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Reserves in a Stochastic World

At a point in time (valuation date) there is a range of possible
outcomes for a book of (insurance) liabilities.  Some possible 
outcomes may be more likely than others
Range of possible outcomes along with their corresponding 
probabilities are the distribution of outcomes for the book of 
liabilities – i.e. reserves are a distribution
The distribution of outcomes may be complex and not 
completely understood
Uncertainty in predicting outcomes comes from
―Process (pure randomness)
―Parameters (model parameters uncertain)
―Model (selected model is not perfectly correct)



Stochastic Models

In the actuarial context a stochastic could be considered as a 
mathematical simplification of an underlying loss process 
with an explicit statement of underlying probabilities
Two main features
– Simplified Statement
– Explicit probabilistic statement

In terms of sources of uncertainty two of three sources may 
be addressed
– Process
– Parameter

Within a single model, the third source (model uncertainty) 
usually not explicitly addressed

Basic Traditional Actuarial Methods

Traditional actuarial methods are simplifications of reality
– Chain ladder
– Bornhuetter-Ferguson
– Berquist-Sherman Incremental Average
– Others

Usually quite simple thereby “easy” to explain
Traditional reserve approaches rely on a number of methods
Practitioner “selects” an “estimate” based on results of 
several traditional methods
No explicit probabilistic component

Traditional Chain Ladder

If Cij denotes incremental amount (payment) for exposure 
year i at development age j
Deterministic chain ladder 

Parameters fj usually estimated from historical data, looking at 
link ratios (cumulative paid at one age divided by amount at 
prior age) 
Forecast for an exposure year completely dependent on 
amount to date for that year so notoriously volatile for least 
mature exposure period
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Traditional Bornhuetter-Ferguson

Attempts to overcome volatility by considering an additive 
model
Deterministic Bornhuetter-Ferguson 

Parameters fj usually estimated from historical data, looking at 
link ratios
Parameters ei, expected losses, usually determined externally 
from development data but “Cape Cod” (Stanard/Buhlmann) 
variant estimates these from data
Exposure year amount not completely dependent on to-date 
number
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Traditional Berquist-Sherman Incremental

Attempts to overcome volatility by considering an additive 
model
Deterministic Berquist-Sherman incremental severity 

Parameters Ei exposure measure, often forecast ultimate 
claims or earned exposures
Parameters αj and τj usually estimated from historical data, 
looking at incremental averages 
Berquist & Sherman has several means to derive those 
estimates
Often simplified to have all τj equal

i
ij i j jC Eα τ=

A Stochastic Incremental Model

Instead of incremental paid, consider incremental average Aij
= Cij/Ei

First step translating to stochastic, have expected values 
agree with simplified Berquist-Sherman incremental average

Observation – the amounts are averages of a (large?) 
sample, assumed from the same population
Central Limit Theorem would imply, if variance is finite, that 
distribution of the average is asymptotically normal
Thus assume the averages have Gaussian distributions (next 
step in stochastic framework)
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A Stochastic Incremental Model – Cont.

Now that we have an assumption about the distribution 
(Gaussian) and expected value all needed to specify the 
model is the variance in each cell
In stochastic chain ladder frameworks the variance is 
assumed to be a fixed (known) power of the mean 

We will follow this general structure, however allowing the 
averages to be negative and the power to be a parameter fit 
from the data, with ei = ln(Ei)
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Parameter Estimation

Number of approaches possible
If we have an a-priori estimate of the distribution of the 
parameters we could use Bayes Theorem to refine that 
estimates given the data
Maximum likelihood is another approach
In this case the negative log likelihood function of the 
observations given a set of parameters is given by
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Distribution of Outcomes Under Model

Since we assume incremental averages are independent 
once we have the parameter estimates we have estimate of 
the distribution of outcomes given the parameters

This is the estimate for the average future forecast payment 
per unit of exposure, multiplying by exposures and adding by 
exposure year gives a distribution of aggregate future 
payments
This assumes parameter estimates are correct – does not 
account for parameter uncertainty
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Parameter Uncertainty

Some properties of maximum likelihood estimators
– Asymptotically unbiased
– Asymptotically efficient
– Asymptotically normal

We implicitly used the first property in the distribution of 
future payments under the model
Define the Fisher information matrix as the expected value of 
the Hessian matrix (matrix of second partial derivatives) of 
the negative log-likelihood function
The variance-covariance matrix of the limiting Gaussian 
distribution is the inverse of the Fisher information matrix 
typically evaluated at the parameter estimates

Incorporating Parameter Uncertainty

If we assume 
– The parameters have a multi-variate Gaussian distribution with 

mean equal to the maximum likelihood estimators and 
variance-covariance matrix equal to the inverse of the Fisher 
information matrix

– For a fixed parameters the losses have a Gaussian distribution 
with the mean and variance the given functions of the 
parameters

The posterior distribution of outcomes is rather complex
Can be easily simulated:
– First randomly select parameters from a multi-variate Gaussian 

Distribution
– For these parameters simulate losses from the appropriate 

Gaussian distributions

Berquist-Sherman Average Paid Data 
Accident Months of Development Forecast

Year 12 24 36 48 60 72 84 96 Counts
1969 178.73 361.03 283.69 264.00 137.94 61.49 15.47 8.82 7,822
1970 196.56 393.24 314.62 266.89 132.46 49.57 33.66 8,674
1971 194.77 425.13 342.91 269.45 131.66 66.73 9,950
1972 226.11 509.39 403.20 289.89 158.93 9,690
1973 263.09 559.85 422.42 347.76 9,590
1974 286.81 633.67 586.68 7,810
1975 329.96 804.75 8,092
1976 368.84 7,594

Estimates
Α1 α2 α3 α4 α5 α6 α7 α8

Parameter 143.78 316.77 251.78 197.68 102.53 46.23 21.36 7.36
Std. Error 6.20 11.54 9.16 7.62 5.25 3.75 3.07 2.41

κ τ p
Parameter 8.5871 1.1265 0.5782
Std. Error 0.2321 0.0077 0.0303



Forecast Average Expected Values 

Accident Months of Development
Year 24 36 48 60 72 84 96 Total
1969
1970 9.34 9.34
1971 30.54 10.52 41.06
1972 74.43 34.40 11.85 120.68
1973 185.96 83.84 38.75 13.34 321.90
1974 403.89 209.48 94.45 43.65 15.03 766.50
1975 579.48 454.96 235.97 106.39 49.17 16.93 1,442.91
1976 821.26 652.77 512.50 265.81 119.84 55.39 19.07 2,446.64

Forecast Average Variances

Accident Months of Development
Year 24 36 48 60 72 84 96 Total
1969
1970 8.19 8.19
1971 28.10 8.19 36.29
1972 80.84 33.11 9.65 123.60
1973 235.51 93.74 38.40 11.19 378.84
1974 709.12 331.88 132.10 54.11 15.77 1,242.97
1975 1,039.02 785.45 367.61 146.32 59.93 17.47 2,415.80
1976 1,657.07 1,270.62 960.54 449.55 178.93 73.29 21.36 4,611.37

Example Accident Year Results

Process Only Including Parameter Uncertainty
Accident Standard Standard Percentile

Year Mean Deviation Mean Deviation 5% 95%
1969 0 0 0 0 0 0
1970 80,981 26,503 80,551 36,442 24,148 144,035

1971 408,500 63,754 407,019 82,070 274,928 545,616

1972 1,169,365 106,448 1,169,765 137,850 945,662 1,399,015
1973 3,087,023 172,060 3,086,394 233,709 2,702,457 3,476,160
1974 5,986,335 216,225 5,984,922 344,212 5,425,005 6,551,203
1975 11,676,044 307,380 11,671,230 549,685 10,783,705 12,583,860
1976 18,579,788 375,626 18,581,701 808,465 17,258,898 19,916,569

Total 40,988,036 572,742 40,981,581 1,513,557 38,528,696 43,485,373



Example Next Year Results

Process Only Including Parameter Uncertainty
Accident Standard Standard Percentile

Year Mean Deviation Mean Deviation 5% 95%
1969 0 0 0 0 0 0
1970 80,981 24,817 80,551 36,442 24,148 144,035

1971 303,859 52,742 302,553 68,934 192,431 418,164

1972 721,230 87,122 721,793 105,826 551,032 898,662
1973 1,783,372 147,171 1,783,236 172,967 1,502,286 2,075,631
1974 3,154,365 207,974 3,154,597 240,834 2,764,684 3,559,245
1975 4,689,180 260,836 4,686,348 309,909 4,179,644 5,204,351
1976 6,236,615 309,130 6,236,267 372,667 5,629,261 6,854,599

Total 16,969,602 489,384 16,965,345 652,968 15,893,889 18,045,385

Distribution of Outcomes from Model

Some Observations

The data imply that the variance for payments in a cell are 
roughly proportional to the square root of the mean in this 
case, much lower than the powers of 1 and 2 usually used in 
stochastic chain ladder models
The variance implied by the estimators for the aggregate 
future payment forecast is 573K
Incorporating parameter risk gives a total variance of 
outcomes within this model is 1,513K
Obviously process uncertainty is much less important than 
parameter
MODEL UNCERTAINTY IS NOT ADDRESSED HERE AT 
ALL



More Observations

We chose a relatively simple model for the expected value
Nothing in this approach makes special use of the structure 
of the model
Model does not need to be linear nor does it need to be 
transformed to linear by a function with particular properties
Variance structure is selected to parallel stochastic chain 
ladder approaches (overdispersed Poisson, etc.) and allow 
the data to select the power
The general approach is also applicable to a wide range of 
models
This allows us to consider a richer collection of models than 
simply those that are linear or linearizable

Some Cautions
MODEL UNCERATINTY IS NOT CONSIDERED thus 
distributions are distributions of outcomes under a specific 
model and must not be confused with the actual distribution 
of outcomes for the loss process
An evolutionary Bayesian approach can help address model 
uncertainty
– Apply a collection of models and judgmentally weight (a 

subjective prior)
– Observe results for next year and reweight using Bayes 

Theorem
We are using asymptotic properties, no guarantee we are far 
enough in the limit to assure these are close enough
Actuarial “experiments” not repeatable so frequentist 
approach (MLE) may not be appropriate


