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Asset return scenarios are a vital ingredient to any model of an insurance

enterprise. The workshop will present and contrast various approaches which have

been tried for generating stochastic economic scenarios. We consider models

within the following classes:

type of Model Important Examples

Random Walk Binomial, Brownian motion

Autoregressive Wilkie, Tilley

Fractal Mandelbrot

Chaotic Logistic return model

Equilibrium Cox-Ingersoll-Ross, Gamma

The objective is to provide working examples of the main approaches, rather than

statistical investigations. We will then outline suitability criteria for the various

models and see how they square up.
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Introduction and Limitations

The applications of asset models in general insurance include profit testing,

solvency testing, asset-liability studies and portfolio selection. This workshop is

deliberately short on applications, and instead we concentrate on the models

themselves. The intention is raise the level of understanding of the models so that

we can approach real applications from an intelligent standpoint.

Probably more than any other field of actuarial work, investment models are

shrouded in mystery. This is because much of the published work is highly

technical and not easily accessible to the layman. There is a wealth of complex

mathematics to engage those who delight in such material, but I have found that

the best way to understand models is to try them out, and this is the spirit of the

workshop.

The paper is arranged in three sections. Section 1 outlines approaches to models

which have been tried. Section 2 then suggests some criteria for evaluating these

models for actuarial use. The last, and by far the longest section, is the appendices

which contain technical specifications of the models discussed and the code which

I used to build the examples. Computer readable copies will be available at the

workshop - please bring a blank diskette.

This is a working draft, not a finished paper. If you find any bugs, please let me

know. Some of the material is deliberately provocative to generate discussion at

the workshop, Please don’t quote it without asking me. Needless to say, any views

expressed are my own and not necessarily those of my employer or anybody else I

have fraternised with. I have tried to use reliable information, but I don’t

guarantee that all the examples are correct, or that the computer programs will

work on your machine.
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Summary of Model Philosophies1.

Detailed implementation of the models outlined here are contained in appendices

I-V. At this point we will only sketch the main features of the different

approaches,

1.1 Random Walk Models

This is the simplest class of asset models. Over a time interval h, the value of an

asset can either move up by a factor u or down by a factor d. The same

movements are possible over the next time interval and so on, so that the possible

paths can be described on a lattice, as follows:

This model is often used in association with a model for cash which earns a

constant rate of interest over each time period. Such models are widely used to

price options. Interestingly, for option pricing purposes, it is not necessary to

know the probabilities associated with a step up or down.
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On the other hand, for simulation purposes it is essential to specify the

probabilities of an upward and a downward movement. According to one version

of the efficient market hypothesis, past price movements are no guide to the

direction of future movements, and if we are to believe this hypothesis then the

probabilities of the next step being up or down will be constant across the lattice,

depending neither on the current position nor on how we got there. In such a

situation, the number of up steps in the price over several time steps will have a

binomial distribution.

The random walk model is restrictive in only allowing a finite range of outcomes.

Instead, one might prefer to use a continuous distribution. The most commonly

used distribution is a normal distribution applied to log prices, so that denoting an

asset price at time t by St  we have

where Z has a normal distribution with mean µh and variance     It is usually

assumed that Z is independent of all prior movements in S. The parameter µ is

often called the drift white       is the volatility. This is actually a limiting case of the

discrete random walk outlined above for small time and price steps. Since the

normal distribution has thin tails, models based on it do not tend to produce large

jumps, and indeed, in the continuous time limit, asset prices are continuous. Such

models are sometimes called diffusion models. The alternatives are jump models

where asset prices are allowed to vary discontinuously with time. The underlying

random walk process is sometimes called Brownian Motion. An example

simulation appears as follows:
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Random Walk

My colleague, Malcolm Kemp, has developed a model based on the random walk

for use in asset - liability studies. He has generously given permission for me to

reproduce some of his work for this workshop. The following charts illustrate five

total return indices under the Kemp model, plotted at annual intervals for fifty

years.

Equity total return Kemp Model
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Conventional Gilts total return: Kemp Model 

Cash total return: Kemp Model 
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Index Linked Gilts total return: Kemp Model 

Property total return: Kemp Model 
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1.2 Auto–Regressive Models

It is reasonable to suppose that some economic quantities, such as rates of

inflation, interest rates or dividend yields do not perform a pure random walk but

instead oscillate around a long term mean. In addition, the process has some

memory of where it has come from, so that the expected value at some time in the

future is an average of where it is now and the longer term mean. The further into

the future one looks, the more this average is biased towards the long term mean.

One way of constructing such models is to write

where X is the economic quantity under scrutiny, µ is the long term mean, A is a

measure of the autoregression and    is an error term. If A is close to zero or h is

large then current values of X have little influence on the future, and in the limit,

the values of X are independent. On the other band, if A is close to 1 or h is small

then there is very substantial historic dependence, and in the limit we have a

random walk. It is common to assume that      has a normal distribution with mean

zero and variance             This means that the predictive variance starts small

for small h and gradually increases to an upper limit of          This expression

has of course been rigged to give    when h = 1. It is interest to compare an

autoregressive process to a random walk, using the same normal residuals. The

tendency of the autoregressive process to revert to a long term mean then becomes

clear. A chart follows:
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Random Walk and Autoregressive Process

Probably the best known model using autoregressive processes is the Wilkie

model. A model by Tilley, describing bonds of various terms, has also seen some

applications. Five total return indices from the Wilkie model follow:

Equity total return: Wilkie Model
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Conventional Gilts total return: Wilkie Model

Cash total return: Wilkie Model
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Index Linked Gilts total return: Wilkie  Model

Property total return: Wilkie Model
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1.3 Fractal Models

Suppose that you have in front of you a chart of an asset or index price plotted

against time. Suppose further that the printer has bungled, and has forgotten to

label both axes. Can you work out by some statistical means what the time and

price scales are?

Some authors have suggested that this is impossible, even in principle. In other

words, a graph of minute by minute prices looks very similar to a graph of daily

prices, which in turn looks like a chart of annual prices. Analogies can be drawn

with the study of fractal sets, which are self-similar in the sense that when a small

part of the set is expanded, it looks like another larger part of the same set. Of

course, for asset models this is true only in a probability sense, that is, any

particular price chart will not be self similar but the underlying probability law is.

If this is true, then it places some important constraints on the kind of probability

laws which might be considered for asset returns - the distributions which arise are

sometimes called stable distributions. Such models were first proposed by

Mandelbrot, who is well known outside the financial world for his work on

fractals.

This is a family of distributions which includes the normal distribution, the

Cauchy distribution and the Brownian exit distribution. With the exception of the

normal distribution, all of these models can produce jumps in the underlying asset

values. With the exception of the normal distribution, future asset values do not

have finite means or variances, so that other measures have to be employed when

analysing risk and return. A sample path from a fractal model is shown below:
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Fractal Random Walk

Applying this approach to asset modelling, we might obtain the following total

return indices:

Equity total return: Mandelbrot Model
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Cash total return: Mandelbrot Model

Conventional Gilts total return: Mandelbrot Model
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Index Linked Gilts total return: Mandelbrot Model

Property total return: Mandelbrot Model
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1.4 Chaotic Models

There is an alternative to stochastic modelling. It has been suggested that the state

of the world at time t+l is a very complicated function of the world at time t.

This function is so complicated that we can’t discover it easily, and so the world

appears to be random.

From a philosophical point of view this may be appealing, particularly if it is

believed that everything in the world, including asset values, is ultimately driven

by a set of fundamental deterministic physical laws. Crucially, the chaotic

approach implies that in principle fundamental research may be amply rewarded in

achieved return.

Can chaos theory be used to generate asset models? In other words, can we find a

model which is simple enough to build and program but complicated enough to

generate apparently random effects? The answer is again yes. The key is to make

the state at time t+1 a rather simple (but not linear) function of the state at time t,

so that after applying the rule n times, the state at t+n is rather a complicated

function of the state at time t.

One feature of this class models is that if the world is in the same state at two

different points in time, then the projections into the future from those points in

time will be identical. Such a property is undesirable for investment series - we

expect a total return index to rise over time, not get stuck in endless cycles.

However, it is quite plausible that returns could follow a cyclical pattern - indeed,

spotting repeated patterns in returns is the basis of technical analysis. Quite

reasonable chaotic models can then be built with return as the driving state

variable. A sample cumulative plot of chaotic variables is shown below:
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Chaotic Random Walk

I have chosen a chaotic map made famous by Professor May of Oxford

University. I have adapted his model, originally applied to population biology, to

produce financial scenarios. The usual set of indices follows:

Equity total return: May Model

327



Conventional Gilts total return: May Model

Cash total return: May Model
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Index Linked Gilts total return: May Model

Property total return: May Model
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1.5 Equilibrium Models

The concept behind equilibrium models is that the market might as well be made

up of a number of identical simple investors. In other words, although each

investor may in reality have a rather complicated agenda, in sum total all these

wrinkles even out. It follows that the investment policy of the average simple

investor will involve holding each of the available investments in proportion to the

market capitalisation, since in total they must account for the market supply. If

this is the case, it follows mathematically that certain relationships must hold

between risk and return. The simplest example of such a relationship is the Capital

Asset Pricing Model.

One of the first applications of this principle was the Cox-Ingersoll-Ross interest

rate model. This was derived from a model describing the returns available from

economic production. It is then argued that all debt instruments must have a

borrower and a lender, so that in net terms there are no debt instruments, only

shares in production. Supposing that the average investor has a logarithmic utility

function, the authors wrote down the condition that he will wish to invest only in

production, desiring neither to borrow nor to lend. This will only happen if the

prices of the various debt securities satisfy certain constraints.

The intention behind the use of equilibrium models is to piggy-back off everybody

else’s research. In other words, if we know the portfolio decisions which investors

are actually making, and we can guess at the objectives they are trying to achieve,

we can infer what they must believe about asset returns. This process relies on the

market following the right model, on our supposed objectives being accurate, and

on investors doing their sums correctly.
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I rather like Mandelbrot’s idea of jumps. I have borrowed the concept for my own

equilibrium model. However, rather than using fractal processes which are

analytically complex, I have used r processes which are rather more

straightforward to handle. A r process has only positive jumps, so in order to get

two-way jumps, one must subtract two r processes. A sample r process is as

follows:

The usual five total return indices now follow:

Equity total return: Smith Model
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Conventional Gilts total return: Smith Model

Cash total return: Smith Model
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Index Linked Gilts total return Smith Model

Property total return: smith Model
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2. Criteria for Actuarial Models 

We have seen lots of approaches to constructing models. How can we decide 

which one is best for an insurance application? Any decision is necessarily a 

compromise between various conflicting objectives. Some of the points to bear in 

mind are as follows: 

2.1 Fit to Historic Data 

To judge by the actuarial literature, one might imagine that this is the only 

intellectually respectable criterion which might be applied to discriminate between 

models. If a model does not fit the facts, it should be thrown out and a better one 

constructed. The best model is the one which best fits the facts. This leads to 

models calibrated to historic data by least squares or other similar goodness of fit 

measures. 

There is a voluminous actuarial literature explaining on statistical grounds why 

certain economic models should be thrown out. Empirically, the problem is that in 

the economic field, statistical tests virtually always seem to reject any 

simplification of the model. In other words, for most widely used models one can 

postulate a relationship not exhibited by the model, fit the relationship and find 

that the postulated relationship is statistically significant. Thus guided by classical 

statistics, ever more complex models can be constructed, and with each new 

parameter introduced, the standard errors of the parameters already fitted increase. 

In theory, this process should stop at some point when the model has been fully 

specified, but in my experience it doesn’t usually turn out that way! 
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Does this mean that we have no hope of building useful models via the statistical 

route? No, it doesn’t. It seems that there are some features of models, for 

example, the distributions of short term residuals, which can readily be estimated 

by classical statistics. Other features, such as long term means or the frequency of 

catastrophes, are much harder to calibrate. It turns out that the exact distribution 

of short term residuals often has only a limited impact on a long term model, 

while the long term parameters are much more important for many actuarial 

investigations. This suggests that it is worth using a small amount of statistics 

getting a description of short term residuals which is about right, and then 

applying educated guesswork to the longer term parameters. 

Many commentators believe that we will never have a correct model for the 

economy. The key to economic modelling is to understand the relationship 

between our imperfect models and the real world. As a result, for a fixed 

significance level and given sufficient data, any proposed model will ultimately be 

refuted. We should expect this and not be worried. So what if a model is wrong ? 

- so is everybody else’s. 

More to the point, many models which can be statistically disproved still find 

widespread use. For example, the Black-Scholes model of option pricing implies a 

relationship between the prices of options with different strike prices. This 

relationship is not always observed to hold between market prices. Does this mean 

that nobody uses the Black-Scholes model? No - indeed most option traders still 

use this model, with suitable adjustments. 

So how do our five models stack up against historic data? Both the Kemp model 

and the Wilkie model fall down on the non-normality of returns or other 

appropriate residuals. Empirically, returns tend to be leptokurtotic, which means 
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that they have fatter tails than a normal distribution. Fractal models have a much

better statistical fit, allowing for the fat tails. The chaotic model is of course a

hopeless historical fit because the historic data does not exactly fit the proposed

deterministic model. Finally, my own model falls down because it assumes a

functional relationship between the prices of bonds of different durations, and this

functional relationship has not held historically. My model also does not exclude

negative interest rates. No doubt further problems will become evident over time

as actuaries use these models.

2.2 Economic Theory

There are many economic theories of how the market should behave. There has

been some controversy in the actuarial profession concerning models which

describe efficient markets. Much of this debate has centred around whether

markets are or are not efficient, and the jury still seems to be out on this matter.

I have found that there are often good reasons for assuming an efficient market

within an insurance model whether or not the real world is efficient. This may

sound surprising - many would say that an efficient market model is altogether too

cosy, and we should be prepared for the kind of nasty surprises which only occur

when the market is inefficient. I disagree with this view, and claim that an

efficient market should be regarded as a conservative assumption. If the market is

inefficient then there are profitable speculative trading opportunities to exploit.

However, it seems imprudent to suppose that your investment managers will find

these opportunities to the exclusion of the rest of the market. The worst case is

that there are no such opportunities, and this is what happens in an efficient

market.
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One area where economic theory is essential is in describing new products. When

index linked gilts were first issued in 1981, traders had to build models to trade

them without the benefit of historic return data. The same is true for many

derivative products. In the property market, the shift from fixed rents to upward-

only reviews made a step change in how property investments behave. Now, the

upward only review seems to be out of fashion, and more flexible short term

leases are becoming more widespread. A comprehensive economic theory will

describe the framework within which the market will value arbitrary cash flows,

and this is what is required to make intelligent assessment of new financial

products.

How then do the models outlined here tit in with existing economic theory? The

Kemp Model, the Mandelbrot model and my model are all consistent with efficient

markets. The May model is totally inconsistent with efficient markets, in the sense

that all returns can be forecast exactly. The Wilkie model lies somewhere in

between. There is a considerable amount of information in past data which can be

used for profitable trading, but this does not totally guarantee trading profits

because of the impact of the random noise terms.

2.3 Inputs and Outputs

Several actuarial models have been proposed to describe the long term behaviour

of financial markets. On the other hand, for a model of an insurance enterprise,

one would wish to start from the current economic situation, and today’s prices.

For example, an autoregressive model might explain how interest rates will revert

to a long term mean from their current level. This prediction may be inconsistent

with the interest forecasts implicit in bond prices. Out of the models described

here, my model is the only one which explicitly takes the yield curve as input in
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order to infer future expected price moves. By the same token, option prices may

contain information regarding return distributions which differ from the

distributions assumed under a specific model.

For many purposes it is important for models to produce a rich set out outputs,

including for example bonds yields for all terms, forward prices for various assets,

or option prices for various strikes. However, such a rich model will necessarily

be difficult to calibrate to current prices, firstly because of the volume of data

involved, and secondly because an exact fit requires many parameters. My own

model exploits the analytical properties of the    distribution in order to make this

calibration straightforward.

More impoverished models which lack some of the outputs may be easier to

calibrate However, this does not mean that the problem has gone away; rather,

any discrepancies between the model and the market may be harder to detect if

fewer price checks can be carried out. There is substantial information contained

in today’s market prices and ideally such information ought to be taken into

account when formulating a model. Furthermore, absence of some outputs,

particularly a term structure of interest rates, can seriously limit the applicability

of a model.

One infuriating feature of published models is that they have all been built for

different purposes, and hence tend to have different inputs and outputs. This

confounds comparison between models. For the models described here, I have

taken what is, in effect, a lowest common denominator in order to show a

consistent set of outputs. The outputs I have chosen are:
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An inflation index

Total return indices for:-

Equities

Gilts

Cash

Index-Linked Gilts

Property

Several of the models described are capable of producing more. For example, both

the Wilkie model and my own model can separate capital from income in the

calculation of total returns. My model also produces a full term structure of

interest rates and real interest rates.

2.4 Results

It may seem self-evident that a model should only be accepted if the results are

reasonable. From a philosophical point of view, if each step of the construction is

properly tested then the model obtained from the combination must be

unassailable. Sadly, practice does not bear this out. There are plenty of examples

of models whose construction is entirely respectable but where the results are

hopeless.

It is therefore imperative that any proposed model must produce plausible answers

to simple investment problems. This means not only that selected strategies must

produce output which can be explained, but also that the optimal behaviour

recommended by the model really does make sense.
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One of the tests which I always try is to ask how an investor would behave with a

logarithmic utility function. Such an investor will try to maximise E[log(PT)]

where P is a total return index and T is a time horizon. I allow the investor to

switch between asset classes every year, at market value. This is then an example

of dynamic optimisation, that is, any information which becomes available over

time can be used in future investment decisions.

Of course, I am not suggesting that this would be a sensible strategy for an insurer

investing to meet liabilities. The logarithmic optimisation should instead be viewed

as a standard test, fairly simple to execute, which is useful for comparing models.

If the solution to this simple test does not look reasonable, it becomes very hard to

argue that the model will be appropriate for the much more complex optimisation

involved in running an insurance company.

A common feature of dynamic optimisation problems is that they are hard to

solve. This is because a choice made today may restrict the choices available at

some time in the future. To optimise a given utility function at some future time

horizon cannot usually be achieved by a myopic strategy which focuses only on

prospective returns one year at a time.

However, in the case of the logarithmic utility function, a myopic strategy is

optimal, and this is true mathematically whatever stochastic model is employed.

Furthermore, the best myopic strategy is to maximise the same utility function,

that is, the log, over a single year. This means that logarithmic investors will

follow the same optimal strategy whatever their time horizon.
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What are the properties of the optimal portfolio? We denote the total return on the

optimal portfolio by PT and suppose that Q is another total return portfolio. The

optimality condition of P is that, for any Q and for any s <I we have

where ES denotes the conditional expectation given information at time s. Let us

suppose that the long run returns on P and Q both exist, so we can define returns:

Then, by the supermartingale convergence theorem, R, I Rp with probability 1. In

other words, the logarithmic investor maximises the long term return. Given the

volume of actuarial breath expended on the concept of long term return, the

optimal behaviour of the logarithmic investor should be of great interest to

actuaries. The fact that the optimal behaviour follows a myopic strategy implies

that short term market value movements do in fact matter, contradicting

conventional actuarial wisdom on long term returns.

A simple thought experiment can give substantial insight into the usefulness of

statistical fitting. Let us first consider a pair of assets with the same lognonnal

return distribution. Let us suppose further that the annual outperformance of one

asset over the other has a standard deviation of 15%. These two assets are

observed over fifty years, with a view to calibrating a model and selecting an asset

allocation to maximise the long run return.

We can see by symmetry that the theoretically best portfolio is 50% in each asset

class. However, the returns observed over the 50 years will have some degree of

random noise associated with them. The actuary will therefore form the opinion

that one asset is likely to outperform the other. In some circumstances, this out-
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performance will be so extreme as to justify 100% investment in a single asset

class. Presumably this should only happen in exceptional circumstances?

Actually, no. This problem arises 60% of the time. In other words, when the true

optimum is a 50/50 split between asset classes, the statistical fitted model will

recommend a 100/0 split 30% of the time, a 0/100 split 30% of the time and

something in the middle 40% of the time. It seems to me that this observation

completely undermines any suggestion that asset models fitted to historic data can

be useful for portfolio selection. The statistical method is the best that can be

done, but the error of parameter estimates is impossibly large in relation to the

sensitivity of the answer to those parameters.

Some other input must be found to make the results more stable. If we are

restricted to historic price information, we may as well all pack up and go home!

One direction from which we can get some help is to use economic theories.

However, if we expect these theories to he testable using price histories, we will

be disappointed, because if there is enough data to test the theory, then there is

enough data to calibrate the model and so we don’t need the theory. This means

that stochastic modelling necessarily involves untested hypotheses and professional

judgement. To the uninitiated this looks like witchcraft, but to those in the know,

it is educated guesswork plus the ability to sell a story.

How then do our five models perform under optimisation?

Both the Kemp model and my model recommend 100% equity for the logarithmic

investor. I have deliberately calibrated the models so that this happens. This forces

the models to produce reasonable answers, at least under this simple optimisation.

In some of the more complex optimisations I have tried, both these models seem

to produce answers which are not totally unreasonable.
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Under the fractal model, there is some rather complicated algebra involved in

finding the optima1 portfolio for the logarithmic investor. However some general

principles can be distilled, Firstly, the composition of the optimal portfolio (i.e.

the proportion by market value invested in each sector) does not change from time

to time, so that, even allowing for the facility of dynamic trading, it turns out to

be best not to use it. Secondly, the optimal portfolio can never be 100% in a

single asset class. This arises because the fractal processes allow for very

significant probabilities of total collapse for a particular market. The mode1 thus

ascribes great benefit to diversification.

The May model has some undesirable properties with regard to optimisation.

Since the whole framework is deterministic, one can forecast prospective returns

with absolute accuracy. In particular, one can arrange to be 100% invested in the

best performing sector each year, switching year by year into the class which will

do best for the following year.

Finally, let us consider the Wilkie model. I have analysed the optimal strategies

for a logarithmic investor. In particular, I have considered how frequently

different strategies would be optimal over a period of 1000 years. Rather

surprisingly, a 100% investment in a single class is a good idea most of the time,

if switching is permitted on an annual basis. We can see that the Wilkie model is

coming rather closer to the chaotic mode1 than an efficient market model.

This means that in order to use the Wilkie model for investment decisions, one

must somehow constrain the feasible investment strategies so that such extreme

allocations do not arise. One way of doing this is to assume a constant asset mix.

However, this may rule out genuinely beneficial dynamic strategies, such as taking

a greater equity exposure when a healthy solvency position permits, but retreating

into gilts when solvency is tighter.
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The relative frequency with which each class is optimal for the Wilkie model is

shown in the pie chart below.

Such a widely fluctuating asset allocation does not make much sense to me. The

problem does not seem to be caused by the particular parameter values I have

used, but rather reflects a structural feature of the model. Part of the problem is

that, in the Wilkie model, a high yield is usually a good predictor of price rises, so

that frequent switching on a yield based rule can be extremely profitable. Another

problem seems to be the use of the normal distribution, which more or less

excludes catastrophic events. The benefits of diversification may therefore be

understated by the Wilkie model.
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2.5 Budgets and Deadlines

There are two major budget busters in stochastic modelling. The first is the model

building stage, where there are always unforeseen complications which mean that

a model takes longer to build than you think. Indeed, even biasing the budget to

allow for this feature, the budget will still overrun.

The second budget buster is at the interpretation stage. Here, the problem is that

some models are much too interesting. Indeed, the models have so many

interesting features that an asset-liability study tells you more about the model than

about the assets and liabilities.

One way of reducing development time is to build models for different asset

classes according to a standard template. This forces assets into a particular mould

which may or may not be strictly appropriate, but does at least allow a model to

be bolted together from its constituent parts with ease. The random walk models

exploit this fully, while my own model does distinguish between cash-type assets

and bond-type assets. The Wilkie model differentiates further, with essentially

different models for each asset class, although there are common underlying

philosophies which result in a family likeness.

One temptation when building a model is to add ad hoc fixes to cover over

unrealistic aspects of the model. The danger here is that an effect is included

without the corresponding cause. For example, one might wish to consider

adjusting a gilt model to describe corporate debentures. However, if the yield is

adjusted upwards without an appropriate default risk being introduced, then

debentures will appear spuriously attractive relative to other investment classes.

By the same token, my model allows the possibility of negative interest rates. This

is sometimes inconvenient, although their consequences are usually easy to guess.
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It would be easy to fix the model so that if interest rates went below, say, 1% then

they were reset to 1%. The problem with this approach is that the entire bond

model has been constructed to be consistent with interest rate forecasts which

could go negative. An ill considered fiddle factor applied only to the short rate

would generate all sorts of subtle anomalies in the bond markets, with knock-on

effects on the results which might be hard to predict. I prefer to live with the

occasional negative interest rate rather than play around with the guts of the

model.

The key to a speedy interpretation is to avoid interesting models. For example

historically, share dividend yields have been able to predict price changes, which

suggests a switching rule between equities and gilts. This is an interesting

observation which is reflected in the Wilkie model. When conducting an asset

liability study, provided that suitable dynamic optimisation is implemented, a yield

based switching strategy will often be recommended. It would be easy to assume

that this strategy bad something to do with the particular asset - liability matching

problem of the insurer, but such a conclusion would be wrong. Instead, this is a

feature of the underlying economic model.

Producing an uninteresting model usually means a model where the optimal

strategy for a simple investor is a simple passive strategy, which in practice means

an equilibrium model. Any differences between the recommended asset mix for an

insurer and the simple passive strategy will then genuinely reflect differences in

business objectives. Using uninteresting models has the best chance of delivering a

job on time and to budget.

The problem is that an interesting feature of a model may just turn out to be a

genuine reflection of the real world. In that case, using a less interesting

equilibrium model, an actuary can miss significant profit opportunities.
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My approach to this problem is to take an equilibrium model as a bench mark, and

to adjust parameters to reflect perceived inefficiencies. Such an adjustment should

only be applied to the parameters for a few years, until the inefficiency has

worked itself out of the system. In other words, if pushed, I can be persuaded to

include specified mispricings as temporary adjustments to a base model. The

recommended asset mix is then biased towards those assets which are identified as

cheap.

At the end of such an exercise, a proposed asset mix can be compared with the

market capitalisation of each asset class. Any differences can be ascribed either to:

or

Different investment objectives from the rest of the market

Differing views on the attractiveness of particular asset classes

It is essential to carry out such an analysis as a quality control measure. As well as

being the output of a model, the result must be justified on intuitive grounds.

It is remarkable that many asset-liability studies still assume constant asset mixes

over time. Plainly, such strategies would not normally be capable of exploiting

short term market anomalies. It seems fundamentally silly to spend a lot of time

researching anomalies and adjusting models if the trading benefits of the anomalies

are excluded by the modelling approach.
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Appendix A: Model Descriptions

A.1 General Matters

For the purpose of comparability, the models in this paper have been built to

describe the same economic variables, sampled on an annual basis. The variables

are:

An inflation index

Total return indices for:-

Equities

Gilts

Cash

Index&inked Gilts

Property

That is, six indices in all. Some of these models could also produce other output,

but these have not been implemented here.

A.2 Random Walk Models

Under a pure random walk model, the expected returns on any asset class would

be constant. In reality, we know that in many cases, investors will require higher

returns at times of high inflation, and lower returns when inflation is more

subdued. In order to obtain a useful model, it really is necessary to allow some

cyclical inflation behaviour, and this implies a step away from a pure random

walk. The model described here is due to Malcolm Kemp, which draws on the

inflation model originally built by David Wilkie.
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The model is driven by a series of random noise terms. At each time t, six noise

variables are generated randomly. We denote these noise variables by Zi(t) for

i=1,2,3,4,5,6. The Zi(t) are independent for distinct i and distinct t. In the

example, these have a normal distribution with mean zero and variance 1.

The Wilkie model for inflation describes a retail prices index Q(t) and a force of

inflation I(t) related by

and I(t) follows an autoregressive process of the form:

We can see that this is of the form in 1.2. We can interpret QA as the speed of

mean reversion, QMU as the long run mean and QSD as the amount of noise in

the system.

We denote the total return indices by Ri(t). The proposed model describes the total

real returns as a geometric random walk with drift. The noise terms in the random

walk are taken to be linear combinations of the noise variables, so that

It remains only to determine the values of µj and cij in order to run the model.

The calibration of cij is broadly obtained from historic data. We can consider the

vector:
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By hypothesis, X(t) has zero mean. Furthermore, we have the identity:

X(t)= CZ(t)

where  the  matrix C is given by
(QSD 0 0 0 0 0)

c10 c11 Cl2 cl3 cl4 cl5
c20 c21 c22 c23 C24 c25
c30 c31 c32 c33 c34 C35
c40 c41 c42 jc43 c44 c45

( c50 C5I C52 c53 c54 c55
and Z is the matrix of noise terms. The variance-covariance matrix V of X is then
given by CCT where ( )T denotes a matrix transpose. This matrix can be estimated
empirically from historic data, producing an estimate of V. In these worked
examples I have used the following variance covariance matrix:
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v=
Inflation 0.0041  -0.0037 -0.0046 -0.0030 -0.0003 -0.0016
Equities -0.0037  0.0514  0.0198  0.0038  0.0043  0.0111
Gilts -9.0046  0.0198  0.0201  0.0050  0.0046  0.0038
Cash -0.0030 0.0038 0.0050 0.0038 0.0004 0.0011
ILG’s -0.0003 0.0943 0.0046 0.0004 0.0048 0.0003
Property -0.0016 0.0111 0.0038 0.0011 0.0003 0.0133

The determination of C is not unique. However, there is one particularly useful
algorithrm for determining a possible C using Grant-Schmidt Orthonormalisation
(sometimes also called Cholesky  decompsition). This results in a matrix C which
is in lower triangular form. In the example, the value of C I have used is
Inflation 0.0641 0.0000  0.0000  0.0000  0.0000  0.0000
Equities -0.0577  0.2193  0.0000  0.0000  0.0000  0.0000
Gilts -0.0724  0.0714  0.0986  0.0000  0.0000  0.0000
Cash -0.0474 0.0047 0.0123 0.0377 0.0000 0.0000
ILG’s -0.0042 0.0183 0.0299 -0.0072 0.0592 0.0000
property -0.0243 0.0443 -0.0109 -0.0035 -0.0060 0.1029

It can be shown that different matrices C with the same value V of CCT generate
essentially the same model, that is, our particular choice of C is without loss of
generality.

I have taken the mean inflation QMU directly from Wilkie’s 1995 paper describing
his model.
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There are a number of ways in which the µi could be determined. I have used an
equilibrium argument, where it is assumed that a long term investor would be
ideally in 100% equity, whose total return I take as R1. The optimality of equity

implies that for each i, E1-1 or in  parametric terms,

This gives the relative values of the means. The absolute value is fixed by
considering a particular asset class where the expected real return may be forecast
with some confidence. I take index linked gilts, with an assumed expected real
return of 4%. This gives the mean vector:
Equities 6.39%
Gilts 4.80%
Cash 4.00%
ILG’s 4.00%
Property 4.26%
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A.2 Auto-Regressive Models

Probably the best known autoregressive model is the Wilkie model, most recently
updated in 1995. Readers wanting more detail should consult this excellent paper,
which provides much of the motivation behind the model. In this note, I have
restricted myself to the mechanics. The implementation here omits the wage
inflation and foreign assets also described by the model, for comparability with the
other models also presented. The key mechanics of the model revolves around a
number of state variables, each of which performs an autoregressive process. The
state variables for this implementation of the Wilkie model are:

I, the force of inflation
YN, the element of the dividend yield not explained by retail prices
CN, the element of long term interest rates not explained by retail prices
BD, the relationship between long and short term rates
lnZ, the log of the property yield
lnR, the log of the real yield on index linked stocks

All the state variables have a mean value around which they vary; these means are
defined by constants ending in MU. The distance from the mean at time t is a
fraction distance at time t-1 plus a noise term. The fraction ends in A, and lies
between 0 and 1, while the noise terms are of the form SD * Z, where SD is a
standard deviation and Z are a series of iid N(0,l) random variables (sometimes
called white noise).
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The state variables evolve stochastically according to the equations:

I(t) = QMU + QA * [I(t-1) - QMU] + QSD * QZ(t)
WN(t) = WMU + WSD * WZ(t)
YN(t) = InYMU + YA * [YN(t-1) - lnYMU] + YSD * YZ(t)
CN(t) = CA1 * CN(t-1) + CY * YSD * YZ(t) + CSD * CZ(t)
BD(t) = BMU + BA * [BD(t-1) - BMU] + BSD * B.Z(t)
InZ(t) = InZMU + ZA * [lnZ(t-1) - InZMU ] + ZSD * Z(t)
lnR(t) = InRMU + RA * [InR(t-l) - InRMU] + RBC * CSD * CZ(t)

+ RSD * RZ(t)

There are also some moving averages of inflation which must be calculated. These
are DM, CM and EM, which are defined inductively as follows:

DM(t) = DD * I(t) + (1-DD) * DM(t-1)
CM(t) = CD * Z(t) + (l-CD) * CM(t-1)
EM(t) = ED * I(t) + (I-ED) * EM(t-1)

We have seen how the state variables perform autoregressive processes. From
these state variables are constructed the actual economic variables described by the
model. These variables are:

Y, the dividend yield
C, the consols yield
B, the one year interest rate
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The formulae for these variables are:

Y(t)= exp{ YW * I(t) + YN(t)}
C(t) = CM(t) + CMU * exp{CN(f)}
B(t) = C(t) * exp{ - BD(t) }

In many situations, we want to start the simulations from the current market yields
and interest rates. However, for investigations of a more general nature, one might
wish to start the simulations from a neutral position, that is, a starting point which
is not distorted by special factors at a particular point in time. There are several
ways of defining this, of which one is to consider what would happen in the long
run if all the noise terms were zero. Then all the autoregressive processes would
be at their long term means. That would imply a starting position

I(0) = QMU
YN(0) = 1nYMUU
CN(0) = 0
BD(0) = BMU
1nZ(0) = 1nZMU
1nR(0) = 1nRMU

which implies the following derived quantities:

Y(0) = exp{ YW * QMU +  1nYMU}
C(0) = QMU + CMU
B(0) = exp( - BMU ) * [CW * QMU + CMU ]

The moving averages DM, CM and EM are also initialised to QMU.

355



There are ostensibly 3 indices in the model. These are

Q. the retail price index
D, the share dividend index
E, the property income index

Other quantities can be calculated from these; for example an equity price index is
defined as P(r) = D(t)/Y(t). In the same way, a property price index A(t) is defined
as E(t)/Z(t) .

The updating equations for the explicit indices are as follows:

Q(t) = Q(t-1) exp{I(t)}
D(t) = D(t-1) exp { DW + DM(t) + (1-DW) * Z(t) + DMU + DY * YSD * YZ(t-1)

+ DB * DSD * DZ(t- 1)+ DSD * DZ(t) }
E(t) = E(t-1) exp { EW * EM(t) + (l-EW) * I(t) + EMU + EBZ * ZSD * ZZ(t)

+ ESD * EZ(t) }

The simulation results also include total return indices for each investment
category. The total return indices are

PR, the total return on shares
CR, the total return on consols
BR, the total return on cash
RR, the total return on index linked gilts
AR, the total return on property
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The roll up formulae are simple, being all effectively of the form:

total return(t) = total return(t-l) * price(t)+ income(t)price(t - 1)

Thus, the gross return indices satisfy the formulae

We aim to reproduce the total returns between t-l and t according to the Wilkie
model. The initial information available is:

The state variables I, WN, YN, CN, BD, 1nZ and 1nR at time t-l
The indices Q, W at time f-l
The rolled up indices PR, CR, BR, RR and AR at time r-l

We want to avoid storing a huge array of returns. Instead, we overwrite each
year’s index with the next year’s and so on. This means that there is some care
required in making sure that intermediate quantities are sampled at the right time
in the process. We can divide the updating into three separate steps:
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Step 1 (corresponding to the subroutine preindex)

Multiply each of the indices where appropriate by the elements which relate to
state variables at time t-l. This involves the assignments

W W*exp{WW2*1}
PR PR* exp{YW*I+YN+DY*YSD*YZ+DB*DSD*DZ}
CR CR*[CM+CMU*exp(CN)]
BR BR*{ 1+ [CM+ CMU*exp(CN)] *exp[-BD]}
RR RR*exp{lnR}
AR AR*exp{ lnZ}

Step 2 (corresponding to the subroutine advance)

Move all the state variables from time t-l to t, according to the updating formulae.
This involves the assignments in respect of the autoregressive variables:

I QMU+ QA*[I-QMU] + QSD*QZ
YN  InYMV+ YA*[YN-lnYMU] + YSD*YZ
CN CA1*CN+CY*YSD*YZ +CSD*CZ
BD BMU+BA*[BD-BMU] +BSD*BZ
lnZ InZMU+Z4*[lnZ-lnZMU] +ZSD*ZZ
lnR lnRMU+RA*[lnR-lnRMU]+RBC*CSD*CZ+RSD*RZ
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and in respect of the moving averages:

DM  DD * I + (1-DD) * DM

CM CD*I+(1-CD)*CM

EM ED*I+(1-ED)*EM

Step 3 (corresponding to the subroutine postindex)

Multiply each of the indices by the elements which involve state variables at time

t. This involves the assignments

Q   Q * exp{I}
W W*exp{WW1*I+WMU+WSD*WZ}

PR PR* exp{DW*DM+(1-DW)*I+DMU

+DSD*DZ}*(exp{-YW*I-YN} +l)

CR CR* (1/ [CM+CMU*exp(CN)]+l)

RR RR*exp{I}*(exp{-lnR} +l)
AR AR*exp{EW*EM+(1-EW)*I+EMU+EBZ*ZSD*ZZ

+ESD*EZ*(exp{-InZ}+1)

This completes the recursive updates of the indices as required.
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We notice that the derived state variables Y, C and B are not explicitly required
for calculating  the indices, so we save effort by not storing them.

We can also see that it is not . necessary to store the dividend index D or the

property income index E for the purposes of calculating the total returns. Neither
is it necessary to store the price indices P and A.

We can see that different error terms are required at different steps of the
induction algorithm. There are eight in all, and the matrix is as follows:

Error term

QZ
YZ
DZ

CZ

BZ
ZZ

EZ

RZ

Step 1 Step 2 Step 3

The only complication is that in order to move forward from t-l to t we need to

remember YZ(t-1) and DZ(t-1) in step 1. The easiest way to do this is to include

them as other state variables. In  fact, to be consistent with Wilkie, we do not store

YZ and DZ but quantities YE and DE defined as YSD * YZ and DSD * DZ

respectively.
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A.3 Fractal Models

The construction of fractal models is very similar to the construction of a
compound claims process in collective risk theory. We consider the log of a total
return index, and describe the movement as a series of “claims”, or jumps. Unlike
a conventional claims process, we must allow for downward jumps as well as
upward jumps.

We define the fractal property as follows. A jump process is stable if for some
the combined operation of stretching the process values by a factor of k and
stretching the time axis by a factor k    has no effect on the underlying probability
law. For most   financial applications, a value of       between 1 and 2 is appropriate.

Let us suppose that we have a stable jump process for some parameter a. We
generate jumps as a Poisson process. Let us first consider only those jumps which
have absolute value greater than 1. Let the frequency of upward jumps exceeding
1 be denoted by u and the frequency of downward jumps exceeding 1 be d.

We can use the fractal property to determine the frequency of other jump sizes. If
we expand the process by a space factor k and a time factor k      , jumps which were
previously greater than 1 now have size greater than k. For the unscaled process,
such jumps have frequency u (upwards) and d (downwards). For the scaled
process, the frequencies are therefore uk  and dk   respectively. But, by
hypothesis, the scaled process has the same probability law as the original. This
means that the frequencies of jumps of all sizes are as follows (for k> 0):

Jumps ³k with frequency uk ; jumps £-k with frequency dk.
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We can see that the smaller the jumps, the more frequent they are. The stable
process is unlike the claims process in the sense that we have   in  finitely  many  small
claims. However, as most of the claims are small, the total is finite and so we can
construct a meaningful process.

Let us denote this process by X1. Then for any particular  value of  t  we can  write

By the fractal assumption, the distribution of S does not depend on the choice oft.
The rather odd looking scaling factor is, unfortunately, an established convention.
We say that S has a  Lévy  stable   districution  with parameters                 The parameter

is conventionally defined as  . We notice that a positive value of   means a

larger proportion of downward jumps. Walter (1989) fitted such a model to the
French market based on daily data, and obtained (for the   CAC 40 equity index) a
= 1.65 and   = -0.11. This is an odd result, suggesting that, after adjusting for
the drift, the upward jumps in the equity index are more frequent than downward
ones. Experience suggests that over the longer term, the reverse is the case, but
perhaps we remember the bad times more clearly than the good ones!

In the example, I have built a fractal model by adjusting the error structures of the
random walk model. Instead of using N(0,l) random noise, I have replaced this
with stable (1.65, -0.11) in each case, that is, the incurements of a stable process.
This does make sense in principle, in that these quantities do have zero mean, and
while the variance is infinite, the upper and lower quartiles are of the same order
of  magnitude as a N(0,1). Plainly, other parameters could have been chosen.
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A.4 Chaotic Models

The essential ingredient to a chaotic model is a simple non linear map which we
can iterate to obtain complex patterns. My favourite map is the quadratic one:

starting with Z in (              .The consecutive values from iterating this map are

then fed in to the error terms of the random walk model. The starting values are
generated randomly with a uniform distribution.

One of the nice features of this series is that the terms behave in some sense like
N(0,1) random variables. Given virtually any initial distribution for Z0, the value
of Z1 for large t has mean zero and variance I, and furthermore, distinct Zt are
uncorrelated. This explains why the paths of a chaotic model may not easily be
distinguished from a random walk, and indeed, the graphs we saw earlier
reinforce this point.
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A.S: Equilibrium Models 

We have derived the expected returns for me random Walk model based on what 

is, essentially, an equilibrium argument. However, the random walk model does 

not exhibit jumps, and when we allow jumps, the derivation of the expected 

returns fails over. This note outlines a new stochastic model, previously 

unpublished which exhibits jumps, but for which expected returns and the yield 

curve are determined by equilibrium constraints. The proposed stochastic model is 

based on a set of four assets, denoted by Pi for i= 1,2,3,4. These represent 

Sterling 

Inflation 

Equity 

Property 

We do not count bonds as a separate class, since (modulo credit risk) these are 

simply deferred currency payments. Bonds are described by the model of the asset 
in which they are denominated, either sterling or inflation. The model naturally 

extends to other asset classes, such as foreign investments. 

For each asset class, we can define income and capital components. For the traded 

examples above, the relevant definitions are relatively straightforward: 

For currencies, the capital is the currency itself, and the income is 

the interest generated on short deposits at market rates 

For equities, the capital is the share or basket of shares, and the 

income is the dividends paid, We model all dividends gross of tax on 

income. 
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For properties, the capital is the property itself while the income is 

the potential rent on a short lease, less the cost of maintaining the 

property to the extent that this is borne by the lessee. 

The income on a basket of commodities is slightly harder to define. We define this 

as the cost of short term lending income, that is, the fee which receivable from a 

third party who wishes to borrow the commodities for the short term. Under such 

lending arrangements, the borrower has to return equivalent commodities; not 

necessarily the physical mass lent, especially if the commodity concerned is 

perishable! Broadly speaking, this is equivalent to the convenience yield implied in 

futures prices. The most significant commodity basket for actuarial purposes is the 

basket which defines the BPI or the equivalent in other countries. 

It is important to appreciate that an asset does not have a uniquely defined 

numerical value of itself. Instead, the price depends on the selected accounting 

unit, usually a currency. Thus, if P1 is sterling, and P3 is a suitable basket of 100 

equities, then the FTSE 100 index at time t is the price of P3 in units if P1 which 

we denote at time t by . We could equally well measure the price of the 

shares in some other units, such as Yen or even barrels of oil; the choice of 

sterling is simply a convention, which is convenient since many holders of UK 

equities will often account in sterling. 

We say that the assets Pi have asset dimension, while the price of one asset in 

terms of another is dimensionless, and consequently has a uniquely defined 

numerical value. This means that there is some arbitrariness in the construction of 

models where the Pi are modelled as stochastic processes, since the multiplication 
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of each Pi by a common positive process will have no effect on the economic 

impact of the model. 

We notice in passing that currency exchange rates can also be represented as the 

price of one asset in terms of another, and also that under our construction such 

currency rates automatically satisfy relevant consistency conditions, such as: 

Under the proposed model each asset has a term structure. This means that we can 

value an entitlement to receive the asset at a known point of time in the future. In 

the case of currencies this enables us to value bonds and annuities, while for a 

commodity price index the term structure can give us the value of index linked 

bonds. For property, this gives us the value of a reversion, so that the appropriate 

fixed rent for a known period is essentially the current value of the property minus 

the reversion, all divided by the annuity price for the appropriate term. This does 

depend on the revenue being secure, and for some tenants the appropriate rent 

would have to be adjusted upwards to allow for credit risk. 

The term structure information allows us to value future income streams, for 

example, one might receive the interest on a currency starting in two years’ time 

and continuing for one year. This is the value of the use of one currency unit for a 

year starting in two years time, that is, the difference between a two year bond 

and a three year bond. This kind of argument is useful for pricing derivatives such 
as swaps. 

The model produces price indices Pi for each asset class, so that the price of one 

asset in terms of another is obtained by taking ratios. These prices Pi are functions 

of time t, and are defined for all t 0. We denote the retative price of asset i at 
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time t by Pi(t). We model this numerically, even though the price is only defined 

up to multiplication by a function of time. 

The model also produces term structures for each of the asset classes. We define a 

quantity Vi(s,t) to be: 

The value at time s in units of Pi(s) of a bond maturing at time t, 

delivering one unit of Pi(t). 

Since the units are specified, Vi(s,t) is numeric that is, a dimensionless quantity. It 

is the price of a zero coupon bond, or alternatively, the appropriate term 

dependent factor at time s for discounting quantities due at time t. Naturally, this 

discount factor depends on the currency (or more generally, the asset) in question 

- hence the subscript i. 

In order to start the model off, we need to know initial prices and term structures, 

that is, we need Pi(0) for each i, and V1(0,t) for each i and t 0. 

Various other indices can be constructed from prices and term structures. For 

example, it is often helpful to consider a portfolio of bonds which is continually 

rebalanced so as to maintain a constant maturity profile, say with a fixed 

outstanding term t. This is in contrast to a portfolio of bonds held to maturity, 

whose outstanding terms will gradually shorten over time. 

We drive the model is driven by a series of random generating processes Gj(t) for 

j= 1,2,..n, each starting at 0. These process are increasing processes, which 

capture the cumulative effect of jumps or other changes in the system. We can 

generate processes with both upward and downward jumps as the difference 
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between two such processes. The Gj are supposed to represent underlying 

fundamental variables in the economy, upon which the values of all investments 

ultimately depend. 

We also define integrated processes H,(t) by 

Since Gj is positive and increasing, it follows that Hj(t) is positive, increasing and 

convex. It is also, of course, continuous. 

The price model is given by 

where j, Bij and yij are real constants, satisfying j>O, < 1 and yij 0. We can 

see that is the sensitivity to Gj which generate jumps in the asset price. The 

term involving yij is the sensitivity to the cumulative effect of Gj and is effectively 

a momentum term. When Gj is higher than previously expected, Hj increases at a 

higher rate, and so the price has a downward trend. By the same token, if Gj has 

been low relative to expectations, then any downward trend in asset prices will be 

less noticeable. Of course, the trend is not meaningful in an absolute sense, since 

asset prices are only defined relative to another asset. The price appreciation or 

depreciation of an asset will be determined by the trend of the asset itself relative 

to the trend of the chosen accounting unit. It will be clear that this momentum 

term in some sense contradicts conventional random walk models. The constant 

term in the product may seem hard to interpret - we will see later exactly why the 

expression makes sense. This is certainly not the kind of formula which 

immediately jumps to mind for statistical fitting! 
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We now describe the evolution of the term structure variables Vi(s,t). In this case, 

we suggest a model of the form: 

We notice that all the stochastic terms are in the second line. Furthermore, the 

argument of the stochastic terms is t-S which means that all possible yield curves 

at any point in time are parallel. Thus, WC can expect that the traditional actuarial 

measures of duration and convexity would still be relevant to this rather fancy 

model. 

Furthermore, we can see that the highest yields are associated with high values of 

the Gj which in turn are related to negative momentum in the underlying asset - 

even the coefftcients Yij are the same! Thus, when an asset is depreciating, 

investors discount future receivables more deeply. Again, this feature is intuitively 

consistent with existing theory. 

We can now set about calculating the value of constant maturity indices as 

described previously, After some manipulation, the result is: 

where RPi{t; t) is the total return constant maturity index for bonds of duration t 

denominated in asset i. It may be surprising at first sight that such a simple 
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expression should result from such a complex model. Of course, anyone who

knows me will appreciate that the formulae were rigged from the start so that this

kind of thing would work nicely.

We now consider probability laws which might generate the jump processes G (t).j

One way of constructing these processes is to use   distributions. We therefore

suggest that

independent of the other processes and of all history prior to time s. It is easily

shown that the sum of two independent   distributions is another  distribution,

and the parameter of the sum is the sum of the parameters of the constituents. This

means that in principle we can construct a consistent process which satisfies the

above distribution for all s < t. The effect of changing a is to scale the time axis;

larger values of   mean that the process is speeded up.

This generates price behaviour which is qualitatively different from the behaviour

under diffusion models, that is, models using the normal distribution. Several

commentators have suggested that risk should be subdivided into volatility risk,

that is, the risk of small movements each day, and catastrophe risk, that is, the

risk of a sudden jump, as a result of some unforeseen disaster. The   process

takes this further by allowing a continuum of jump sizes both small and large. By

contrast, diffusion models have continuous paths, so only allow infinitesimal’

jumps.
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Under this   model, it can be shown that

so that  the  value of a bond is simply  its  expected value, and  furthermore, that this

holds simultaneously for all assets. Thus, within in the proposed  model, the  market

values all cash flows according to their expected values. We refer to this as the

martingale property. From the tower law of conditional expectation, we can

produce the more general result:                                     which   says that the

value of any bond  portfolio (on a market value total return basis)  is a martingale.

A fundamental result of financial theory then implies that the value of any total

return bond index is a martingale, even if the index is actively traded. This

observation has a number of economic consequences, one of which is the absence

of arbitrage. In other words, it is impossible to construct a portfolio whose current

value is   0, but has a value    0 at some future point, unless that portfolio is

identically zero.

A consistent  way  to price other derivatives  would  be to extend  this principle, that

is to say, the value of an option  is  simply the conditional  expectation  of its payoff.

This will guarantee that derivative prices are also consistent with the absence of

arbitrage. When computing the payoff of options, it is essential to consider

explicitly the currency in which the option is denominated. For example, if P is1
sterling and P  is a suitable basket of  100 equities then the payoff of a call option2

with strike k is max                                          A useful check is that,

most of the time, expressions to be valued turn out to be first order homogeneous

functions of the underlying  asset  prices. This  means that derivatives still have asset

dimension. If an expression is not homogeneous, it is likely that an accounting
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currency has inadvertently been hard coded, and of course this my give the

wrong answer.

We now turn to the calibration of the model. Firstly, we examine the variance and

skewness structure of the log relative total returns. Let is suppose that we are

examining  the total return of bonds with duration      for asset relative to the total

return of bonds with duration Tj for asset j. The log relative return is

From  this, we  can calculate  any  moments that are required. We do not use this to

get the mean, because that is hopelessly subject to estimation error. However, we

do examine variances, covariances and skewnesses. We first note that

and the third centralised moment is given by

This implies  that

In general, given these values, it might still be quite hard to solve the equations

for the underlying parameters, However, we can simplify matters considerably by

assuming a lower triangular form for the asset classes. In effect, we write the total

return indices in a heirarchical pyramid, such that shocks to higher elements can

also hit lower elements, but not the other way around. The proposed hierarchy is

then:
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Gilt total return  / cash total return

Index Lied total return / cash total return

Equity total return  / cash total return

Property total return  / cash total return

A historically based variance covariance matrix for these is:

Gilts 0.013939 0.003483 0.014945 0.003004
KG’S 0.003483 0.004345 0.003321 0.001037
Equity 0.014945 0.003321 0.047754 0.012464
Property  0.003004 0.001037 0.012464 0.013426

The Gram-Schmidt square root of this decomposes the volatility of each series in

terms of the underlying processes. Together with some appropriate skewness

assumptions, we can use this to derive the a parameters for each of the four

generating processes, as follows:

16 9.874861 1.432999 0.927582

We now assume that the inflation index does not have any jumps, but that its slope

can jump. We also assume that the optimal strategy for a logarithmic investor is

100% equity. Together with some suitable estimates of bond durations for the

historic data, this enables us to identify the remaining parameters.

Cash ß 0.031646  -0.00223  0.148691 0
Inflation ß 0.031646  -0.00223 0.148691 0
Equity  ß 0 0 0 0
Property  ß 0.025284  -0.00377  0.105155  -0.10403

Cash 0.001968 0 0 0
Inflation 0.000737 0.001876 0 0
Equity 0 0 0 0
Property 0 0 0 0
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Appendix B Implementations

I have implemented all the above models in Microsoft Excel 5 for PC's. I have

made extensive use of the Visual Basic macro facility supplied with Excel. The

reason for using this is that Excel is a popular and inexpensive package, so that

there is a reasonable chance that others will be able to use the code straight away.

Visual Basic produces code which is fairly easy to read and understand. The code

displayed here is not particularly efficient from a computational point of view.

This is because I have deliberately avoided some short cuts in order to make the

program logic clearer.

I have split the code up into six modules to make it easier to follow. These are as

follows:

Distributions: This model contains the code to generate random variables from the

normal, Levy stable and   distributions.

This module contains all the boring housekeeping for simulations.

taking and interpreting input parameters, calling the appropriate

model routine and poking the answers back into a suitable array.

RandomWalk:  This module implements the Kemp, Mandelbrot and May models.

This implements the Wilkie mode

Optimise: This performs the optimisation of a logarithmic investor under the

Wilkie model.

This contains the code for my own model

Now it’s up to you. Try the models out. Bring your results to the workshop!
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Distributions 
Option Explicit 

Function normgen() As Double 
'Return sample from N(0,1) distribution 
Static got-one As Boolean, stored As Double 
Dim xl AS Double, x2 As Double, r As Double 
If got-one Then 

normgen = stored 
got-one = False 

Else 
'generate a point in the unit square 
Do 

x1 = 2 * and - 1 
x2 - 2 *and-1 
r = Xl ̂  2+x2 ̂  2 

'reject unless inside unit circle 
Loop While r >= 1 Or r - 0 
r = sqr ( -2 * Log(r) / r) 
stored = x1 * r 
normgen = x2 l 0 
got-one = True 

End If 
End Function 

Function gammgen(alpha) As Double 
'Return sample from Gamma(alpha) distribution 
Dim beta As Double, gamma As-Double, k As Double 
Dim p1 As Double. p2 As Double. Y As Double 
beta- = Sqr(alpha +-0.25) - 0.5' 
gamma = beta + 1 
k = (alpha + gamma) ̂  ((alpha + gamma) / (beta + gamma)) / 

(alpha - beta) ̂  ((alpha - beta) / (beta + gamma)) * Exp(- 
pl = beta * k ̂(-beta) * (alpha - beta) (beta - alpha) * _ 

Exp (alpha - beta) 

l) 

p2 = gamma * k ̂ gammna * (alpha + gamma) ̂  (-gamma - alpha) * _ 
Exp (alpha + gamma) 

p1 = p2 / (pl + p2) 
Do 

If Rnd() < pl Then 
'use beta distribution 

y = k * Rnd() ̂  (1 / beta) 
p2 = (y / (alpha - beta)) ̂  (alpha - beta) * _ 
Exp (alpha - beta - y) 

Else 
'use pareto distribution 

y = k/Rnd() ˆ (1/gamma) 
p2 = (y / (alpha + gamma)) ˆ (alpha + gamma) * _ 
Exp (alpha + gamma - y) 

End If 
Loop Until Rnd() < p2 
gammgen = Y 
End Function 

Function Levy (alpha, beta) As Double 
'return sample from Levy stable (alpha, beta) distribution 
Dim phi0 As Double, phi As Double, W As Double 
phio = (alpha - 2) / 2 / alpha * 3.1415927 * beta 
phi = 3.1415927 * (Rnd() - 0.5) 
W = -Log(Rnd()) 
Levy - Sin (alpha * (phi - phio)) / Cos(phi) ˆ (1 / alpha) * _ 
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Distributions 
(Cos(phi - alpha l (phi - phi0)) / W) ˆ ((1 - alpha) / alpha) 

End Function 

Function IID(nosims, seed, distribution, _ 
Optional alpha, Optional beta) 

ReDim outvec(1 To nosims) As Double 
Dim dummy As Double, t As Integer 
dummy - Rnd(-1.414 - 1.723 * nbs(seed) ˆ 2.718) 
’ Now iterate round a few times so senstive to initial conditions 
dummy = Rnd() 
dummy = Rnd() 
For t = 1 To nOSimS 

Select Case distribution 
Case "normal" 

outvec(t) = normgen 
case “gamma" 

outvec(t) = gammgen(alpha) 
case "Levy" 

outvec(t) = Levy(alpha, beta) 
End select 

Next t 
IID = outvec 
End Function 
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Option Explicit

Type Return Index

Generic

End

Sub

'These are all total return indices
'Including income gross of tax
'with the exception of RPI, which has no income
Year As Integer
Retail Price As Double
Equity-As Double
Fixed Interest As Double
Cash As Double
Index-Linked As Double
Property As Double
Type

End

Sub

End

Sub

End

Unit (S As Return_Index)
With S

.Year = 0

.Retail Price = 1

.Equity = 1

.Fixed Interest = 1

.Cash = 1

.Index_Linked = 1

.Property = 1
End With
Sub

Fill (index_array As Variant, S As Return_Index)
With S  

1) = .Year
2) = .Retail_Price
3) = .Equity
4) = .Fixed_Interest
5) = .Cash
6) = .Index_Linked
7) = .Property

1index_array(.Year,
index_arrav(.Year,
index_array(.Year,
index_array(.Year,
index_array(.Year,
index_array(.Year,
index_array(.Year,

End With
Sub

Update (S As Return-Index, Model As String)
Select Case Model

Case "Kemp", "Mandelbrot", "May"
RandomWalk_Update S, Model

Case "Wilkie"
Wilkie_Update S

Case "Smith"
Smith-Update S

End Select
S.Year = S.Year + 1
Sub

Function Scenario (Model As String, horizon As Integer, _
seed As Double)
'Skeleton function for putting model output into an array
'Use seed for random number generator,
'with arbitrary non-round coefficients
Dim dummy As Double
dummy = Rnd (-1.414 - 1.723 * Abs (seed) ˆ 2.718)
'Now iterate round a few times so senstive to initial conditions
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Generic 
dummy = Rnd() 
dummy = Rnd() 
'Set out range for output 
ReDim outscen(0 To horizon, 1 To 7) As Double 
Dim S As Return Index 

unit s 
Fill outscen, S 
DO 

Update S, Model 
Fill outscen, S 

Loop Until S.Year = 
Scenario = outscen 

End Function 

horizon 
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Randam Walk
Option Explicit

Const QMU = 0.047
Const QA = 0.58

Type Six_Error
Z (0 To 5 ) As Double

End Type

Sub Kemp_gen(Z As Six-Error)
Dim i As Integer
For i = 0 To 5

Z.Z(i) = normgen()
Next i
End Sub

Sub Mandelbrot_gen(Z As Six-Error)
Dim i As Integer
For i = 0 To 5

Z.Z(i) = Levy(1.65, -0.11)
Next i
End Sub

Sub May_gen(2 As Six Error)
Static initialised As Boolean
Dim i As Integer
If initialised Then

For i = 0 To 5
Z.Z(i) = 1.414 * (1 - Z.Z(i) ˆ 2)

Next i
Else

For i = 0 To 5
Z.Z(i) = 2.818 * Rnd() - 1.414

Next i
End If
End Sub

Sub Randomwalk_update(s As Return_Index, Model As String)
'Make the only state variable static
Static inflation-rate As Double, mu(0 To 5)
Static C(0 To 5, 0 To 5) As Double, Z As Six Error
Dim i As Integer, j As Integer, E As Six_Error
If S.Year = 0 Then

inflation-rate = QMU
'read in array for C
For i = 0 To 5

If i = 0 Then
mu (i) = 0

Else
mu(i) = Range("Muvector").Cells(i, l).Value

End If
For j = 0 To i

C(i, j) = Range("Cmatrix").Cells(i + 1, j + l).Value
Next j

Next i
End If
Select Case Model
Case "Kemp"

Kemp_gen Z
Case "Mandelbrot"
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Mandelbrot_gen Z
Case "May"

RandomWalk

May_gen  z
End Select
For i = 0 TO 5

E.Z(i) = 0
For j = 0 To i

E.Z(i) = E.Z(i) + c(i, j) * Z.Z(j)
Next j

Next i
inflation_rate = QA * inflation_rate + (1 - QA) * QMU + E.Z(O)
With s

.Retail_Price = .Retail_Price * Exp(inflation_rate)

.Equity = .Equity * Exp(mu(2) + E.Z(l) + inflation-rate)

.Fixed_Interest = .Fixed_Interest * Exp(mu(3) _
+ E.Z(2) + inflation rate)

.Cash = .Cash * Exp (mu(3) + E.Z(3) + inflation-rate)

.Index_Linked = .Index_Linked * Exp(mu(4) _
+ E.Z(4) + inflation rate)

Property = .Property * Exp (mu(5) + E.Z(5) + inflation-rate)
End With
End Sub
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Wilkie
Option Explicit

Type Wilkie_State
'contains the stationary state variables
'starting with the AR1 variables

i As Double
YN As Double
CN As Double
BD As Double
InZ As Double
InR As Double

'now the moving averages of inflation
DM As Double
CM As Double
EM As Double

'and finally, the
YE As Double
DE As Double

error terms carried forward

End Type

Type Eight_Normal
'all the iid N(O,l) random innovations
QZ As Double
YZ As Double
DZ As Double
CZ As Double
BZ As Double
ZZ As Double
EZ As Double
RZ As Double

End Type

'retail price inflation parameters page 9
Const QMU As Double = 0.047
Const QA As Double = 0.58
Const QSD As Double = 0.0425

'dividend yields, page 46
Const YW As Double = 1.8
Const YA As Double = 0.55
'Const YMU As Double = 0.0375 this is always logged,
'so store logged value
Const InYMU As Double = -3.283414346
Const YSD As Double = 0.155

'dividends. page 68
Const DW As bouble = 0.58
const DD AS Double = 0.13
Const DMU As Double = 0.016
Const DY As Double = -0.175
Const DB As Double = 0.57
Const DSD As Double = 0.07

'long term interest rates, page 86
Const CD As Double = 0.045
Const CMU As Double = 0.0305
Const CA1 As Double = 0.9
Const CY As Double = 0.34
const CSD As Double = 0.185
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Wilkie
'short term interest rates, page 95
Const BMU As Double = 0.23
Const BA As Double = 0.74
Const BSD As Double = 0.18

'property yields, page 101
'Const ZMU As Double = 0.074 this is always logged,
'so use log value instead
Const InZMU As Double = -2.603690186
Const ZA As Double = 0.91
Const ZSD As Double = 0.12

'property rents, page 103
Const EW AS Double = 1
Const ED As Double = 0.11
Const EMU As Double = 0.003
Const EBZ AS Double = 0.24
Const ESD AS Double = 0.06

'index linked gilt yields, page 107
'Const RMU As Double = 0.04 always logged so store log instead
Const lnRMU As Double = -3.218875825
Const RA As Double = 0.55
Const RBC As Double = 0.22
Const RSD As Double = 0.05

'initialisation of states
Sub Neutral (W As Wilkie_State)
With W
'startins with the AR1 variables

.i = QMU

.YN = InYMU

.CN = 0

.BD = BMU

.Inz = InZMU

.InR = InRMU
'now the moving averages of inflation

.DM = QMU
CM = QMU
.EM = QMU

'and finally, the error terms carried forward
YE = 0
.DE = 0

End With
End Sub

Sub Preindex (S As Return-Index, W As Wilkie_State)
Dim C As Double
With W

S.Equity = S.Equity * Exp (YW * .i + .YN _
+ DY * .YE + DB * .DE)

C = .CM + CMU * Exp (.CN)
S.Fixed_Interest = S.Fixed_Interest * C
S.Cash = S.Cash * (1 + C * Exp(-.BD))
S.Index_Linked = S.Index_Linked * Exp(.lnR)
S.Property = S.Property * Exp(.lnZ)

End With
End Sub

382



Wilkie
Sub Advance (W As Wilkie_State, Z As Eight-Normal)
With W

.i = QMU + QA * (.i - QMU) + QSD * Z.QZ

.YE = YSD * Z.YZ

.YN = 1nYMU + YA * (.YN - lnYMU + .YE

.DM = DD *. i + (1 i DD) * .DM

.DE = DSD * Z.DZ

.CM = CD * .i + (1 - CD) * .CM

.CN = CA1 * .CN + CY * .YE + CSD * Z.CZ

.BD = BMU + BA * (.BD - BMU) + BSD * Z.BZ

.lnZ = 1nZML + ZA * (.lnZ - 1nZMU) + ZSD * Z.ZZ

.EM = ED * . i + (1 -'ED) * .EM

.lnR = 1nRMU + RA * (.lnR - 1nRMU)
+ RBC * CSD * Z.CZ + RSD * Z.RZ

End With
End Sub

Sub Postindex(S As Return Index, W As Wilkie_State, _
Z AS Eight-Normal) -

With W
S.Retail_Price = S.Retail_Price * Exp(.i)
S.Equity = S.Equity * Exp (DW * .DM + (1 - DW) * .i _

+ DMU + .DE) * (Exp(-YW * .i - .YN) + 1)
S.Fixed_Interest = S.Fixed_Interest

 * (1 / (.CM + CMU * Exp(.CN)) + 1)
S.Index_Linked = S.Index_Linked * Exp(.i) * (Exp(-.lnR) + 1)
S.Property = S.Property * EXp(EW * .EM + (1 - EW) * .i

+ EMU + EBZ * ZSD * Z.ZZ + ESD * Z.EZ) * (Exp(-.lnZT + 1)
End With
End Sub

Sub Eight_Normal_Generate(Z As Eight-Normal)
With Z

.QZ = normqen()

.YZ = normgen()

.DZ = normgen()

.CZ = normgen()

.BZ = normgen()

.ZZ = normgen()

.EZ = normgen()

.RZ = normgen()
End With
End Sub

Sub Wilkie_Update(S As Return-Index)
Static W As Wilkie_State
Dim Z AS Eight_Normal
'dummy code
If S.Year = 0 Then

Neutral W
End If
Preindex S, W
Eight Normal-Generate Z
Advance W, Z
Postindex S, W, 2
End Sub
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Option Explicit
Optimise

Function optcount(horizon, seed) As Variant
'determine how many times 100% investment in one class is optimal.
Dim dummy As Double
Dim cumopt(l To 5) As Integer, t As Integer
Dim sumquot(1 To 5, 1 TO 5) As Double
Dim H(l TO 10) As Eight Normal, Z As Eight Normal
Dim w As wilkie_State, whyp As wilkie State, S As Return_Index
Dim i As Integer, j As Integer, isbest As Boolean

dummy = Rnd(-1.414 - 1.723 * Abs(seed)  2.718)
dummy = Rnd()
dummy - Rnd()

'generate test scenarios
For i = l To 10

With H(i)
.QZ = 1.414 * Sin(i * 0.6283185307)
.YZ = 1.414 * Sin(i * 2 * 0.6283185307)
.DZ = 1.414 * Sin(i * 3 * 0.6283185307)
.CZ= 1.414 * Sin(i * 4 * 0.6283185307)
.BZ = 1.414 * Cos(i * 0.6283185307)
.ZZ = 1.414 * Cos(i * 2 * 0.6283185307)
.EZ = 1.414 * Cos(i * 3 * 0.6283185307)
.RZ = 1.414 * Cos(i * 4 * 0.6283185307)

End With
Next i
Neutral W
For t = 1 To horizon

For i = 1 To 5
For j = 1 To 5

sumquot(i,j) = 0
Next j

Next i
For i = 1 TO 10

Unit S
Whyp = w
Preindex S, Whyp
Advance Whyp, H(i)
Postindex S, Whyp, H(i)
With S

sumquot(1, 2) = sumquot(l, 2)
+ .Equity / .Fixed_Interest

sumquot(1, 3) = sumquot(1, 3) _
+ .Equity / .Cash

sumquot (1, 4) = sumquot(1, 4)
+ .Equity / .Index_Linked -

sumquot(l, 5) = sumquot(1, 5) _
+.Equity / .Property

sumquot(2, 1) = sumquot(2, 1)
+ .Fixed Interest / .Eauity

sumquot(2, 3) = sumquot(2,-3) 
+ .Fixed_Interest / .Cash -

sumquot(2, 4) = sumquot(2, 4)
+ .Fixed_Interest / .Index_Linked

sumquot(2, 5) = sumquot(2, 5) 
+ .Fixed_Interest / .Property

sumquot(3, 1) = sumquot(3, 1)
+ .Cash / .Equity

sumquot(3, 2) = sumquot(3, 2)
+ .cash / .Fixed_Interest 
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Optimise
sumquot(3, 4) = sumquot(3, 4) _

+ .Cash / .Index_Linked
sumquot(3, 5) = sumquot(3, 5) _

+ .Cash / .Property
sumquot(4, 1) = sumquot(4, 1)_

+ .Index_Linked / .Equity -
sumquot(4, 2) = sumquot(4, 2)

+ .Index_Linked / .Fixed_Interest
sumquot(4, 3) = sumquot(4, 3) _

+ .Inde_Linked / .Cash
sumquot(4, 5) = sumquot(4, 5)_

+ .Index-Linked / .Property
sumquot(5, 1) = sumquot(5, 1) _

+ .Property / .Equity
sumquot(5, 2) = sumquot(5, 2)_

+ .Property / .Fixed_ Interest
sumquot(5, 3) = sumquot(5, 3) _

+ .Property / .Cash
sumquot(5, 4) = sumquot(5, 4)...

+ .Property / .Index_Linked
End With

Next i
'Now determine if any single class is optimal
For i = 1 To 5

isbest = True
For j = 1 To 5

isbest = (isbest And sumquot(j, i) < 10)
Next j
If isbest Then

cumopt(i) = cumopt(i) + 1
End If

Next i
'finally, need to advance W randomly
'but not really interested in return achieved
Eight Normal-Generate Z
Advance W, z

Next t
optcount = cumopt
End Function
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Option Explicit 

Smith 

Sub Smith-KJpdate(S As Return-Index) 
Static alpha(1 To 4) As Double, beta(l TO 4, 1 To 4) As Double 
Static gamma(1 To 4, 1 To.4) AS Double 
Static G(1 TO 4) AS Double, H(1 To 4) AS Double 
Static init-yield(1 To 4) As Double, duration(1 To 4) AS Double 
Dim i As Integer, j As Integer, t As Integer 
Dim price(1 To 4), rollUp(l To 41, bond(1 TO 4) 
If S.Year = 0 Then 

initialise everything 
For i -1To9 

For j = 1 To 4 
Select Case i 
case 1 
alpha(j) = Range("EquGreekS"f.CallS(i. j).Value 
Case 2 To 5 
beta(i - 1, j) = Range("EquGreeks").fellS(i, j).Value 
Case 6 To 9 
gamma(i - 5, j) = Range(~EquGreeks").Cellsfi, j).Value 
End Select 

Next j 
Next i 
For i = 1 To 4 

G(i) = 0 
H(i) = 0 
adopt continuosly compounded conventions 

init yield(i) f Log{1 + Rangef"Yields").Cells(i, l).Value) 
dura%on(i) = Range("Durations").Cells(i, 1) .Value 

Next i 
End If 
For i = 1 To 4 

'update gamma processes and integrated processes 
' using trapezium rule 
H(i) = H(i) + G(i) / 2 
G(i) = G(i) + gammgen(alpha(if1 
H(i) = H(i) + G(i) / 2 
'calculate time. Note that working to project next year 
t = S.Year + 1 
'all these quantities are stored as logs 
price(i) = -t * init-yield(i) 
rolluo(i) = 0 
bond(i) = 0 
For j = 1 To 4 

If gamma(i, j) = 0 Then 
price(i) = price(i) + alpha(j) 

f t l (1 + Log(1 - beta(i, 3-1,) 

Else 
/ gamma(i. j) * _ 
* t) * 

price(i) = price(i) + alpha(j) 
((1 - beta(i, j) + gamma(i, j) 
Log(1 - beta(i, j) + gamma(i, j) * t) 

End I; (1 - beta(i, j)) * Log(l - beta(i, j))) 

price(i) = price(i) - alpha(j) * t + beta(i, j) * G(j) _ 
- gamma(i, jt * H(j) 

rollup(if = rollup + alpha(j) * t l  Logil - beta(i, j)i _ 
+ beta(i, j) * G(j) 

bond(i) = bond(i) + alpha(j) * t * Log(1 - beta(i, j1 _ 
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Smith
+ duration(i) * gamma (i,j)) + (beta(i.j) - _
duration(i) l gamma(i,j)) * G(j)

Next j
Next i
Now poke answer back into S

With S

End
End

.Retail Price = Exp(price(2) - price(l))

.Equity = Exp(rollup(3) - price(l))
Fixed Interest = Exp(bond(l) - price(l))
.Cash = Exp(rollup(1) - price(l))
Index Linked = Exp(bond(2) - price(l))
.Property = Exp(rollup(4) - price(l))
With
Sub
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