with models of the form: 

E(Yi)= µ i and Var(Yi) = φ · V( µ )/wi 

where: 

the mean µ i has the form µ i = h( η i ) where h( ) is some known monotonic 
function and η i is a linear function of the unknown parameters of the model ( η i 
is called the linear predictor), 

V( ) is a known function (called the variance function), 

the quantities wi (called the prior weights) are known, and 

the constant factor φ is not necessarily known (it is called the scale parameter). 

The random components of the data points Yi for i= 1 . . . n must be mutually 
independent. 

A.1.2 In the motor rating context, there is generally one data point for each 
combination of several rating factors: if we have three rating factors (A, B and C 
say) the data may be represented as yijk. The linear predictor can then be 
expressed as: 

This is a linear function of the unknown parameters α i, β j and γ k. 
(In general there may also be interaction terms, but this is not important at this 

stage.) The parameter α i is regarded as the effect of having rating factor A at its ith 
level, and similarly for the other two rating factors B and C. When the model has 
been specified in GLIM, the programme will use the data to estimate values of the 
parameters α i, β j, γ k. 

A.1.3 All the user has to do to fit his chosen model is to specify the following: 

the data vector to be used as the y-variate, 
the form of the variance function V( ), 
the form of the function h( ), 
the data-vector to be used as the weights w, and 
the terms to be included in the linear predictor. 

The above five stages of model specification are done respectively using the 
following GLIM commands: $YVAR, $ERROR, $LINK, $WEIGHTS, $FIT 
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(all GLIM commands begin with a $). Some examples are given below, but first 
some additional comments are necessary regarding specification of the functions 
V( ) and h( ). 

A.1.4 The inverse of h( ) is known as the link function, and it is this which is 
specified using the $LINK command. For example, if we wish to have 
h( h ) = exp( h ) we must specify the link function to be the log to base e. It is simply a 
matter of convention that h( ) is specified by way of its inverse and is of no 
consequence. Note, that since the mean m of the data is given by m = h( h ) and h is a 
linear function, a log-link function corresponds to a multiplicative model for m. 

A.1.5 The variance function V( m ) is specified in GLIM by naming an error 
distribution, e.g. Normal, Poisson or Gamma. These mean respectively: V( m ) = 1, 
V( m ) = m, and V( m ) = m 2. It is for technical and historical reasons that the variance 
function is specified in this way, and is of no real consequence. In particular, it is 
not necessary for the random variation in the data actually to follow the type of 
distribution specified in the $ERROR command: GLIM will give conventional 
maximum-likelihood estimates if this is the case, but in other cases the parameter 
estimates remain optimal in a sense (see Wedderburn (1974) for more details on 
this point). 

A.2 Examples 
A.2.1 To illustrate the simplicity of model fitting using GLIM, we show below 

the GLIM commands needed to fit some of the claim frequency models described 
by Bennett (1978). These should be compared to the mass of equations given in 
Bennett’s paper (as these would form the basis of an ad hoc computer program). 
It is assumed that the data have previously been read into variates named R and 
X. These are respectively: the actual number of claims per unit of exposure for 
each rating factor combination, and the exposure for each rating factor 
combination. The corresponding levels of the rating factors (policyholder age, 
car age and level of NCD) are assumed to have been read into factors named PA, 
CA and NC respectively. Explanatory comments are given to the right of the 
GLIM commands after the ! sign. 

A.2.2 Bennett’s model A is the additive model used by Johnson & Hey (1971) 
and can be fitted in GLIM as follows: 

$YVAR R ! claim frequency data R to be the y-variate Yijk 
$ERROR N ! Normal V( h ijk) = 1 so Var(Yijk) = f /wijk 
$LINK I ! identity link function gives additive model 
$WEIGHTS X ! exposure data X to be the weights wijk 
$FIT PA+CA+NC ! linear predictor to include one parameter for each 

level of each of the three rating factors 

A.2.3 Bennett’s model D differs from this only in that the mean claim 
frequency is multiplicative. This is achieved in GLIM by specifying a log link 
function; thus the code is as above, but with $LINK I replaced by $LINK L. 

A.2.4 Bennett’s model B is the additive model, but with the weights inversely 
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proportional to fitted values as advocated by Bailey & Simon (1960). In other 
words, the variances are assumed to be proportional to the fitted values. This is 
achieved in GLIM by specifying a Poisson error structure, so the code is as for 
model A, but with $ERROR N replaced by $ERROR P. GLIM will give 
parameter estimates slightly different from those obtained by Bennett, because 
he used minimum chi-squared estimation, whereas GLIM uses minimum 
deviance estimation, and these differ for non-Normal error structures. 

A.2.5 Bennett’s model C is the multiplicative model of Bailey & Simon (1960), 
but with the chi-squared function (to be minimised) adjusted as described by 
Jung (1968), so that the one-way marginal totals of claim numbers are equal for 
both actual and fitted. This is equivalent to minimum deviance estimation, so 
GLIM will reproduce Bennett’s results exactly using the above code with 
$ERROR P $LINK L in place of $ERROR N $LINK I. 

A.2.6 The distinction between a variate and a factor is important in GLIM. 
Sections 4 and 6 of the paper give examples of this distinction: the GLIM manual 
(NAG 1985) gives full details. 
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APPENDIX B 

EMPIRICAL COMPARISON OF ADDITIVE AND MULTIPLICATIVE MODELS 
FOR CLAIM FREQUENCY 

B.1 We wish to compare the following models for claim frequency: 

1. Multiplicative model $YVAR R 
$ERROR P 
$LINK L! log link function 
$WEIGHTS X 

2. Additive model $YVAR R 
$ERROR P 
$LINK I! identity link function 
$WEIGHTS X 

The Poisson error structure, with the exposure X as weights, is used in both 
models for the reasons given in Section 2.2 and Appendix C. 

B.2 As explained in Section 2.1, we expect interaction terms to be more 
significant under the additive model than under the multiplicative model in 
general. To investigate this, we could first include all two-factor interactions: 

$FIT A+B+C+B·C+C·A+A.B 

and then include the main effects only: 

$FIT A+B+C 

The conventional F-statistic could then be calculated as described in §2.3.3 for 
both the additive and multiplicative models. This should indicate whether the 
interactions are more significant under the additive model or the multiplicative 
model. Unfortunately, this type of analysis cannot be carried out using many 
datasets, because the additive model usually gives some negative fitted values 
unless several two-factor interactions are included. (This is itself a point in favour 
of the multiplicative model.) However, the relatively small claim frequency 
datasets of Baxter et al. (1980) and of Coutts (1984) do allow the models to be 
compared in this way. 

B.3 There are three rating factors in the data from Baxter (1980), each with 4 
levels: 

district (DI) 
car group (CG) 
policyholder age (PA). 

The minimised deviances for: 

(1) the multiplicative model, and 
(2) the additive model, 
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are given here: 

Residual Deviance 
Model terms degrees of freedom 1 2 
DI+CG+PA+CG·PA+PA·DI·CG 27 27.3 28.0 
DI+CG+PA 54 51.4 51.8 

The deviance is slightly lower for the multiplicative model than for the additive 
model (whether or not the two factor interactions are included), indicating that it 
gives a slightly better fit. However, the two-factor interactions are very 
insignificant under both models, the F-statistic on 27 and 27 degrees of freedom 
being 0.88 for the multiplicative model and 0.85 for the additive model. 

B.4 There are four rating factors in the data from Coutts (1984): 

cover (CO) with 2 levels 
car age (CA) with 3 levels 
car group (CG) with 4 levels 
policyholder age (PA) with 5 levels. 

Fitting main effects only, the multiplicative model gives a much better fit than 
the additive model, the minimised deviances being 115 and 135 respectively. 
However, under both models, some interaction terms are significant. Starting 
with all two-factor interactions, and removing insignificant ones in a step wise 
fashion, leaves three two-factor interactions in each case. These are shown in 
lines B and C of the next table. 

Residual Deviance 
Model terms degrees of freedom 1 2 
A Main effects + all 2-factor interactions 14 48 53 
B Main effects + CA·CO+PA·CA+CA·CG 93 68 76 
C Main effects + CA·CO+PA·CA+CO·CG 96 14 69 
D Main effects + CA·CO+PA·CA 99 
E Main effects only 109 115 135 

Model C appears to be best under the additive assumption, and the fit is better 
than under the multiplicative assumption (69 < 74). However, model B, which is 
best under the multiplicative assumption, fits much better than under the 
additive assumption (68 < 76). Models with both CA·CG and CO·CG included 
or both excluded, all fit better under the multiplicative rather than the additive 
assumption. 

B.5 Although these results are not conclusive, they support the belief that the 
multiplicative assumption is generally better. 
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APPENDIX C 

ERROR STRUCTURE OF CLAIM FREQUENCY DATA 

C.1 In Section 2.2 the case of just two rating factors indexed by i and j is 
considered, with data denoted xij, nij. 

In this appendix we first relax the assumption (made in §2.2.3) of perfect 
homogeneity of risks within each cell, so we now have mijk ~ Poisson (fijk) (i.e. the 
Poisson rate depends on k). 

If the fijk for k= 1 . . . . xij are from a Gamma distribution with: 

E(fijk) = fij and var(fijk) = fij2/hij (*) 

for some parameters fij and hij, then the number of claims mijk of an individual 
chosen at random from cell (i,j) is Negative Binomial with: 

E(mijk) = fij and Var(mijk) = (1 + fij/hij)fij 

That is (dropping subscripts i and j) the same distribution as the number of 
failures before success number h in independent trials each with probability p of 
success where p = h/(h + f) (Beard et al., 38–40). 

Hence the data nij are Negative Binomial with: 

E(nij) = Xijfij and Var(nij) = (1 + fij/hij) Xijfij 

and if rij = nij/xij (as in $2.2.3): 

E(rij) = fij and Var(rij) = (1 + fij/hij) fij/xij = φ ijfij/xij say. 

From (*) we see that 1/√ h is the within-cell coefficient of variation of the 
Poisson rates. We advocate (Section 6) the use of as many rating cells as possible 
in modelling. One effect of this is that h is unlikely to be less than 1, and, in fact, a 
typical value is about 2. We also advocate (Section 5) the fitting of separate 
frequency models for different types of claim. This tends to keep the fij low, 
typically varying across cells in the range 0·02 to 0·16. Using these figures for f 
and h, we have φ varying across cells in the range 1·01 to 1·08: a difference of less 
than 7%. This is dwarfed by the between-cell variation in the other factors of 
Var(rij). Thus we can reasonably work on the basis that φ is constant, that is, we 
can use a Poisson error structure with weights xij) 

C.2 We next relax the assumption of a Poisson claim process for each unit of 
risk: as mentioned in §2.2.5, the risk intensity is not constant as required for a 
Poisson process, but tends to decrease for a period after each claim. The nature 
and magnitude of the consequences of this can be determined by considering the 
extreme case in which the risk reduces to zero after the first claim and remains at 
zero for the remainder of the year. In this case mijk is either 0 or 1, and so 
nij~ Binomial (xij, fij). 
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Hence: 

E(rij) = fij and Var(rij) = (1–fij) fij/Xij· 

So, in this extreme case the scale parameter is decreased by a factor (1–fij). In 
reality the factor will be much closer to 1 (it would be (1–fij/12) if it were possible 
to make no more than one claim each month), and, of course, the variation of 
such a factor with i and j is very slight, so again the assumption of a constant scale 
parameter φ remains reasonable. 

C.3 Finally, we relax the assumption of mutual independence of the risk-units 
within each cell, The possibility of two policyholders in the same cell being 
involved in the same accident means: 

Hence: 

cov(mijk, mijl/) > 0 for all k and l. 

Var(nij) > ∑ Var(mijk) 
k 

so: 

var(mijk) = f f fij implies Var(nij) > φ xij fij 

so the scale parameter for rij( = nij/xij) is increased, but the effect is obviously very 
slight. 
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APPENDIX D 

WITHIN-CELL HETEROGENEITY OF CLAIM FREQUENCY 

D.1 Theory 
D.1.1 Suppose we have mutually independent Poisson processes for the claim 

incidence on each policy (so of the three assumptions considered in Section 2.2 
and Appendix C, the last two hold). It is shown in Appendix C that if the Poisson 
rates are Gamma distributed within each cell, with coefficient of variation l/ √ hij, 
then the observed mean claim frequency rij has: 

E(rij) = fij and Var(rij) = φ ijfij/Xij 

where: 

fij is the mean Poisson-rate (i.e. the mean of the Gamma distribution) 

and 

φ ij= 1 + fij/hij. 

In this appendix we consider the question of how much of the heterogeneity in 
claim frequency is accounted for by the model. Johnson & Hey (1971) also 
investigated this question: we base our analysis on the same equation as they 
used. 

D.1.2 Although the range of Poisson parameters is continuous, it can be 
approximated arbitrarily closely by a finite sequence of values, λ k say. Let 
pijk = proportion of all exposure which is in cell (i,j) and has Poisson rate λ k for 
claim frequency. Then: 

∑ Pijk = proportion of exposure in cell (i,j) 

This is denoted pij 

Since pijk/pij for k = 1, 2 . . . . represents the distribution of Poisson rates within 
cell i, j (it is a discrete approximation to the Gamma distribution) we have: 

(1) 

The mean Poisson-rate over all cells is denoted µ, that is: 
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From (1) we have 

(2) 

Now consider the overall variance of the Poisson-rate: 

(3) 

It is straightforward to show that this can be expressed as: 

(4) 

These two terms can be regarded as the ‘within-cell variance’ and ‘between-cell 
variance’ respectively, for the Poisson-rates. 

D.1.3 Johnson & Hey (1971) used equation (4) as follows: 

(i) they calculated the between cell variance (directly from its definition) using 
fitted values from their model for fij, 

(ii) they calculated the total variance V, and 
(iii) the within-cell variance can be calculated as the difference, using 

equation (4). 

They carried out step (ii) by assuming that the distribution of Poisson-rates for 
all cells combined followed a Gamma distribution. Hence, by fitting a Negative 
Binomial distribution to data on numbers of claims per policy (for all cells 
combined) they were able to estimate the parameters of the Gamma distribution 
and hence its variance V. 

This approach suffers from difficulties over the handling of incomplete policy 
years (as Johnson & Hey acknowledged). For our model, there is an alternative 
approximate method for estimating the within-cell variance, which does not 
suffer from these difficulties. This is to use the residual variation in the observed 
mean frequencies rij. 

D.1.4 From the assumption of a Gamma distribution of Poisson-rates within 
each cell we have: 

(each side is the variance of the Poisson-rate within cell i,j). 

Therefore, ‘within-cell variance’ can be expressed: 
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The estimate of the scale parameter given by GLIM when frequency is 
modelled as proposed in this paper is an estimate of φ ij made on the assumption 
that φ ij is the same for all cells. There may in fact be some slight variation in φ ij 
(see Appendix C) but the GLIM estimate φ can be regarded as an average value. 
Approximately, we have therefore: 

within-cell variance 

(5) 

A value for µ can, of course, be obtained using the fitted values fij from the 
frequency model. Note that the approximation is likely to be poor if is close 
to 1 as is usual. 

D.2 Example 
D.2.1 These calculations have been carried out after fitting a model of the type 

described in Section 6 to the own-damage data used in Section 2.4. The mean 
own-damage claim frequency over all cells, calculated from equation (2) using 
the fitted values , is 0·1043. The between cell variance, the second term of 
equation (4) calculated using the fitted values , is 0·001005. The estimate 
calculated as the mean deviance, is 1911·7/1879 = 1·0174. The approximate 
within-cell variance, calculated from equation (5), is therefore 0·0018. 

D.2.2 Although this result is very approximate, it suggests that a substantial 
proportion of the variation in accident proneness between individuals is not 
explained by the available information on the rating factors DI, PA, CA and CG. 

Possible explanations are: 

(i) The bands of the available rating factors were too broad: the use of smaller 
cells would increase the between-cell variance and decrease the within-cell 
variance. 

(ii) Other rating factors are also important, for example, sex of policyholder and 
class of vehicle use. 

(iii) The accident proneness of individuals, and their readiness to claim, depends 
on other factors which cannot be measured by an insurer, e.g. drinking 
habits, and the psychological make-up of the policyholder. 

D.2.3 NCD systems attempt to take account of the factors mentioned under 
(iii). Johnson & Hey (1971) included NCD level as an explanatory variable in 
their model for claim frequency for all claim types combined, but still found: 

between-cell variance ≅ 0.0025 
within-cell variance ≅ 0·0055. 

However, it would be wrong to conclude that the NCD system is poor at 
allowing for unmeasurable risk factors, because points (i) and (ii) apply to 
Johnson & Hey’s analysis. 
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APPENDIX E 

DIRECT ESTIMATION OF WITHIN CELL. COEFFICIENT OF VARIATION FOR 
CLAIM SEVERITIES 

E. 1 In this appendix we consider the question of whether the scale parameter 
given by GLIM, when the model of Section 3.1 is used, agrees with the true within 
cell coefficient of variation. 

The model is: 

E(Zijk) = mij and 

If Zijk = Zijk/mij we have E( ijk) = 1 and Var(Zijk) = σ 2. 

Values for ijk can be obtained by dividing individual claim data Zijk by the 
fitted values mij obtained using the GLIM model. A direct estimate of σ2 (for 
comparison with the GLIM estimate) can then be obtained as the sample 
variance of the ijk. 

That is: 

where n = total number of claims in all cells, 

The fitted values mij necessarily satisfy: 

so we have: 

and hence: 

If qij denotes the sum of squares of claims in cell i, j: 
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then this can be expressed: 

515 

so the only additional data required for this direct estimate of σ 2 are the 
quantities qij. 
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APPENDIX F 

TESTING THE ASSUMPTION OF THE CLAIM SEVERITY MODEL 

F.1 Theory 
F.1.1 In the notation of Section 3 we have: 

E(Zijk) = mij and Var(Zijk) = σ 2ij m 2ij. 

The only assumption of the basic claim severity model, other than that the 
claim sizes zijk are mutually independent, is that the coefficient of variation σ 2ij is 
the same for all cells. A formal test of this hypothesis, based on data for 
individual claims, can be formulated by assuming that claim sizes are log- 
Normally distributed. This is a common assumption for claim sizes, and is 
probably a good enough approximation for the present purpose. Thus, if 
Lijk = loge (Zijk) we have: 

Lijk ~ N (λ ij, T2ij) for some λ ij, T2ij. 

Using standard results for the log-Normal distribution: 

mij = exp( λ ij+½T2ij) 

σ 2ij=exp(T2ij)-1 

so we wish to test the hypothesis that T2ij is the same for all i,j. 
F.1.2 Using individual claim size data, the sample variance of the log of the 

claim size can be calculated for each cell: 

tij = Σ (Lijk–Lij)2/(nij–1) where Lij is the mean of the Lijk. 

This has a scaled chi-squared distribution: 

tij~(T2ij/(nij-1))x2nij-1 

from which we have: 

E(tij)=T2ij and Var(tij)=2T4ij/(nij-1) 

that is the sample variances tij have a Gamma error structure with weights 
(nij-1) and scale parameter φ =2 (Appendix A). 

Therefore, the dependence of T2ij on the levels i,j of the rating factors can be 
investigated in GLIM using: 

$YVAR T $ERROR G $WEIGHTS N–1 $FIT A+B 

where T is a vector containing the sample variances tij and A, B contain the 
corresponding levels of the rating factors. 
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F.2 Example 
F.2.1 In the example of Section 3.3, plots of residuals against rating-factors 

appeared to show some heteroscedasticity. The above analysis was carried out 
using all four rating factors: 

district with 8 levels (DI) 
p/h age with 8 levels (PA) 
car age with 5 levels (CA) 
car group with 8 levels (CG). 

F.2.2 In recognition of the fact that the log-Normal assumption is only an 
approximation, sample variances t were calculated only for those cells with n ≥ 6 
(299 cells out of the 1890 cells with non-zero exposure). A sequence of F-tests was 
used in the usual way to examine the significance of the main effects and two 
factor interactions leading to the model: $FIT DI+PA+CA+CG+PA·CG 
+DI·PA. The scale-parameter corresponding to this model was estimated as 
φ =2·07. The closeness of this to the theoretical value of 2 suggests that the log- 
Normal approximation is adequate for the present purpose. The significant 
variation in T2 is summarised below: 

higher by a factor of about 2·5 for NI compared to other districts, 

decreases with car age, by factor of 0·6 for cars aged 10+ compared to cars 
aged O-3 years, and 

increases with car group by factor of 1·4 for cars in group 7-8 compared to cars 
in group 1. 

F.2.3 Fitted values T2ij were calculated using this final model and transformed 
to estimates of the within-cell coefficient of variation using σ 2ij =exp (T2ij)-1. 
These were used to adjust the weights of the severity model: $WEIGHTS N 
replaced by $WEIGHTS N/V where V is a vector holding the estimates σ 2ij. The 
residual plots were then satisfactory. Some of the severity relativities were 
significantly affected by correcting the weights in this way. For example, the 
model with $WEIGHTS N gave car group relativities (by fitting a quadratic 
curve) of: 

1·00 0·99 1·02 1·09 1·22 1·43 1·74 2·20 

After correcting the weights these became: 

l·00 1·03 1·08 1·16 1·27 1·43 1·64 1·93. 
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APPENDIX G 

STANDARD ERRORS OF RISK PREMIUMS 

G.1 In § 7.1.1 we propose calculating risk premiums Pij from fitted values of 
the component frequency and severity models as follows: 

(the symbol indicating an estimate was omitted in § 7.1.1). 
By the asymptotic theory of generalised linear models, each item on the right of 

this equation is approximately unbiased. It is shown in Section G.2 that within 
each rating cell (i,j) these items are also asymptotically independent. These 
results imply that each Pij is approximately unbiased. 

Asymptotic approximations will be good, because there are typically very 
many individual claims per estimated parameter for each of the component 
models. 

G.2 In this section, we show that for each rating cell (i,j fixed), the estimates ijt 
and ijt are asymptotically mutually independent. Mutual independence is 
obvious between different claim types t, because the models for different claim 
types are based on mutually disjoint data sets, each consisting of a sample of 
independent claims. 

We need to consider each pair it and it, in the same cell i and claim type t. (To 
simplify the presentation, rating cells are indexed using a single subscript instead 
of the pair i, j used in § 7.1.1 and § G.1.) 

For each (i,t): it, is estimated from the data rjt = njt/xjt; and it, is estimated from 
the data sjt=yjt/njt (where j varies over all rating cells). 

The appearance of the same random numbers njt in both data sets leads to 
stochastic dependence between it, and it. However, it and it, are asymptotically 
independent (for each fixed i and t) as the following argument shows. 

In Sections 2 to 6 we propose the following steps for each claim type I: 

(i) use assumptions about the distribution of the data rj to estimate i (where 
both i and j vary over all rating cells), and 

(ii) use assumptions about the conditional distribution of sj|Yj to estimate i. 

The assumptions for step (i) are given in Section 2. Estimation is carried out by 
maximising the likelihood of rj, corresponding to a Poisson distribution for claim 
numbers. This likelihood is denoted P α (r), where α represents the parameters of 
the model fi. If the distribution of claim number is not exactly Poisson, then P α (r) 
is a quasi-likelihood, and the estimates obtained in this way retain all the 
desirable properties of maximum likelihood estimates, see Wedderburn (1974). 

The assumptions for step (ii) are given in Section 3. Estimation is carried out by 
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maximising the likelihood of sj  rj corresponding to a Gamma distribution for 
claim sizes. If β represents the parameters of the model for mi, this likelihood can 
be denoted P β (s  r). The same comments apply on the efficacy of estimates 
obtained in this way when the claim size distribution is not, in fact, a Gamma 
distribution (Wedderburn, 1974). 

An alternative to this two stage procedure would be to estimate α and β 
simultaneously by maximising the joint likelihood of r and s. By definition of the 
conditional distribution of s  y, the joint likelihood P(r,s) is given by: 

P(r,s)=P α (r)P β (s  r). (1) 

As α appears only in the first factor, and β only the second factor on the right, 
maximisation of P(r,s) is equivalent to the two stage procedure proposed in the 
paper. 

Applying the general theory of maximum likelihood estimation to the joint 
estimation procedure: the estimates ( , ) are asymptotically normal with 
variance-covariance matrix V given by: 

v= 

where D is the deviance, which is defined as - 21n (likelihood). 
From (1) we have D = -2ln(P α (r))-21n(P β (s  v)), from which is 

trivially zero. 
Hence V is block diagonal, that is and are asymptotically uncorrelated, and 

by asymptotic normality they are asymptotically independent. Since is a 
function of and i is a function of i and i are asymptotically independent, 
for each cell i. 

G.3 Since, for each cell (i,j), the quantities ijt, ijt (t=1,2...) are all mutually 
independent (to a good approximation) the variance of the risk premium P is 
given by: 

Var(P) = Σ Var( t t) 

(2) 

and a standard error for P can be obtained by replacing t by t, and t t in this 
formula. 

(Subscripts i,j have been dropped for simplicity.) 
Since we have a multiplicative model for both frequency ft and severity mt, we 

can use µ as a generic symbol for any of these, and we have a model of the form: 

µ = exp (uT·b) 
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where: 
u = known vector of rating factor levels, and 
b = model parameters. 

GLIM gives estimates together with a standard error matrix satisfying 
approximately ~ N Normal (b,V). 

Hence: 

Consider: 
(3) 

Using standard results for the log-Normal distribution, this has: 

and 

Replacing σ by 2 in expression (3) for , allows and Var( ) to be evaluated 
for substitution in formula (2). 

In practice 2 is invariably very small compared to , so the ‘bias correction’ at 
(3) makes virtually no difference: fitted values can be calculated using =exp 
(uT ). 
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APPENDIX H 

MODELLING THE MEAN NO CLAIM DISCOUNT 

521 

H.1 In this appendix, the notation of Section 7.2 is simplified, by using the 
single subscript i to index rating cells (regardless of how many rating factors there 
may be). We assume for simplicity that only complete policy years are used for 
this analysis, that is xik= 1 for all policyholders k. The model easily generalises to 
include fractional policy years. 

Thus: 
Cik = NCD of policyholder k in rating cell i, and 
xik =exposure of policyholder k in rating cell i. 

Within each rating cell the Cik can be regarded as independent identically 
distributed random variables taking values in the set {0, 20%, 30%, 40%, 50%, 
60%) or similar. 

We wish to estimate the mean NCD, Ci of this distribution for use in 
converting net office premium to gross. 

H.2 If Cmax denotes the maximum NCD, allowed (e.g. Cmax = 60%) and we 
define Cik =Cik/Cmax, then, for fixed i, the Cik are independent and identically 
distributed, taking values {0,1, some intermediate values}. 

Thus, the distribution of the (Cik) can reasonably be modelled as a scaled 
binomial distribution: 

Cik~1/mi·B(mi,pi) 

for some parameters mi, pi. 
This implies: 

E(Cik)=pi and var(Cik)=pi(1-pi)/mi. 

Hence, if yi denotes the total of the Cik: 

we have: 

E(yi)=pini and Var(yi)=pini(1-pi)/mi 

where ni is the number of policies observed in cell i, that is: 

ni = Σ xik· 

This is a scaled binomial error structure for yi, the scale parameter being 1/mi. 
Note that yi=ni i/Cmax where i= sample mean NCD for the ith cell. 

It seems reasonable to assume that mi does not depend on the rating cell i, 
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because mi will be related to the number of levels of the NCD scale, and this is 
usually the same for all cells. 

H.3 The data yi can thus be modelled in GLIM using: 

$YVAR Y 
$ERROR B N 
$SCALE $ 

where N holds the data ni (this is the binomial denominator: see GLIM manual 
for details). The command $SCALE$ allows a scale parameter φ # 1 which is 
necessary because the model has φ = 1/m. Various linear predictors can be 
compared using $FIT A+ B, etc., followed by F-tests, where A, B hold the rating 
factor levels as usual. When the best model has been found, fitted values of the 
mean NCD are given by: 

H.4 Although no direct investigations have been carried out as to whether the 
distribution of within-cell NCD levels can be adequately approximated by a 
binomial distribution (or some other distribution with a similar variance 
function), the model described here seems to work: 

residual plots are generally satisfactory, 
the scale parameter given by GLIM is consistent with φ = 1/m, and 
the fitted values look plausible. 

Also, the binomial distribution can approximate quite closely the steady-state 
distribution of a Markov process, which is the model used by Johnson & Hey. 
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APPENDIX J 

INCLUSION OF NO CLAIM DISCOUNT LEVEL AS AN 
EXPLANATORY VARIABLE 

J.1 In this appendix, it is shown that if the NCD percentages are to remain 
unchanged (option (ii), of §1.9.2) then the inclusion of NCD level as an 
explanatory variable in the component models does not yield correct relativities 
for the other rating factors in general. (The ‘correct’ relativities are taken to be 
those which give no cross-subsidisation between the rating cells defined by the 
other rating factors.) 

Without loss of generality, the cells defined by the other rating factors are 
indexed using the single subscript i. 

J.2 Initially, to clarify presentation, a simple case is considered. Later it is 
shown that the same conclusions apply in more realistic scenarios. The 
simplifying assumptions are: 

(i) NCD scale has just two levels j= 0, corresponding to no discount on gross 
premium, and j=1 for which a proportion c of gross premium applies (e.g. 
c=70%, discount=1—c=30%). 

(ii) Only one claim type, that is a single frequency model and a single severity 
model. 

(iii) No interaction between NCD and other rating factors in determining either 
frequency or severity. That is, the effect of NCD level is purely multiplicative 
in both cases, and we have: 

Expected claim frequency fij=fi α j 
Expected claim size mij= mi β j 

where α 0= β 0= 1, so α 1, β 1 are the ‘discount factors’ for policies at NCD 
level 1, for each of frequency and severity. 

(iv) No expenses. 

Since we have only one claim type, the risk premium for policies in cell i at NCD 
level j is given by: 

where 

hence do = 1 and d1 (denoted d below) is the ‘true’ discount factor. 
Consider the quantities Pio. They are the true risk premiums for policies with 

no no-claims-discount (NCD level j= 0), for each rating cell i. However, they do 
not in general give the correct relativities for the gross risk premiums. This can be 
seen as follows: 

Suppose we have xi policies in cell i, of which a proportion qi are on NCD level 
j=1, so have discount factor c. 
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If the quantities Pio are used for the gross premium then: 

total premium for cell i = xi Pio[(1 - qi) + qic] 

however, the true expected loss for cell i = xi Pio[ (1 - qi) + qid]. 

The ratio of these is: 

For the Pio to give correct relativities, we must have φ i constant. This is true 
only if either: 

c=d i.e. existing NCD scale is correct, 

or: 

qi is constant i.e. the same distribution of policies over NCD levels for 
all rating cells. 

J.3 More generally, one can relax assumptions (i) and (ii): 

(i) several NCD levels j=0,1,2.... 

with cj = proportion of gross premium applicable to NCD level j, c0=1, and 

(ii) several claim types t=1,2,3.... 

We have separate models for each claim type t: 

and 

for some α jt, β jt with α ot = β ot = 1. 

The true risk premium is given by: 

where djt = α jt β jt = true discount factor for NCD level j for claims of type t. 
The ‘true’ discount factor for NCD level j in cell i is defined by: 

hence: 
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where: pit 

= risk premium for policies on NCD level 0, cell i, type t. 

Now suppose qij represents the distribution of policies in cell i over the NCD 
levels: 

Consider the use of the quantities Pio as gross premiums: 

total premium from cell i (given qij) 

expected loss from cell i (given qij) = xi Pio 

Hence the correction factor to be applied to the Pio in order to get correct 
relativities for gross premiums is: 

Note that this is a function of the distribution qij· 
If the factors φ i could be estimated, estimates io obtained by fitting the 

models could be corrected to give the required relativities. 
Estimates ij could be obtained from the fitted models, and the distribution qij 

of policies over NCD levels in each cell is known. However, for small cells, this 
distribution will be subject to a great deal of random variation both between 
cells, and over time. Therefore, for useful relativities, we require Eqij ( φ i(qij)). 

This would be extremely difficult to estimate reliably. A first approximation 
could be obtained by using the model of Appendix H to find the expected values 
of the numerator and denominator of φ i in turn, but the reliability would be very 
uncertain. 

In practice, the situation would be further complicated because assumptions 
(iii) and (iv) might not apply. 

J.4 Our method overcomes these problems as follows: 

we use data for all NCD levels combined, for each claim type. 
This has: 

expected frequency 

expected severity 
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Note that the qij on the right side of these equations are expected values, so there 
is no problem with random variation. 

Hence risk premium for cell i: 

We then use the model of appendix H to estimate the expected value of the 
within-cell mean NCD level: 

For gross premium we use: 

We then have: 

expected total premium received from cell 

= xi Pi 

= expected total loss for cell i. 



Statistical Motor Rating: Making Effective Use of Your Data 527 

ABSTRACT OF THE DISCUSSION 

Mr M. C. Bennett (opening the discussion): If we wish to maintain and develop a profitable motor 
insurance account, then it is at our peril if we fail to take adequate account in the rating structure of 
the variation in risk within the portfolio. The paper addresses this topic of variation in risk, which 
clearly is far from trivial in view of the large number of factors which are taken into account in 
determining the premium to be charged. Anyone seeking quotations for a particular motor risk will 
know that premiums for identical cover vary widely from one insurer to another. This variation seems 
at least as great today as at any time since the early 1970s, the last time motor insurance was the 
subject of an Institute paper. Much of this variation is because the structure of the premiums differs so 
much among the companies writing motor business in the United Kingdom, rather than because of 
different levels of generosity in claim settlement or different profit margins. A paper which draws 
attention, once again, to ways to avoid writing business which will produce a loss is to be welcomed as 
a step to improving the profitability of individual motor accounts and, more generally, to developing 
a somewhat more orderly market for motor insurance. While a free market and healthy competition 
are, in themselves, to be applauded, the remarkably wide variations in premiums between companies, 
which are to a major extent a consequence of inadequate risk assessment, lead to undue lapsing of 
policies and undue competitive pressures in the motor insurance market. 

The authors refer to past papers on modelling a motor insurance portfolio, including those which 
advocate simple additive models with parameter values which are relatively easy to determine with 
limited computer capacity. Such additive models have given a reasonable fit of actual to expected 
values for many, but not all, sections of a private motor portfolio, in particular excluding the more 
extreme risks for which there is always the greatest uncertainty in risk assessment. Additive models 
have been successful as a means of standardising results, that is, making adjustments in the risk 
relativities to allow for the varying mix of business by the rating factors not currently under 
investigation. By using any simple model, additive or multiplicative, one can keep under review the 
ratios of claims plus expenses to earned premiums in one-way and broad two-way cells, and make 
small adjustments to the rating structure from time to time, based on the standardisations which the 
authors describe, to bring the premiums more closely into line with the experience. Furthermore, a 
simple additive model will permit the monitoring and development of a premium scale of 
multiplicative form and contains some interaction terms involving more than one rating factor. 
Given that so much can be achieved by simple models, it remains a matter for consideration as to the 
extent to which more elaborate modelling, as described by the authors, can be expected to produce 
significantly more satisfactory premium relativities than are possible using a simple model, given the 
important practical uncertainties to which I refer later. 

The authors make use of the statistical package, GLIM, a remarkable ‘black box’, which is referred 
to in various places, but whose practical scope has been set out more clearly in this paper than some of 
us have seen before. Given the much larger capacity computers and the much faster processing speeds 
that are available today, there seems to be no strong argument against using GLIM in view of its 
power and flexibility. 

The authors advocate the use of a multiplicative form of the basic model, and give examples in 
Sections 2 and 3 to support this form of model. I am not convinced by their argument regarding, for 
example, the multiplicative form of risk relativities for different combinations of age of policyholder 
and car group, and I grow much more doubtful when all the other rating factors, such as age of car 
and geographical area are added. In Section 3 the authors use a similar illustration to try to justify the 
use of a multiplicative form of model to represent average claim amount. Again I do not find the 
theoretical argument particularly convincing. In the absence of any other sufficiently simple and 
reasonably intuitive form of model, we may indeed find ourselves using a simple multiplicative model 
supplemented by such interaction terms as we judge to be appropriate, although I suspect that the 
best model may well be of some intermediate form between additive and multiplicative. All this said, 
does the precise form of model matter very much? I suspect not, and certainly not as regards the 
standardisation technique described later in the paper. What does matter crucially is that we have 
some model, and that we understand the strengths and limitations of whatever model we are using. 
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In § 4.1.1 the authors refer to the conflict between using sufficiently recent data and using a 
sufficient volume of data. This conflict has always been a serious one in rating motor insurance. For a 
reasonably sized account it is true that, for most claim types, the claims analysis can be confined to the 
most recent few years of claims. For bodily injury claims a much longer time span than the 3 or 4 years 
indicated by the authors is, I suggest, preferable: because the data are sparse and of exceptionally high 
variance; because there are intrinsic uncertainties in claim amount at the early stages of development 
of a claim; and because the magnitude of such claims can tend to be underestimated at early 
durations, and such understatement could easily distort the assessment of risk relativities. 

The authors propose that certain claim types, such as those in § 5.2.1, be analysed separately in the 
modelling, as regards both frequency and amount of claim. This appears to be a sound approach, 
since trends can vary from one type of claim to another. The authors remark that judgement is needed 
regarding future trends in frequency of each claim type, but once those judgements have been made 
the modelling can be carried out. It would be particularly useful to do separate modelling for 
windscreen and theft claims and claims involving bodily injury. Having examined various claim types 
separately, it makes good sense to use the principle of parsimony, as the authors suggest, to combine 
data for different claim types where possible, and consequently avoid unnecessary parameters in the 
model. I suspect, incidentally, that the traditional forms of simple model could readily be extended to 
treat the main claim types separately. 

The authors refer, in § 5.1.4, to distortions from changing knock-for-knock agreements. This is on 
the assumption that we are seeking to rate the business in line with the claims experience observed 
with knock-for-knock agreements in force. This will, for example, understate the claim costs properly 
attributable to business with non-comprehensive cover and high-risk business with comprehensive 
cover. This approach to rating is fine, so long as all companies adopt the same approach. However, 
there are now some insurers writing mainly low-risk business who are understood not to have knock- 
for-knock agreements, and for whom such agreements would be disadvantageous. In order to 
compete with them, it may be necessary for other insurers to rate on the basis of the relativities which 
would apply in the absence of knock-for-knock. There is clearly some considerable uncertainty as to 
what these relativities would be, and this provides one illustration of why we cannot hope to achieve 
precision in rating, however sophisticated our analysis of the data. 

In Section 5, the authors appear rather dismissive of the problem of very large claims. They suggest 
a capping level of £25,000 for bodily injury claims in a medium-sized portfolio. This may be necessary 
to increase the stability of the model, but a substantial proportion of claim cost relates to amounts in 
excess of £25,000. I believe that the underlying risk relativities by age of policyholder, in particular, 
may be somewhat different if one caps at £25,000 rather than taking the total claim cost. A large 
volume of data is needed to investigate, but some research has been presented on this topic [Bennett, 
M.C. & Johnson, P.D. (1984). The treatment of large claims when deciding on a premium structure 
and on the relationships between the premiums for different groups. Proceedings of the Four 
Countries ASTIN Symposium, Akersloot], and there is scope for some updating of the results. 

Section 6 relates to curve fitting, and I am uneasy about some aspects of this. There is a danger that 
a curve fitted to blocks of ages of policyholder, say, will give an inappropriate result at the extremes, 
for example at ages 17 and 18.1 can imagine circumstances in which curve fitting gave a risk relativity 
for age 17 which pointed to a reduction in premiums at that age, whereas age 17 policyholders have 
produced consistently high claim ratios in recent years as a result of the age rating being too low. I 
suggest that we should not regard curve fitting as a panacea for dealing with grouped data, and this 
points us once again in the direction of a standardisation approach. 

Sections 7 and 8 include a detailed analysis of the allowance to be made for No Claims Discount 
(NCD). Premium discount has tended to be earned in a true sense at a slower rate by younger and less 
experienced policyholders than by others. As a result, no simple NCD system can be right for the 
whole portfolio. If the proportion of young policyholders has changed or will change, as is often the 
case, the relative profitability of certain sections of the portfolio will also change, added to which 
the overall profitability of the portfolio will be changed also. 

I suggest that we need to acknowledge the existence and significance of the various elements of 
uncertainty, including those to which I have referred. Their combined effect may well outweigh the 
statistical advantages of using one form of model rather than another. 
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Section 9 considers the use of a standard table. An insurer which does not include some process of 
standardisation as part of its data analysis will be very poorly placed to improve its rating structure. 
In Section 9.3 the authors very reasonably propose a standardisation approach for analysing by 
postcode grouping and individual car models. As they remark in § 9.3.5, with some understatement, 
such analysis is not an exact science. 

Section 10 considers how, after the modelling work is done, the premium structure might be 
modified. In Section 10.2 the effect of competition is assessed. The competitive position is expressed in 
terms of ranking, although, depending partly on the means by which the insurer obtains business, 
ranking may be an insufficient expression of competitiveness. Some concise measures of differences 
in, and the general spread of, premiums across the market may be particularly called for. The last 
sentence of § 10.3.3 indicates that there are circumstances in which, after making necessary changes in 
premium relativities, maintaining volume of business is more important than maintaining premium 
income. Observation of claim cost trends and insurers’ rating structures suggest that many insurers 
are still liable to be writing some significant sections of their motor business at such unprofitable rates 
that they would be best not written at all at these rates, whatever assumptions are made about the 
spreading of fixed expenses. 

The authors refer to the scope for discovering what they describe as profitable ‘niches’, although I 
prefer to avoid the term ‘niche underwriting’ when referring to the continuing process of premium 
adjustment which the authors describe. In particular, we need to be cautious in believing that we have 
identified a section of the business where there is scope for substantial profitable growth, since it can 
often be the case that a large volume of new business that we have encouraged turns out to be of 
poorer quality than its earlier counterpart. 

In the U.K. motor market it is certainly the case, as the authors indicate, that insurers need to 
model their portfolio and to look at how the premium relativities should be changed. They also need 
to judge how changes in premiums might best be achieved, given the pattern of competitors’ rates, 
how advantage might be taken if there is to some extent an imperfect market as regards premium 
relativities, and how a particular insurer might justify a shading of premium relativities to take 
account of features of that insurer’s operations. 

However, I suggest that the authors overstate their case in the very last sentence of Section 10 
where, in spite of the practical uncertainties that abound in motor insurance rating, they seem to 
imply that a particular modelling technique applied to an insurer’s own data is a necessary and 
sufficient condition for stealing a march on the competition. 

Mr P. S. Carroll: About 10 years ago some actuaries discovered GLIM and one or two were 
enthusiastic about it. However, it seemed that the people working on motor insurance came to a 
negative conclusion about it. It is, perhaps, interesting to look back and think why they did so, and 
why the situation is somewhat different now: 

(I) Computers, 10 years ago, were of limited space and capacity and computational power; GLIM 
was a large program and the data sets for motor insurance, the policy files, were enormous. So 
when you put this large program and the large data file on your computer you did not have much 
space left. Now there is much more computer capacity, so the picture is different. 

(2) The GLIM literature was hard to read, hard to find, and dispersed, In § 1.8, the paper does a 
useful job in summarising some of the literature. It does not mention GLIM Newsletters, which 
were relatively easy to read, but quite hard to find, and not many people knew about them or were 
aware that these were worth discovering. 

(3) There was disagreement about the presentation of the results. One leading professor said it was 
important to interpret the parameters; another that there were so many parameters in these 
models that it was impossible to interpret them. Some experts said it was important to plot many 
graphs and look at residuals; others said it was not. The authors have given a better perspective on 
this. 

I have tried to teach this subject, and it is difficult to give a clear, concise, intellectually satisfactory 
explanation of what these not very obvious formulae and distributions are. Whey are these GLIM 
functions recommended? Why are these peculiar error functions recommended? I found sufficient 
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statistics were a useful concept. It is because of the mathematics producing different sufficient 
statistics in different cases that we have these different GLIM functions and error distributions, as 
recommended. 

I have some minor criticisms of the paper in the area of overfitting. When you have this nice 
program the temptation is to overfit, to exploit the chance variations in the data, and get a good fit 
and a nice model. However, the next set of data will not fit nearly as well. The authors are well aware 
that we are not measuring some of the things that we might measure in motor insurance. We do not 
know how many miles per year cars are travelling; we do not know how the teenage and young adult 
children are using the motorcar. To try to explain everything with what we do measure in terms of the 
measured variables is leading to over-fitting. In § B.3 the authors err in that direction when they say, 
“The deviance is slightly lower for the multiplicative model than for the additive model”. In fact, the 
deviance is much the same, and I support the opener’s opinion that considerations of simplicity tend 
to favour additive models rather than multiplicative ones. 

Mr P. D. England: I read the paper as a user of GLIM in other areas of interest to actuaries. The 
methodology is of practical benefit to the actuarial profession, and has wider application in other 
areas of general insurance-for example, household insurance. My comments are of a technical 
nature and may be helpful to the authors and others intending to use the techniques. The plots shown 
in the paper look highly unsatisfactory, because investigation has revealed that the plots shown use 
standardised residuals. In contrast to the authors’ statement in § 2.3.4 that “We have always found 
these residual plots to be satisfactory”, I have never found these residual plots to be satisfactory for 
anything other than Normal models. The authors quite correctly state that we would expect the 
distribution of standardised residuals to be skewed. For this reason, standardised residuals are not 
usually used for non-Normal models, and deviance residuals are used instead, since they give more 
informative plots. The deviance residual is the signed square root of the contribution which each unit 
makes to the deviance, and is explained within the first 40 pages of the text by McCullagh & Nelder 
(1989), referenced in the paper. I believe that if the authors use deviance residuals for both the Poisson 
model for frequency and the Gamma model for severity, the plots will look far more satisfactory. It is 
usual to plot deviance residuals against the linear predictor rather than fitted values. Furthermore, a 
histogram of deviance residuals should show a distribution whose mean and variance are 
approximately zero and φ (using the notation of § 2.3.4). 

The authors make several references to limitations on computer memory space available. The 
solution to this problem is to buy more memory and, if need be, a better computer. For a DOS-based 
computer, the user is still limited by the amount of RAM and the version of GLIM supplied. For a 
computer running under the UNIX operating system, GLIM is supplied together with the 
FORTRAN source code and instructions on how to modify the source code to increase the allocated 
memory space. It is therefore possible to adapt GLIM to fit models using very large data sets. 

The authors mention briefly the difficulties of fitting Poisson models with the identity link function 
(in other words the additive model). The problems can be alleviated to some extent by specifying the 
same model using the OWN directives, as explained in the GLIM manual. This procedure is more 
flexible than directly specifying a Poisson error with the identity link. The use of the identity link with 
a Poisson error structure is uncommon and is intuitively unappealing. I agree with the authors that it 
is better to use a multiplicative model, purely from a mode1 fitting point of view. The additive model 
should only be used if there is good empirical evidence for doing so; for example, if it produces a much 
lower deviance than a model using the logarithmic link, implying a much better fit. It is also possible 
to use what is called the power link, whereby it is possible to fit a model which is in between an additive 
and a multiplicative model, which may be, say, on a square root scale of the linear predictor. 

Professor J. A. Nelder (a visitor): I hope that the paper will encourage others to look at the possibility 
of analysis of their own data. I have the following comments: 

Residuals 
Generalised Linear Models (GLMs) give rise to two definitions of residuals: one is the signed square 
root of the contribution to the Pearson x2 statistic; and the other is the deviance residual which uses 
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the signed square root of the contribution to the deviance. For Normal errors these definitions are 
identical, but for other distributions of errors they are not. Pierce & Shafer [Residuals in generalized 
linear models (1986) J. Am. Statistical Association, 81, 977] have shown that the deviance 
transformation is close to the optimum Normalising transformation for the GLM distributions, and 
thus we may expect that deviance residuals will look very much like a set of residuals from a Normal 
model, even when the error distribution of the model is not Normal. By contrast, Pearson residuals 
have a skew distribution for non-Normal errors, as is clearly shown in Figure 3. I confidently predict 
that the skewness would effectively disappear had deviance residuals been used in place of the Pearson 
kind. If deviance residuals are used, you have access to the Normal and the half-Normal plot for 
looking at ordered residuals; it is also easier to see if the variance function is correctly chosen if the 
distribution of residuals is symmetrical. I strongly recommend the use of deviance residuals as a 
standard technique. 

Transformation to additivity 
The link function in a GLM defines the scale on which the effects of the terms in the linear predictor 
are assumed to be additive. For their models with gamma errors, the authors have assumed a log-link 
function. An alternative, which has some statistical advantage, is to use the inverse scale. This is 
equivalent to modelling the number of claims that can be covered by a fixed sum rather than analysing 
the average sum. In the example on motor insurance in our book (McCullagh & Nelder, 1989) we 
found that the inverse scale gave a slightly better fit than the log. It would be interesting to know 
whether this is true more generally. 

Model checking 
Recent advances in model checking have fundamentally changed the way that we model data. Instead 
of choosing a model class a priori, fitting the model, summarising in terms of parameters and their 
standard errors and then stopping, we now introduce a loop into the process, whereby, after fitting 
the current model we check for its internal consistency. If these checks fail, we go back and have 
further thoughts about the model class, and then try again. As always, the introduction of a feedback 
loop into a system fundamentally changes the behaviour of that system. No analysis should be 
accepted today if standard model-checking techniques have not been applied. 

Prediction 
The calculations of quantities like risk premiums constitute the prediction phase that follows the 
analysis; and Lane & I in a paper in 1982 (Analysis of covariance and standardization as instances of 
prediction, Biometrics, 38,613) showed that many of the techniques of standardisation, the analysis 
of covariance and calibration can best be thought of as instances of prediction, which we defined as 
the calculation of derived quantities that answer questions of the what-if kind. A typical question 
from demography would be ‘what would the incidence of the disease in city X be if its population 
structure were that of the country as a whole?’. 

Software 
Two established software packages have GLMs built in: GLIM and Genstat. Their capabilities for 
fitting GLMs are virtually the same. However, Genstat has some facilities that GLIM lacks, which 
might be useful in the analysis of motor insurance data. These include the manipulation of multi-way 
tables as a built-in data structure, matrix arithmetic for model extensions, colour bit-mapped 
graphics for displaying the results pictorially, and a very powerful storage and retrieval system for 
complex data structures. It also includes the PREDICT directive, which implements the prediction 
methods which I have described above. 

Dr S. M. Coutts: This is a very important time for the motor insurance industry. Underwriting is 
under pressure, and so is the actuarial profession in so far that it can assist the underwriter. I have 
worked with GLMs for over 15 years, and find myself in agreement with most of the technical 
arguments for the use of GLMs. However, there are some significant omissions in the paper on the 
practical application of the statistical theory and on other matters. 
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From practical experience, the data base to perform a GLIM analysis is not always available in 
companies. This is normally because the data bases constructed are transaction based, and do not 
lend themselves to statistical analysis. Many companies contribute to the ABI motor statistical data 
base, and this data base is usually sufficient. If companies do not supply information to the ABI it 
could take up to 6 months to obtain sufficient control data for any statistical analysis. 

A significant problem mentioned briefly before is that GLIM is not a user-friendly language. The 
Royal Statistical Society, through NAG, is trying to address this problem, and certainly the latest 
version is more friendly. However, the unfriendliness must be considered a drawback. Also, the 
authors do not address the interface problem of a large data base with GLIM. Professor Nelder has 
mentioned it, and it is a very important problem. A third alternative to Genstat and GLIM is SAS. 

The authors managed to criticise work published by Baxter et al. (1979) and Coutts (1984). They 
were able to do so because these papers included the data. However, it is impossible to comment on 
the models or analysis made by the authors, since they did not supply their data. Baxter et al. 
commented on the fact that the profession does not help itself by hiding behind non-disclosure. I find 
that such a large data base is unnecessary. It would have been better to publish a smaller one, so that 
professional criticism of the analysis could have been performed, and I believe that all the conclusions 
made by the authors could have been made using a small data base. For example, in Section 3.3 the 
authors claim that the within cell variance in their data set is reasonably close to the model’s estimate, 
and they claim that this is contrary to Coutts (1984). Without access to the data I am not in a position 
to verify or otherwise their views. 

The most startling omission from the paper is the role of the underwriter, who is mentioned as a 
floating technician; but it is not clear how he interrelates with the actuary. The authors say that their 
models work in practice, so what is the underwriter’s role? In my experience, where the actuary takes 
over the role of the underwriter the account usually makes a loss. The profession has to come to terms 
with the different roles of the actuary and the underwriter. My experience is that the actuary is part of 
a team, with the underwriter as the decision maker. For example, the actuary has to explain the 
GLIM model as part of explaining technically difficult statistics to non-statisticians. The actuary 
needs to market himself or herself. 

On the marketing side, I do not believe that Section 10.2 is helpful. One-way tables are not the way 
forward. There is no mention of lapses and new business analysis by multiway factors. The way 
forward is to use a detailed multiway business plan which brings together marketing and profitability. 

Professor S. Haberman: My colleagues and I at City University would like to think that we have 
pioneered the use of GLIM in solving real actuarial problems. We are currently engaged on a project 
investigating a statistical approach to motor rating for a very large portfolio--considerably larger 
than the case studies given in this paper, and it is comforting to find support for the approaches that 
we are currently adopting, for example, Poisson modelling of the claim frequency and Gamma 
modelling of claim severity. We are using GLIM in a UNIX context on a powerful SUN 
microcomputer, and we have thus circumvented the difficulties with memory limitations to which the 
authors allude. 

In Section 4, I would like to hear the authors’ views on forecasting the calendar year effect-just as 
a forward estimate of future inflation would need to be incorporated in a final premium formula. 

Section 6 looks at curve fitting, and here I believe the approach is too restrictive. It would be useful 
to investigate: a transformation of the age scale, for example, prior to curve fitting; and perhaps more 
promisingly, the use of splines or break-point predictors should be considered, rather than just 
polynomials, straight lines, quadratics and cubics. I think this latter point would deal with the 
opener’s argument about extreme ages. 

I found Section 10 disappointing. I was expecting to see an attempt to present a model of the 
market itself, along the lines of the recent paper by Daykin & Hey (J.I.A. 117, 173). I suspect that 
using rankings, as is advocated in Section 10.2, would be too crude a device in reality, since both the 
company’s relative position and its absolute position in the market are important, and the use of 
ranks and one-way tables throw away too much valuable information. 

I was surprised at the literature review, in Section 1, which only goes as far as 1984. There are more 
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recent papers that have been published in actuarial journals; for instance by Stroinski (I.M.E. 8,35) 
and by Taylor (ASTIN Bulletin, 19, 91), on the subject of motor premium rating. 

On Appendix C, I have a technical comment. It is possible to use exactly the negative Binomial 
distribution in GLIM without resort to approximations by the Poisson (Users’ Guide, 112). 

Mr N. Shah: I believe that the amount of space devoted to NCD is out of proportion to its importance 
in rating because: 

(1) For a mature portfolio with protected NCD, I would expect well over 80% of policyholders to be 
on a maximum rate, and of the rest 50% have not been driving long enough to be on maximum 
NCD. 

(2) The interrelationship between NCD and excess is an important point which needs to be 
examined. 

(3) Lapse and new business rates are important to assess the population. There is some evidence to 
suggest that the policyholder who leaves had an accident. 

In Section 6.3 the authors advocate a method for obtaining more detailed results for the 
underwriter. The method shown is appropriate for interpolating, but in practice, the requirement for 
detail is at the ends of the factor ranges, and thus we need to extrapolate. Curve fitting methods do not 
generally help, as it is in these areas that the trend levels change. Therefore in practice, more analysis 
and discussion with the underwriter is needed. 

Apart from a simple example, the paper does not discuss the possibility of parameters not behaving 
in a logical way, and I would have liked to see some more discussion on the interpretation of such 
estimates. In practice with small data sets, and in particular for claim cost-models, there arc usually 
some outliers which need to be looked at. This aspect, again, was not fully discussed. There is also 
much work to be done on choosing the number of cells to use for a model. 

It is not clear to me what is achieved by Appendix E. Surely, all that is required is the calculation of 
the sample variance for each of the cells. The total claim amount, the number of observations and the 
sum of the squares of the individual claim amounts are sufficient for this, 

Mutual independence between different claim types is stated as being obvious in Appendix G.2. To 
my mind this is an assumption, since in practice there is some relationship between claim types; for 
example, a bodily injury claim normally occurs in conjunction with accidental damage or third party 
property damage claims. 

Mr H. E. Clarke: The paper describes fully the mathematical approach to the detailed analysis of 
motor insurance data. I do not wish to discuss the actual statistical analysis, but how you would 
present the results of any analysis to the underwriter. 

If you talk to underwriters, you find that they do not know how it is possible to take all the millions 
of cells and carry out an analysis that makes sense of them. The paper describes how to carry out that 
analysis; that is, how to extract the information from the data. The actuary will be part of a team, 
probably also consisting of the underwriter, claims person and a marketing person. These people will 
be relying on the actuary to analyse the data and extract as much information as possible from them. 
They will then be relying on the actuary to present the results of his or her analysis in such a way that 
the rest of the team can use them in the remainder of their analysis. In our experience, most companies 
have the relevant data somewhere in their computer systems. The difficulty that a number of them 
have is summarising them into a form in which they can be analysed, and then analysing them and 
presenting the results in a way which is intelligible to a non-actuary. I have found that the best way to 
present the results of analyses is to produce tables for each rating factor showing the following items: 

—summary of the data, 
—premium relativities calculated from the one-way data without any statistical analysis, and 
—premium relativities from the full statistical analysis. 

In the calculation of the premiums I would allow for NCD and expenses. 
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Dr Coutts stated earlier that he thinks that the final part of the paper is incomplete as, in his 
opinion, a detailed multiway model incorporating lapse and new business assumptions, etc., is 
required in order to decide on the final level of premiums to be charged. In the current state of 
development of the U.K. motor market this is oversophisticated. The problem that most 
underwriters have is getting the structure of the rates right, rather than deciding on the increase to 
apply once they have achieved this. The paper describes how to get the structure right, with the 
starting point being the production of a structure that is equally profitable in each cell. Against such a 
background, the overall level of rates can then be determined without the need to worry about being 
selected against. Thus, 1 do not consider that currently detailed models are required to decide on the 
overall rate increases to be applied. 

A number of speakers have commented that the solution to some of the computational problems 
described in the paper is just to obtain one of the more powerful computers that are now available. 
This merely reflects the speed at which computers are developing. When the paper was being written 
the most powerful PCs then available were being used for the analysis. 

Professor A. D. Wilkie: I have no direct experience of statistical motor rating, nor have I ever used 
GLIM. I have, however, had many years’ experience in calculating credit scoring systems for banks 
and other institutions that do personal lending. Credit scoring has many similarities with motor 
insurance premium rating. 

When you apply for a credit card or a bank personal loan or a hire purchase contract, you are 
probably asked to fill in a form which has quite a lot of straightforward questions in it: name, address, 
telephone number, etc. Also included are questions like: ‘How long have you lived at your address? 
‘How many years have you been in your present job?’ ‘Are you paid weekly or monthly?’ ‘How many 
dependent children do you have?’ There arc also some boxes down the right hand side of the form, 
which arc used by the lender to give points for particular factors: for example, four points for monthly 
paid; no points for weekly paid. Ten or a dozen factors may be used. The points scored for all the 
factors are added up, and if the score is high enough, you pass and are granted the loan. If the score is 
too low, your application will be rejected. The bank may seek additional information for marginal 
cases. There are plenty of features of credit scoring which make it different from motor rating, but the 
important point is the similarity. In each case, there are a number of potential scoring factors, and 
within each factor a number of levels, which in some cases are ordered and in others are not. The 
response variable may be simpler than in motor insurance: it is usually just a question of whether the 
loan at some time runs into arrears, perhaps 2 or 3 months. This is equivalent to a claim. The amount 
of claim could be taken into account, but I do not think that it usually is. 

The purpose of motor rating is to obtain a numerical premium. The purpose of credit scoring is 
simply to classify cases into accept or reject; banks usually do not vary the interest rate in this class of 
business according to the perceived riskiness of the borrower. 

Although the points obtained are just added, the statistical model used is not necessarily an 
additive one in the authors’ sense; it could just as well be multiplicative, where the logarithms of the 
relevant factors are being added. Indeed, since the response is strictly a Binomial variable, as the loan 
either defaults in the defined sense or it does not, a logistic transformation is logically the most 
appropriate, since this transforms the probability of response into something between 0 and 1. 
Indeed, since it is conventional to give a high score to good features and a low score to bad features, 
and the points are usually just small integers, the statistical scores have to be transformed by changing 
their sign and rescaling them, so that the range of the total score is something like 0–100. 

Like motor rating, credit scoring is entirely suitable for applying GLIM, or rather it would be if 
there were not a problem of scale. In the authors’ example, they use 4 rating factors, with a total of 21 
levels and 2,560 potential rating cells. This provides GLIM with no problems. However, it would not 
be difficult for a motor rating system or a credit scoring system to use, say, 12 factors, averaging 
perhaps 10 levels in each, or 120 levels in all, and 1012 individual cells. These, of course, would mostly 
be empty, and so it has to be considered whether the data should be turned round and each loan or 
each policy be used as an individual cell. In the authors’ example, they have 17,000 policies, which 
again is not too many, but some of the files I have dealt with have over one million loans, and I 
imagine that the larger motor insurance companies would have over one million policies. 
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One way of dealing with a large number of policies is to take a sample. All the loans that default, or 
all the policies on which there is a claim are included, and then an equal-sized sample from the 
successful loans or non-claiming policies is chosen. This sample can just be chosen randomly. I am 
not sure about the precise statistical effect of sampling the non-claims. For some models at least, it 
would give unbiased estimates of the factors, but the standard errors of the parameter estimates 
would be increased. If the sample of non-claimants is the same size as the population of claimants, 
then the standard errors of the estimates are increased roughly by the factor . 

Another approach is to model using only first order effects. GLIM wants to know the contents of 
every possible cell, because it is able to calculate all possible interaction terms. For some purposes this 
is interesting, but it is not of practical use in our two cases. It is sufficient for a straightforward 
additive or multiplicative model to use only first order effects. In order to do this for an additive 
model, all that is needed is the square table showing the number of cases that combine each level of 
each factor with each other level of each factor, only taking pairs of factors. In my example, with 12 
factors and 10 levels each, or 120 levels, this means a square table of 120 x 120 or 14,400 cells, which is 
quite manageable. Even in some of my preliminary analyses I would use 30 factors, with about 400 
levels in all, which requires a square table with 160,000 cells, again quite manageable. 

This approach leads one to the method described by Grimes in ‘Claim Frequency Analysis in 
Motor Insurance’ (J.S.S., 19, 147). Grimes’s approach allows the constant µ to be the overall mean, 
rather than the value in the cell with levels 1, 1, 1, etc. The scores found for each cell are then relative to 
the overall mean. Grimes includes an extra constraint for each factor to ensure that this is so. Whether 
Grimes’s techniques can be used for a multiplicative model, I am not sure; but it should be possible to 
use a correspondingly simple method for a multiplicative model. 

In some cases interaction between two factors is important, and needs to be brought into the 
model. Here is a simple example, though perhaps not one that can be readily used in practice. Sex and 
marital status are two single factors: sex with two levels (male and female) and marital status with two 
main levels (single and married) and possibly others that usually have quite small numbers in them 
and often have to be combined, either with single or married. Both for personal loans and, I expect, 
for motor insurance, there is likely to be a quite strong interaction term: single females have a good 
experience, single males a bad one; and married people of either sex much the same. This can be dealt 
with by combining the two factors into a single factor with more levels: single males, single females, 
married males, married females; and then the interaction appears as a first order effect. This of course 
increases the number of primary levels, but I have seldom found that this is a serious problem. 

A problem relevant both to motor insurance rating and to credit scoring is in the sub-division of 
variables like address and type of car on the one hand, or purpose of loan on the other. The authors 
mention this in § 9.3.2. One approach to rating districts used by at least some lenders is to use one of 
the commercial systems such as ACORN or MOSAIC, which classify individual post codes into a 
district type. This is certainly useful for credit scoring; it might be useful for motor rating. 

Those who are experts in credit scoring have much to learn from those who know about motor 
rating, and vice-versa. I recommend Credit Scoring and Credit Control, edited by Thomas, Crook & 
Edelman, published by Clarendon Press, Oxford, in 1992, which gives the proceedings of a conference 
on credit scoring held in Edinburgh in 1989. 

Mr C. G. Lewin: A great deal of work is clearly going into looking at the experience of an individual 
office. What the office is really interested in is the statistics of the market as a whole, and whether it can 
carve out niches in that particular market which will be profitable. Looking only at your own 
experience may tell you a certain amount about whether you are making profits or losses on 
particular classes of business, but does not tell you very much about what you might be able to do. I 
was wondering, therefore, what the present state is of the ABI data that Dr Coutts made reference to, 
and whether it is going to become as useful as the Continuous Mortality Investigation data is for long- 
term business. 

Mr M. J. Brockman: I do not hold much faith in the usefulness of the ABI Motor Risk Statistics 
Bureau analysis: there are serious weaknesses in the methodology; the data are always at least 2 years 
out of date when received; and it is not easy to fit in the correct expense loadings, which we advocated 
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you need to do if you are to get the rating structure right. Perhaps if the companies could get together, 
and bring the methodology much more up to date, they will find they have a much greater use of the 
analyses. 

If you change your mix of business you do have to keep close control over the expenses, and that is 
why in the paper we commented that, in some respects, it is more important to make sure that the 
business volume is maintained rather than premium income, provided that you make sensible 
allowance for fixed costs. 

Miss S. L. Dixon: I would like to pick up the point of heterogeneity of the within-cell coefficient of 
variation. I have been doing some research on implementing Appendix I:, which addresses this 
question. I am currently in the middle of this research, and so do not have any final results. However, 
so far, using my data set, I have been unable to obtain a scale paramater close to the theoretical value 
of 2 mentioned in §F.l.1, the nearest being approximately 3·5. This throws serious doubt on the 
validity of the log-normal assumption for claim sizes within the cells of this data set; an assumption on 
which Appendix F relies. Instead, for such data sets, if ‘fine-tuning’ of the method of the paper is 
desired-although I am not entirely convinced that the improvement is worth the added 
complications and computer time--then I would recommend the method suggested by Professor 
Nelder, of fitting a second linear model for some measure of dispersion. Basically, a model for the 
mean and a model for dispersion are fitted iteratively, the dispersion model being used to calculate 
weights for the mean model, and the next dispersion statistic being calculated using fitted values from 
that mean model. I have found that this refinement produces better residual plots-although the 
extra fits require substantial computer time, which has been one of my main problems and which may 
render this approach impractical. 

Dr A. E. Renshaw (a visitor): I wish to express much interest in Miss Dixon’s comments suggesting the 
use of joint modelling techniques for mean and dispersion in order to generate weights for use in 
fitting claims data. I have recently applied these techniques to allow for the effects of duplicate policies 
in the graduation of mortality data based on policy counts, the results of which appear in J.I.A. 119, 
69. The joint modelling technique is readily facilitated in GLIM, through the aid of a user-defined 
switching macro which allows the modelling process to alternate between the two stages. One 
particularly interesting feature to be addressed in applying such techniques concerned the selection of 
the predictor-link for the dispersion GLM. It is suggested that the authors will need to search for 
relevant patterns in the data to establish these. It should, perhaps, be emphasised that the application 
of such joint modelling techniques would represent a refinement of the primary mean claims 
modelling process. 

MS G. Vera (a visitor): Conceptually, one of the objectives of premium rating is to define the 
underlying risk structure of past claims data. The foundations of such a structure are each and every 
one of the individual risk factors. Hence, adequate definition and analysis of all rating factors are 
fundamental to the soundness of the final risk premium structure. 

To some extent, the analysis of individual rating factors is outside the scope of GLIM. The 
assumption of continuity between rating factor relativities is quite reasonable, but the approach for 
dealing with discontinuities, suggested in the paper, is only adequate for measurable rating factors, 
such as car or properly age, policyholder age, mileage, etc. Parameters such as district, NCD, car 
group and type of property have features that lend themselves to a fuller analysis if defined 
differently. NCD is basically a stochastic problem, and the spacial relationship between postal codes 
and the availability of demographic statistics and/or geographical data bases, provide an excellent 
basis for full cluster analysis. 

Interaction between rating factors is normally significant, particularly between all the income- 
related parameters and sex and age. Hence, the models used to develop the rating scales ought to 
include interaction terms. to remove the effect of other factors from the scale. 

Mr T. G. Clarke (closing the discussion): Unfortunately, in the U.K., the involvement of actuaries in 
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the rating or premium setting process is not as great as it is for claims reserving, nor for that matter as 
great as the involvement in premium rating by members of the actuarial profession in the U.S.A. I 
hope that this paper, together with the discussion, has demonstrated that the profession has much to 
offer in this area, but is extremely important that we present our capabilities in a clear and practical 
way, under-pinned by sound statistical theory. 

With the general insurance market currently unprofitable, with the trends of frequency and levels 
of court awards making it difficult to take the appropriate action on the level of premium rates, 
members of the profession will not have a better opportunity to display their capabilities to those 
responsible for the underwriting accounts, especially the personal lines of motor and household 
insurance. I was pleased to hear that Mr England feels that the methodology can be used in household 
insurance. This is very important, given the differing levels of premium for a category of risk as the 
opener mentioned, which can lead to an increase in lapse rates and thus expenses. 

Some speakers have indicated an omission, in that the paper has concentrated on the use of the data 
rather than on the quality of the data. For those insurance companies who are members of the ABI 
Motor Risk Statistics Bureau, the quality of the data is likely to be good, but the experience of that 
organisation during the early years of development highlights the difficulties of obtaining reliable 
statistical data on which to carry out the statistical techniques discussed in the paper. Dr Coutts 
emphasised this point. Actuaries have the appropriate skills in this area to help companies improve 
the statistical data base as well as perform the analysis. Historically the companies were not good at 
using the data. 

We have had some discussion regarding the types of mathematical models—the opener queried 
whether it was really necessary to use multiplicative models. He was not convinced by the example. It 
would appear that there is no real consensus of opinion on which form of model is preferred. 

The problems of bodily injury were highlighted by the opener, including the capping of claims. The 
problem of large claims related to age was raised. 

As the opener stated, whichever model is appropriate, it is important that the underwriters or 
management to whom actuaries are communicating their results understand the limitations of the 
analysis and the conclusions drawn therefrom. It is unusual for the actuary to be responsible for 
setting the rates—certainly, if I understood Dr Coutts, he would not allow it. The actuary is an 
adviser, and the recipient of the advice should understand the limitations if he is to make the 
appropriate decisions and, in the longer term, have confidence in the actuarial advice, especially when 
the future experience does not conform exactly with ‘expected values’. As Mr Clarke said, the 
important fact is that the structure of rating is required. The fact that there is much more computer 
capacity now has certainly been helpful in the development and use of the methods, as Mr Carroll 
stated. 

The subject of whether to include NCD as a parameter or not was raised. It is clear that it is 
important to know the exact purpose of the investigation, as was well stated in the paper. Mr Shah 
also mentioned the relationship between excess and NCD. The opener correctly raised the whole 
subject of knock-for-knock, and the type of analysis which was required. 

The sections on calculation of premiums are important, as this is the stage where the results of 
statistical analysis are put into practice. Given the purpose of the paper, it is understandable that the 
subject of expenses was only briefly referred to. I believe that this is an important area, and probably 
requires further analysis and refinement. I hope it will not be too long before we have a further 
opportunity to discuss this important subject. 

Section 10, on the competitive market, is important. It makes the statement that a ‘niche’ market 
for one company may not necessarily be a ‘niche’ for another. This is an important message, and 
should not be lost on those companies that actuaries are advising, although the opener queried this, 
especially if the expanded portfolio actually displays a worse experience. 

One message should come out of this meeting loud and clear, and that is that actuaries do have 
something to offer to underwriters in premium rating, especially personal lines. It is important that 
there is good statistical information, but, from the profession’s point of view, we need to explain 
clearly what we can offer, and then provide practical solutions which the underwriters and 
management of general insurers fully understand. Mr Clarke and Dr Coutts also made the point. We 
should be team members. Time and time again we come back to the subject of communication in 
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every section of actuarial work. For general insurance it is doubly important, because we frequently 
talk to people who have not been exposed to actuarial thinking before, and understandably are 
reticent about involving actuaries, based on the perceived image they have of us. 

The President (Mr H. H. Scurfield): I am glad that at this, my last sessional meeting as President, there 
is a paper on general insurance. My earliest involvement as a Fellow with the Institute related to 
motor insurance rating, and in 1968 I wrote a paper on the subject for the then Students’ Society 
(J.S.S. 18, 207). There has been increasing activity amongst the profession on general insurance, as 
the numbers of those who have attended the annual General Insurance Study Group Conventions 
attest: 34 in 1974 increasing to 140 in 1991. 

However, I share the authors’ disappointment that actuaries have not established themselves more 
firmly in the market place. In some other countries non-life reserves have to be certified by an 
actuary—and in Canada they are moving ahead with a scheme to have an Appointed Actuary for 
each general insurance company—a theme which needs to be followed up here. 

I believe that we have been too shy in this country in putting forward the very significant benefits 
which we can offer general insurance. Of all the professionals involved we alone can offer expertise in 
all of: 

probability, 
statistics, 
predictions, 
analysis of risk, 
finance, 
economics, and 
investment. 

When I began to be involved in general insurance there were two omissions and both these have 
now been corrected: 

(1) General insurance is now one of our examination subjects, and we have a variety of published 
material available—both theoretical and practical. 

(2) Very importantly, we now have a sufficient supply of experienced actuaries to be able to certify 
the reserves of all general business companies in this country. 

Other professions can offer some of what we can, and collectively they could provide it all, but none 
can provide the complete service which actuaries can. 

I suggest that both the complexities and the speed of change of general business are such that the 
disciplines which would come from actuarial certification of reserves could be of significant benefit. 
Furthermore, with the growing length of the tail of the claims reserves and the greater importance of 
investment, the value of an Appointed Actuary system becomes evident. The value of the disciplines 
of analysis and the balancing of risks on the two sides of the balance sheet are becoming increasingly 
apparent. 

We, alone of the professions, can bring all these issues together in a single report which would, I 
suggest, be of great value to the directors of the insurance company and to the supervisor. Such an 
objective report could bring out very much better information than pages of detailed statistics, such 
as are contained in the current DTI returns. I hope that the profession will be pressing the case in the 
months ahead. 

As a profession we must, however, remember the need to communicate really well; that has not 
been one of our strongest points. We must do better. This paper communicates well, and we should 
congratulate the authors on their thorough explanation—and indeed on bringing the whole subject 
forward. It moves the profession ahead. 

I ask you to show your thanks in the usual way to Mr Brockman and to Mr Wright. 

Mr T. S. Wright (replying): Dr Coutts suggested that our approach to the role of the statistical 
analysis in pricing sought to exclude the underwriter from the process. The closer stressed that the 
actuary is one part of a team, and should ensure that the limitations of any statistical analysis are 
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understood by the others involved. We recognise that there will always be other considerations in the 
pricing than the risk premiums estimated from recent past claims data. Dr Coutts’ perception of our 
position is, therefore, mistaken. The methods we have described allow standard errors of the 
estimated risk premiums to be calculated. The calculations are based on assumptions which can be 
checked from the data themselves by using diagnostic techniques such as residual plots. If the 
assumptions are validated in this way, the standard errors give a realistic and objective assessment of 
the reliability of the estimated risk premiums. The standard errors reflect both the volume and 
variability of data used in the analysis. They therefore allow the statistical analysis to be given its due 
weight in relation to other considerations in the pricing process. 

Mr Shah commented that, as a single incident may give rise to more than one type of claim, the 
estimates for the different claim types are not mutually independent, as stated in Section G.2. I think 
that this comment is the result of a misunderstanding. We should, perhaps, have used the term 
‘incident types’ instead of ‘claim types’ throughout Section 5. The incidents are classified into a 
number of mutually exclusive and exhaustive types, and a separate frequency and severity model is 
fitted for each type. For example, those incidents giving rise to both an own damage and a third party 
claim are treated quite separately from those giving rise to an own damage claim only. 

Miss Dixon said that she has applied the methods we propose in Appendix F to analyse the 
variation of claim amounts, and for one data set has found that the scale parameter for the variance of 
the logs was about 3.5. This casts doubt on the adequacy of the log-Normal assumption for this 
purpose, so that the alternative approach mentioned in §3.2.2 might be preferable. She has been 
investigating this alternative, but omitted to mention that it suffers from considerable difficulties in 
testing which explanatory variables should be included in the model for claim severity. However, it 
may well prove to be a more appropriate method for some data sets. 

On SAS, it is important to recognise the distinction between ‘Generalised Linear Models’ and 
‘General Linear Models’ which are the special case of Generalised Linear Models with an identity link 
function. When I last looked at SAS, about a year ago, it was very good on General Linear Models, 
but to fit a Generalised Linear Model it would have been necessary to write special code in much the 
same way as if one were using a general programming language such as FORTRAN. 

WRITTEN CONTRIBUTION 

The authors subsequently wrote: The opener’s main thesis was that, in view of many ‘practical 
uncertainties’ that exist in motor-rating, it is difficult to justify the use of statistical models as 
elaborate as those suggested in the paper. First it must be asked: in what sense arc the models we 
suggest ‘elaborate’? It is not that they are more difficult to fit. The basic model we use for claim 
frequency is in fact identical to model C of Bennett (1978), and we show in the paper (Appendix A, 
and § 2.2.4) how easily this can be fitted using GLIM. Our basic claim severity model is just as easy to 
fit (see §3.1.4). The only sense in which our models are more elaborate is in their justification 
(Appendices B to F). The objective function to be minimised (the deviance) is, in each case, derived 
from verifiable assumptions about the random component of the data. This approach has the 
additional benefits of allowing the influence of rating factors to be objectively assessed using formal 
statistical tests, and of allowing standard errors of the final results to be calculated. The assumptions 
are verified through residual analysis. In some earlier papers, models were fitted by minimising an 
objective function chosen purely on intuitive grounds, The authors were apparently unaware of the 
implicit assumptions involved, and so did not carry out any checks of these assumptions. The fact 
that there may be ‘practical uncertainties’ which have to be considered in premium rating, does not 
seem to us to justify a lack of rigour in the statistical modelling. 

One of the practical uncertainties to which the opener referred concerned NCD. In his words ‘no 
simple NCD system can be right for the whole portfolio’. We agree with this statement, but our 
treatment does not depend on the NCD system being right. The likelihood that it is not right is 
precisely why we treat NCD in the unconventional way that we do. We assume only that either: 
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(I) the structure of the system is to remain unchanged, but discounts within the structure are to be 
updated, or 

(2) both the structure and the discounts arc to remain unchanged. 

As MS Vera implied, investigating the correctness or efficiency of NCD systems is a separate 
problem on which much work could be done; we did not address that problem in the paper. Mr Shah 
expressed his belief that there would normally be no need to allow for variation in average NCD levels 
between cells, because most drivers would be on the maximum discount. The model described in 
Appendix H indicates whether or not there is any significant variation between cells, so renders 
judgement on the matter unnecessary. We have invariably found that there is significant and material 
variation between cells. 

The opener also drew attention to the problem of large claims, and we accept that this is a difficult 
problem, about which much more could be said. Simple capping at a constant level could affect the 
relativities. More refined methods with which we are experimenting are briefly: 

(I) to cap at a constant level, but use a separate frequency model of capped claims to apportion the 
excess, and 

(2) to make the capping level a multiple of the fitted mean (this involves iterative fitting). 

Another of the opener’s ‘practical uncertainties’ concerned the severity of bodily injury claims. He 
gave two reasons for collecting data over a longer time span than for other claim types: 

(1) that they are sparse and have a high variance, and 
(2) that they tend to take longer to settle, so the total amounts of recent claims will contain large 

estimated components. 

The first we accept, but the second is only a problem if case estimates are biased. If they are 
unbiased, the estimation will merely increase the magnitude of random variation, and this is allowed 
for in the calculations of standard errors, It should also be borne in mind that the arguments for using 
recent data are stronger for bodily injury than for other claim types: changes in levels of 
compensation awarded by the courts can quickly decrease the relevance of past data. 

The debate over whether additive or multiplicative models should be used continues! In reply to the 
opener’s point that the best model may often be some intermediate form between a purely additive 
and a purely multiplicative model, we would point out that this possibility is accommodated by 
allowing interaction terms in either an additive or a multiplicative model. We prefer the multiplicative 
form at present, because we suspect it will usually need fewer interaction terms. Mr Carroll cites 
simplicity in favour of the additive model. It would be slightly simpler to calculate standard errors of 
risk premiums from an additive model, but otherwise we cannot see any simplification. We agree with 
Mr England’s comment that the additive model should only be used if there is good empirical 
evidence supporting it. Mr England also suggested the use of a power link function, whilst Professor 
Nelder suggested the inverse link function for claim severity models. Although such link functions 
might improve the fit, this would be unfortunate, because it would complicate both the calculation of 
standard errors for the fitted values and the interpretation of the models. This is discussed further 
below. 

More generally, Professor Nelder stressed the importance of model checking. The model checking 
described in the paper is confined to residual plots, and the methods described in Appendices E and F, 
to check the variance assumptions. On the subject of residual plots, several contributors commented 
that deviance residuals would be less skewed than the Pearson residuals we have used. We have no 
doubt that this is true, but think it is unimportant. The purpose of residual plots is to check the 
modelling assumptions. Our assumptions concern only the mean and the variance of the data, not 
higher moments, so only the mean and the variance of the residuals are of interest. Standardised 
residuals (whether Pearson or deviance residuals) should have zero mean and constant variance, and 
this is all we are concerned about. So a Normal plot of the deviance residuals (for example), would tell 
us nothing about the validity or otherwise of our assumptions. [If we were making full distributional 
assumptions, then of course such techniques would be useful. For example, if we had assumed that 
claim sizes were Gamma distributed, then the result quoted by Professor Nelder (that the deviance 
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transformation is close to the optimum Normalising transformation) would be relevant: deviance 
residuals which were not consistent with a Normal sample would cast doubt on the Gamma 
assumption.] It is important to note that the use of a ‘Gamma variance function’ in GLIM, does not 
imply an assumption that the data are Gamma distributed. GLIM is unfortunately misleading in this 
respect. Wedderburn (1974) showed that second moment assumptions are sufficient for minimum 
deviance estimates to be asymptotically unbiased, efficient and Normally distributed. Having said all 
this, we do accept Professor Nelder’s point that it is easier to judge whether a residual plot is 
homoscedastic if the distribution is symmetrical. However, making judgements by eye about residual 
plots becomes unnecessary if a second model for the squared residuals is used (see § 3.2.3, and the 
comments by Miss Dixon and Dr Renshaw). Such a model, for which the y-variate can be either the 
squared deviance residual or the squared Pearson residual, allows the use of formal statistical tests to 
determine whether or not there is any significant heteroscedasticity. Details are given in Chapter 10 of 
McCullagh & Nelder. 

Other model checking techniques for generalised linear models are described in Chapter 12 of 
McCullagh & Nelder (1989). One can attempt to check the link function, the variance function, the 
scale of explanatory variables, and the influence of individual data points (outliers). However, the 
results often depend on the order in which such checks are carried out, so it is necessary to apply them 
in many different combinations and permutations before the results can be interpreted with much 
confidence (to quote from McCullagh & Nelder “model checking remains almost as much art as 
science”). In our view, it is impractical to attempt thorough checking for every model, bearing in 
mind that in each application we have two models for each claim type. A more realistic approach is to 
carry out thorough model checking for a few typical data sets. and then to use the same link and 
variance functions for others. In a thorough analysis of the claim severity data set from Baxter et al. 
(1980), McCullagh & Nelder (§ 12.8.3) found the Gamma variance function and the log-link to lie in a 
95% confidence region for these two components of the model. However, this is only one data set; 
more work is needed in this area. We think that the investigation of link functions should be given the 
highest priority; small deviations from the assumed variance function can be accommodated by 
making adjustments to the prior weights, using either the method described in Appendix F, or a 
second model for the squared residuals. Two additional factors must be taken into account in 
choosing the link function: 

(1) its effect on the calculation of standard errors of the fitted values, and 
(2) the interpretability of the model. 

The second factor is often crucial; many underwriters will be reluctant to accept findings from a 
statistical model which does not have a simple intuitive interpretation. For this reason, we think it is 
reasonable to use a relatively simple link function which lies in a 95% confidence region around the 
optimum, rather than the optimum itself. On the question of outliers, we think that the typically large 
number of data points makes a thorough analysis impractical, and (fortunately!), unnecessary 
(provided some sort of capping is used for claim severities). The residual plots will draw attention to 
any dangerously extreme points. High leverage may be a problem if curve-fitting is used when there 
are a few claims at very extreme values of a rating factor (e.g. policyholder age 80–85): this is dealt 
with under curve fitting below. 

We were pleased with the interest shown in Section 6 on curve fitting. The opener expressed 
concern, citing the possibility of poor fitted values at the extreme values of rating factors. Mr Shah 
also drew attention to the danger of extrapolating a fitted curve beyond the range of the available 
data. We accept that great caution should be exercised with extrapolation, and we prefer to avoid it as 
far as possible. This is partly why we advocate the use of as many cells as computer memory will 
permit; by having separate data-points for age ranges 60–65, 65–70, 70–75, 75–80, rather than a single 
point for the age range 60–80, less extrapolation is necessary to obtain fitted values up to age 80. Note 
that some extrapolation is necessary whether curves or the more conventional ‘steps’ are fitted. One 
simple technique which we use to test for poor fitted values at an extreme (or for high leverage), is to 
test the significance of a ‘dummy variable’ (a ‘factor’ in GLIM terms), which introduces a separate 
parameter for age 17 only (for example) on top of the fitted curve. Professor Haberman made some 
other promising suggestions. Partial residual plots should help with transformation of the 



542 Statistical Motor Rating: Making Effective Use of Your Data 

measurement scales; set § 12.6.4 of McCullagh & Nelder. However, such transformations might 
again lead to problems with interpreting the models to underwriters. 

The criticism of Baxter et al. (1979) to which Dr Coutts referred, was taken from § 7.5.1 of his own 
paper (1984), which states that ‘two major errors were made by Baxter et al. . . .’. Baxter et al. 
assumed that the within cell variance of claim severities was the same for all cells (i.e. $ERROR N in 
GLIM), and the two problems referred to by Coutts (1984) were: 

(1) heteroscedasticity: the variance of standardised residuals was an increasing function of the fitted 
value, and 

(2) the scale parameter estimated as the mean residual deviance was about twice as large as a direct 
estimate of the within cell variance. 

Coutts (1984) did not solve these problems, but said: “some work establishing the error 
distribution by cell is necessary so that reasonable models can be used”. This is what we have done; 
the two problems mentioned do not exist for the severity model described in our paper. Appendix E 
deals with the second issue. Our modelling assumption is that the within cell coefficient of variation 
(not the variance) is the same for all cells. Appendix E describes how this coefficient of variation can 
be estimated directly for comparison with the scale parameter given by GLIM. Mr Shah suggested 
that the sample variance for each cell could be used for this purpose. We cannot see how, and in any 
case, with the small cells which we advocate, the sample variance for an individual cell is usually 
highly unreliable. 

Both Dr Coutts and Professor Haberman expressed disappointment in Section 10 and the opener 
questioned the use of ranking to assess competitiveness. We accept that there are other measures of 
competitiveness, and agree that much more useful work could be done on modelling lapses, renewals, 
and the market as a whole. The analysis of ranks, described in Section 10.2, is useful, because it is 
easily carried out and easily understood. 

Professor Haberman asked for our views on forecasting the calendar year effect. What we have to 
say here is also relevant in reply to Dr Coutts’ query about the role of the underwriter. One reason for 
considering premium rating to consist of the two aspects described in Section 1.2 is that the statistical 
analysis of past data deals with the first aspect (the relativities) much more completely than the second 
(the absolute level of future premiums). This is because there are frequent influences which cause 
discontinuous or rapid changes in the absolute level, for example: changes in the law (e.g. for seat- 
belts, MOT standards); in road conditions (e.g. government decision to change the level of 
maintenance); in traffic volumes (caused by, for example, a change in oil prices, or rail fares); and in 
claim settlement procedures. Because of these influences, it would be foolish to use the statistical 
analysis alone to project the absolute level for next year. Underwriting judgement must be combined 
with the results of the statistical analysis. This could perhaps be formalised using a Bayesian 
procedure to combine the estimates and standard errors from the statistical analysis with the 
judgements of the underwriter on the likely effects of the various short-term influences. 

On Appendix C, Professor Haberman commented that it is possible to use a negative Binomial 
variance function exactly in GLIM, rather than approximating with an over-dispersed Poisson 
structure. This would be achieved by using the $OWN directive. In Section C.1 we have: 

Var(rij) = (1+fij/hij) fij/xij. 
First, it is interesting to note that the negative Binomial distribution could have exactly an over- 
dispersed Poisson error structure: this occurs fij,/hij is constant across cells. From equation (*) of 
Appendix C this is equivalent to having the variance proportional to the mean in the (Gamma) 
distributions of within-cell risk-proneness. However, this seems less appealing than the possibility 
that the coefficient of variation of these distributions is approximately constant: this is equivalent to 
hij, approximately constant. If the values of hij, were known, the $OWN directive could be used to 
specify the above error structure in GLIM, as Professor Haberman suggested. However, these values 
are not known a priori, so it would be necessary to proceed iteratively; using the scale parameter and 
fitted values fij, from one fit to estimate the hij for use in specifying the error structure in the next fit. 
The other major violation of the simple Poisson assumption is that the risk intensity for each 
policyholder is likely to decrease after a claim. It is interesting to examine whether this too could be 
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accommodated more exactly. We argue, in Section C.2, that the effect is approximately to introduce a 
further factor of the form (1–fij/ α ij) into the variance function. The product of this and the factor 
(1+fij/hij), considered above, is obviously of the same form (to a good approximation), so iterative 
fitting with the $OWN directive could be carried out in the same way. This would considerably 
complicate the fitting of frequency models, and, we suspect, would not greatly affect the results. It 
would be useful, however, to examine this empirically. 

Mr Carroll expressed concern about the danger of over-fitting. It seems to us that this strikes at the 
heart of statistical theory and practice. The raison d’être of statistical tests is to prevent over-fitting. In 
fact, the accepted practice of including explanatory variables only if there is strong evidence (by using 
5% or 10% significance levels) causes a tendency towards under-fitting. If one concentrates on 
checking the assumptions underlying the statistical tests (via residual analyses and so on), then over- 
fitting will not be a problem. 

Mr Shah would have liked some comment on the possibility of ‘parameters not behaving in a 
logical way’. We have not found this to be a serious problem using the models described in the paper. 
The estimated parameters can always be compared to their standard errors; this usually shows that 
any unexpected behaviour is insignificant (this is illustrated in Section 2.4). In other cases, discussion 
with the underwriter sheds light on the matter. If this did become a serious problem we would try to 
find better models. 

Ms Vera drew attention to the problem of definition of the rating factors. Like NCD, this is a whole 
new can of worms, but we think it can be regarded as quite separate from the main problem addressed 
in our paper (although Section 9.3 does touch on it). The main purpose of the methods we have 
described is to find the best premium structure based on the existing rating factors, on the assumption 
that the definition of these factors will remain unchanged, regardless of whether the definition is good 
or bad. Having said that, the basic models could be used to compare a number of alternative 
definitions of a rating factor. For example, one could compare the ACORN categories suggested by 
Professor Wilkie to the insurers’ existing geographical categories, by first fitting a model with both 
included as explanatory variables, and then excluding each in turn. The F-tests would indicate which 
of the two alternatives had greater explanatory power. Incidentally, we suspect that the ACORN 
categories would be more appropriate for household than motor insurance. 

We think Ms Vera’s comment about the interaction between rating factors is mistaken. The 
correlation between wealth and age of policyholders affects the exposure (e.g., the combination of 
young policyholder, new car and high car group, contains relatively little exposure), but the exposure 
is not what we are attempting to model; the actual values for each cell are known and are used in the 
modelling. 

Professor Wilkie’s discussion of credit scoring was interesting. Generalised linear models would 
probably be as useful there as they have proved to be in so many other areas of actuarial work. 




