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To explain core concepts

To take away some of the mystique



© 2010 EMB. All rights reserved. Slide 3

Stochastic claims reserving

This has become a new academic 
discipline

It has spawned several PhDs

Numerous papers appearing in 
academic journals

Presentations at every actuarial 
conference

A book has appeared

There is a Wikipedia page
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Reserving Risk

Reserving is concerned with forecasting outstanding liabilities

There is uncertainty associated with any forecast

Reserving risk attempts to capture that uncertainty

We are interested in the predictive distribution of ultimate losses AND 
the associated cash flows

Don’t just focus on “Ultimates” or “Reserves”

We need distributions of cash flows for discounting and for capital 
models

We need methods that can provide those distributions

The methods are still evolving
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Conceptual Framework

Traditional deterministic methods

Statistical assumptions required

Prediction Error = SD of Forecast

Can be estimated analytically

Usually cannot be obtained analytically

Simulation methods required
Predictive Distribution

Variability

(Prediction Error)

Reserve Estimate

(Measure of Location)
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Approaches to stochastic reserving

A lot of work in the academic literature has focused on specifying a model, then 
devising analytic formulae for the standard deviation of the forecast.  This is the 
hard way.

It doesn’t get us very far.  A standard deviation is useful, but the formulae are 
specific to the model.  What if we want other models, other risk measures, or 
a full distribution?

More recent work has focused on using simulation techniques (bootstrap or 
MCMC) to provide a full distribution of cash-flows (hence reserves).  This is the 
“easy” way.

We still need to specify the model, and the analytic methods are useful for 
checking the results

There are still many practical difficulties and limitations

“We can do this the easy way, or the hard way…”
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The “ultimo” view and the one-year view
An added complication

A standard actuarial reserving analysis tries to find the expected outstanding 
liabilities, giving the expected ultimate cost of claims over the lifetime of the 
liabilities

The traditional actuarial approach to reserving risk is to look at the uncertainty in 
the outcomes over the lifetime of the liabilities (the “ultimo” perspective)

Under Solvency II, a 1 year view is taken.  We need a distribution of the 
expected outstanding liabilities after 1 year.  This is a different view of reserving 
risk.

Can the two views be reconciled in some way?
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Basic Concepts

Uncertainty when Forecasting:
Prediction errors and Predictive 
distributions
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A Basic Example

Suppose you are an established Private Motor insurer and have written 
the same number of policies for the last 11 years 

You have had the following number of large claims:

Slide 9

How many large claims 
do you expect next year?

What is the uncertainty in 
your estimate?

What is the uncertainty in 
the outcome?
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A Basic Example – A Solution

Suppose that the large claims 
come from a Poisson distribution 
with mean λ.

Can estimate the mean λ from the 
observed large claims

What is the variance of a Poisson 
(6) distribution?

Slide 10

How can we measure the uncertainty of using the sample mean?

Sample mean = (∑xi)/n

If xi are independent and identically distributed, then variance of the 
sample mean = sample variance / n

Sample mean = 6

Process Variance = 6

Sample variance = 3.45

Estimation Variance = 0.314

Prediction Variance Process Variance Estimation Variance= +
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The Bootstrap

An alternative way of calculating the estimation variance is the bootstrap

Original Sample

Repeat many times, giving a 
distribution of the parameters

Produce a pseudo data 
sample by re-sampling with 

replacement

Calculate the parameters of 
interest

Data must be independent and 
identically distributed

The SD gives a bootstrap estimate of 
the standard error of the parameters
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A Basic Example - Bootstrap

Observed data :  3 7 6 7 5 10 8 4 5 6 5

Pseudo data 1  

410 877 53 5543 6

Mean

5.5

Pseudo data 2  6.36 8 3 10 6 6 5 5 7 5 8

Pseudo data 10k  6.08 5 7 8 4 5 6 3 10 5 5

…

Sample mean = 6.00

Sample variance = 0.313

Estimation Variance

If we sample from 
Poisson distributions 
with these means, we 

can derive the 
predictive distribution 

including process 
variance.   
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A Basic Example - Bootstrap

Observed data :  3 7 6 7 5 10 8 4 5 6 5

Pseudo data 1  

6

Mean

5.5

Pseudo data 2  6.36 8 3 10 6 6 5 5 7 5 8

Pseudo data 10k  6.08 5 7 8 4 5 6 3 10 5 5

…

4 10 8 7 7 5 3 5 5 4 3 7

11

4

Sample mean = 6.00

Sample variance = 6.313

Prediction Variance
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Important Lessons

We could calculate the SD of the forecast (“prediction error”) 
analytically, taking account of parameter uncertainty. 

This is the HARD way.

Bootstrapping gives a distribution of parameters, hence an estimate 
of the estimation error, without the hard maths

When supplemented by a second simulation step incorporating the 
process error, a distribution of the forecast is generated

This is the EASY way
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A More Complicated Example

Suppose now that the number of large claims had been:

Slide 15

How many large claims 
do you expect next year?

i.e. The same number of large claims but in a different order

What is the uncertainty in 
your estimate?

Residual for linear 
regression = Actual - Fitted
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Regression-type problems and Bootstrapping

Any model that can be clearly defined can be bootstrapped

Obtain forecast, including process error

Re-fit statistical model to pseudo data

Obtain residuals and pseudo data

Define and fit statistical model
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Bootstrapping a Linear Regression Problem

The bootstrap process for the estimation variance is then:

Specify a model (e.g. linear regression)

Define the residuals

Re-sample the residuals with replacement

Rearrange the residual definition to create new ‘pseudo’ data

Refit the model on the ‘pseudo’ data

Project forward to get a mean claim amount for the next time period

The variance of the trended mean gives the estimation variance

We can still keep the Poisson assumption for the process distribution, just with a trended 
mean

Simulate from a Poisson distribution, conditional on the simulated mean

The variance of the forecasts gives the prediction variance

Note: We have used standard linear regression in this example for simplicity – ideally we 
would fit a Poisson GLM
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Stochastic Reserving

Over-dispersed Poisson Model

Doing it the HARD way
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Over-Dispersed Poisson Model

ijC

Variance  proportional 
to expected value

jiCij year t developmenandyear origin in claimslIncrementa=
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Example Predictor Structures
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Chain Ladder

Hoerl Curve

Smoother

( )log ij ijημ = Log “link” function
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Parameter estimation

Write down joint density of the data given 
the parameters – the “Likelihood”

Treat as a function of the parameters

Maximise the (log) Likelihood with respect 
to the parameters
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Variability in Claims Reserves

Variability of a forecast

Includes estimation variance and process variance

Problem reduces to estimating the two components

This is difficult analytically, but possible (see, for example, E & V 
2002)

Note: “prediction error” is also known as “root mean square error of 
prediction” (RMSEP) 

2
1 variance)estimation variance(processerror prediction +=
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Stochastic Reserving

Over-dispersed Poisson Model

Doing it the EASY way
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Stochastic Reserving: Bootstrapping

Bootstrapping assumes the data are 
independent and identically distributed

With regression type problems, the 
data are often assumed to be 
independent but are not identically 
distributed (the means are different for 
each observation)

However, the residuals are usually 
i.i.d, or can be made so

Therefore, with regression problems, it 
is common to bootstrap the residuals 
instead
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Reserving and Bootstrapping

Any model that can be clearly defined can be bootstrapped

Obtain forecast, including process error

Re-fit statistical model to pseudo data

Obtain residuals and pseudo data

Define and fit statistical model
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Bootstrapping the Chain Ladder
Over-dispersed Poisson model

1. Fit chain ladder model

2. Obtain Pearson residuals

3. Resample residuals

4. Obtain pseudo data, given

5. Use chain ladder to re-fit model, and estimate future incremental payments 

ijijr μ ,*

ijj

ijij
ij

C
r

μφ
μ−

=

ijijjijij rC μμφ += **
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Bootstrapping the Chain Ladder

6. Simulate observation from process distribution assuming mean is 
incremental value obtained at Step 5

7. Repeat many times, storing the reserve estimates (this gives the predictive 
distribution)

8. Prediction error is then standard deviation of results

Note: Where curve fitting has been used for smoothing and extrapolation (for tail estimation), replace 
the chain ladder model in steps 1 and 5 by the actual model used
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Excel Example
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Taylor & Ashe Data
Observed incremental values

1 2 3 4 5 6 7 8 9 10

1 357,848 766,940 610,542 482,940 527,326 574,398 146,342 139,950 227,229 67,948

2 352,118 884,021 933,894 1,183,289 445,745 320,996 527,804 266,172 425,046

3 290,507 1,001,799 926,219 1,016,654 750,816 146,923 495,992 280,405

4 310,608 1,108,250 776,189 1,562,400 272,482 352,053 206,286

5 443,160 693,190 991,983 769,488 504,851 470,639

6 396,132 937,085 847,498 805,037 705,960

7 440,832 847,631 1,131,398 1,063,269

8 359,480 1,061,648 1,443,370

9 376,686 986,608

10 344,014

Dev Factors 3.49061 1.74733 1.45741 1.17385 1.10382 1.08627 1.05387 1.07656 1.01772 1.00000
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Taylor & Ashe Data
Fitted incremental values (chain ladder model)

1 2 3 4 5 6 7 8 9 10 Reserve

1 270,061 672,617 704,494 753,438 417,350 292,571 268,344 182,035 272,606 67,948 0

2 376,125 936,779 981,176 1,049,342 581,260 407,474 373,732 253,527 379,669 94,634 94,634

3 372,325 927,316 971,264 1,038,741 575,388 403,358 369,957 250,966 375,833 93,678 469,511

4 366,724 913,365 956,652 1,023,114 566,731 397,290 364,391 247,190 370,179 92,268 709,638

5 336,287 837,559 877,254 938,200 519,695 364,316 334,148 226,674 339,456 84,611 984,889

6 353,798 881,172 922,933 987,053 546,756 383,287 351,548 238,477 357,132 89,016 1,419,459

7 391,842 975,923 1,022,175 1,093,189 605,548 424,501 389,349 264,121 395,534 98,588 2,177,641

8 469,648 1,169,707 1,225,143 1,310,258 725,788 508,792 466,660 316,566 474,073 118,164 3,920,301

9 390,561 972,733 1,018,834 1,089,616 603,569 423,113 388,076 263,257 394,241 98,266 4,278,972

10 344,014 856,804 897,410 959,756 531,636 372,687 341,826 231,882 347,255 86,555 4,625,811

Total 18,680,856
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Taylor & Ashe Data
Scaled residuals : ODP with constant scale parameter

1 2 3 4 5 6 7 8 9 10

1 0.737 0.501 -0.488 -1.359 0.742 2.272 -1.027 -0.430 -0.379 0.000

2 -0.171 -0.238 -0.208 0.570 -0.775 -0.591 1.099 0.110 0.321

3 -0.585 0.337 -0.199 -0.094 1.008 -1.760 0.903 0.256

4 -0.404 0.889 -0.804 2.325 -1.704 -0.313 -1.142

5 0.804 -0.688 0.534 -0.759 -0.090 0.768

6 0.310 0.260 -0.342 -0.799 0.939

7 0.341 -0.566 0.471 -0.125

8 -0.701 -0.436 0.860

9 -0.097 0.061

10 0.000

Scale^0.5 229.3 229.3 229.3 229.3 229.3 229.3 229.3 229.3 229.3 229.3
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Taylor & Ashe Data
Scaled residuals : ODP with constant scale parameter

Development Residuals (Scaled, Bias-Adjusted, Zero-Average) With Scale Values
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Note that the volatility is lower at the earlier and later development periods
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Taylor & Ashe Data
Scaled residuals : ODP with non-constant scale parameter

1 2 3 4 5 6 7 8 9 10

1 1.207 0.808 -0.731 -0.980 0.602 1.348 -0.794 -1.176 -0.873 0.000

2 -0.280 -0.383 -0.312 0.411 -0.629 -0.350 0.849 0.299 0.740

3 -0.958 0.544 -0.299 -0.068 0.818 -1.045 0.698 0.701

4 -0.662 1.433 -1.206 1.676 -1.383 -0.186 -0.883

5 1.317 -1.109 0.800 -0.548 -0.073 0.456

6 0.509 0.419 -0.513 -0.576 0.762

7 0.559 -0.913 0.706 -0.090

8 -1.149 -0.702 1.288

9 -0.159 0.099

10 0.000

Scale^0.5 139.9 142.3 153.0 318.1 282.6 386.6 296.7 83.9 99.6 83.9



© 2010 EMB. All rights reserved. Slide 34

Taylor & Ashe Data
Scaled residuals: ODP with non-constant scale parameter

Development Residuals (Scaled) With Scale Values
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Note that the residuals are standardised better when using non-constant scale parameters
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Taylor & Ashe Data
ODP: Constant vs Non-Constant Scale Parameters

Accident 
Year

Prediction 
Error

Prediction 
Error %

Prediction 
Error

Prediction 
Error %

1 0 0.0% 0 0.0%
2 112,552 119.0% 43,882 45.3%
3 217,547 46.2% 109,449 23.0%
4 262,934 36.9% 141,509 19.8%
5 306,595 31.0% 256,031 25.7%
6 375,745 26.4% 398,377 27.8%
7 500,332 22.9% 529,898 24.2%
8 791,481 20.1% 735,245 18.7%
9 1,060,473 24.7% 809,457 18.9%
10 2,025,898 43.3% 1,285,560 27.6%

Total 2,992,296 15.9% 2,228,677 11.9%

Constant Scale Non-Constant Scale
Simulated Simulated
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Over-dispersed Poisson model

Note the possibility of obtaining negative pseudo 
incremental values when using non-parametric 
bootstrapping (resampling residuals), which 
could in turn lead to negative pseudo cumulative 
values.
This is a known issue with non-parametric 
bootstrapping. For example:

“Although the [non-parametric] bootstrap/ simulation 
procedure provides prediction errors that are consistent 
with their analytic counterparts, the predictive distribution 
produced in this way might have some undesirable 
properties. For example, for some origin year reserves, 
the minimum values of the predictive distribution could be 
negative.” 1

“It [non-parametric bootstrapping] is not without its 
difficulties, for example: a small number of sets of 
pseudo data may be incompatible with the underlying 
model…” 2

(1) England (2002)

(2) England & Verrall (2006)

residual Pearson scaled 
parameter scale 

amounts lincrementa expected
amounts lincrementa 

 if 

 then  If
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This issue disappears with parametric bootstrapping



© 2010 EMB. All rights reserved. Slide 37

ODP Bootstrapping – Practical Issues

Most suitable for paid amounts
Can result in negative incrementals/reserves in some simulations when the 
pseudo data are generated by re-sampling residuals and inverting

If this is a problem, use parametric bootstrapping instead
E&V (1999) only considered using a constant dispersion parameter: in 
general it is better to use non-constant scale parameters
Choice of process distribution?

Ideally we want an “over-dispersed Poisson” distribution
In practice just use a proxy (eg Gamma) with the same mean and 
variance properties
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ODP Model – Characteristics

It is a model of incremental amounts
It is not suitable when development factors are less than 1
When forecasting, by using a distribution that only allows positive values 
(eg Gamma or Lognormal), forecast incremental values will be positive

That is, simulated cumulative amounts will be strictly increasing
Simulated reserves can never be negative
The ultimate claims will be at least as big as the observed cumulative 
paid for each origin period
(Although note comments on parametric vs non-parametric 
bootstrapping above)
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Stochastic Reserving

Mack’s Model

Doing it the HARD way
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Mack’s Model

jiDij year t developmen and year origin in  claims Cumulative  =

Mack, T (1993), Distribution-free calculation of the standard error of 
chain-ladder reserve estimates. ASTIN Bulletin, 22, 93-109
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( ) 1,
2
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−

=
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jijij

jijij
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Specified mean and variance only:
ijD

Expected value proportional 
to previous cumulative

Variance  proportional to 
previous cumulative
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Mack’s Model
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Variability in Claims Reserves

Variability of a forecast

Includes estimation variance and process variance

Problem reduces to estimating the two components. For example, for 
the reserves in origin year i: 

2
1 variance)estimation variance(processerror prediction +=

21
2 1

2
1 1

1

ˆ 1 1ˆ ˆ
ˆ ˆ

n
k

i in n k
k n i ikk
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D D
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−
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= − + +

=

⎛ ⎞
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⎜ ⎟
⎝ ⎠

∑
∑
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jiDij year t developmen and year origin in  claims Cumulative  =
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Mack’s Model as a GLM

Step 1: Reformulate Mack’s model as a model of the ratios

Step 2: Recognise that Mack’s “Scale” parameters are derived from 
the squared residuals of a weighted normal regression model
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Mack’s Model as a GLM

( )
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Weighted normal 
errors GLM with 

weights w

(unscaled)

Note: Mack’s model was not derived as a weighted normal GLM, but a 
weighted normal GLM gives the same estimator of sigma
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Stochastic Reserving

Mack’s Model

Doing it the EASY way
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Reserving and Bootstrapping

Any model that can be clearly defined can be bootstrapped

Obtain forecast, including process error

Re-fit statistical model to pseudo data

Obtain residuals and pseudo data

Define and fit statistical model
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Bootstrapping the Chain Ladder

1. Fit chain ladder model to the observed link ratios

2. Obtain (scaled) Pearson residuals

3. Resample residuals

4. Obtain pseudo data, given

5. Use chain ladder model to re-estimate the development factors (as a weighted 
average of the pseudo-link ratios, using the original weights w)
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Bootstrapping the Chain Ladder
Mack’s model

6. Given the observed cumulative payments to date, move 1 period ahead by multiplying 
the previous cumulative claims by the appropriate simulated development factor 
obtained at Step 5

• Include the process error by sampling a single observation from the underlying 
process distribution

7. Move to the next period, where the forecast cumulative amounts are now conditional 
on the simulated 1 period ahead forecast obtained at Step 6 (including the process 
error)

8. Repeat many times, storing the reserve estimates (this gives the predictive 
distribution)

9. Prediction error is then standard deviation of results

Note: Where curve fitting has been used for smoothing and extrapolation (for tail estimation), replace 
the chain ladder model in steps 1 and 5 by the actual model used
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Excel Example
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Taylor & Ashe Data
Scaled residuals: Mack’s model

1 2 3 4 5 6 7 8 9

1 -0.519 -1.117 -1.152 0.772 1.490 -0.850 -1.189 -0.759 0.000

2 0.030 0.047 0.632 -0.608 -0.322 0.939 0.346 0.651

3 1.290 -0.179 0.006 0.850 -1.141 0.758 0.682

4 1.500 -1.228 1.840 -1.594 -0.282 -0.907

5 -1.540 0.689 -0.683 0.005 0.543

6 -0.197 -0.664 -0.636 0.878

7 -0.942 0.764 -0.137

8 0.693 1.647

9 0.197

Mack's alpha 400.4 194.3 204.9 123.2 117.2 90.5 21.1 33.9 21.1

Note that the α parameters decrease rapidly

This parameter is highly influential on the overall variability
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Taylor & Ashe Data
Scaled residuals: Mack’s model

Development Residuals (Scaled) With Alpha Values
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Note that the α parameters decrease rapidly
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Taylor & Ashe Data
Bootstrapping Mack’s Model

Accident 
Year

Prediction 
Error

Prediction 
Error %

Prediction 
Error

Prediction 
Error %

1 0 0.0% 0 0.0%
2 75,535 79.8% 75,001 78.4%
3 121,699 25.9% 121,578 26.0%
4 133,549 18.8% 132,939 18.7%
5 261,406 26.5% 261,911 26.5%
6 411,010 29.0% 414,910 29.1%
7 558,317 25.6% 558,639 25.7%
8 875,328 22.3% 880,184 22.4%
9 971,258 22.7% 979,052 22.8%
10 1,363,155 29.5% 1,368,720 29.4%

Total 2,447,095 13.1% 2,454,616 13.1%

Analytic Simulated
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Practical Issues

Choice of process distribution?
Normal: theoretically correct, but allows negative cumulative amounts
Gamma: pragmatic alternative

When used with incurred data:
Provides distribution of ultimate claims
Provides distribution of IBNR+IBNER (not outstanding claims)
Also provides a distribution of Ultimates
– By subtracting the observed paid amounts gives a distribution of outstanding amounts

Requires (simulated) paid to incurred ratios if paid cash-flows are required
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Bootstrapping Mack’s Model
Characteristics

It is a model of the cumulative amounts

It will work with negative incremental 
observed claims where development 
factors are less than 1

Although it is possible to force simulated 
cumulative amounts to be positive, there is 
nothing to stop a simulated cumulative 
amount being less than the previous 
amount.  That is, negative incremental 
amounts are always possible.

This may be beneficial with incurred 
data, but possibly a disadvantage with 
paid data

Note: bootstrapping provides predictive 
distributions for Mack’s model (including 
cash-flows)
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Stochastic Reserving

Lognormal Models
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Lognormal Models

It is also possible to fit linear regression 
models to the log of the incremental claims 
(log-normal models)

Again, the prediction error can be 
calculated the hard way (analytically) or 
the easy way (using bootstrap or MCMC 
methods)

To bootstrap the lognormal models, simply 
follow the steps outlined above for 
reserving and bootstrapping (see E&V 
2006)
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Stochastic Reserving

The one-yr view of risk
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A Projected Balance Sheet View

When projecting Balance Sheets for 
solvency, we have an opening 
balance sheet with expected
outstanding liabilities

We then project one year forwards, 
simulating the payments that emerge 
in the year

We then require a closing balance 
sheet, with (simulated) expected
outstanding liabilities conditional on 
the payments in the year

In a multi-year model, the closing 
balance sheet after one year 
becomes the opening balance sheet 
in the second year, and so on

Opening 
Balance Sheet

Year 1 
Balance Sheet

Year 2 
Balance Sheet

Year n 
Balance Sheet
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Solvency II

For Solvency II, a 1 year perspective is taken, requiring a distribution of the 
expected value of the liabilities after 1 year, for the 1 year ahead balance sheet 
in internal capital models

If the standard formula is used, a 1 year-ahead “reserve risk” standard deviation 
% is required.  This could be:

The standard parameter for the line-of-business

An undertaking specific parameter

The 1 year-ahead “reserve risk” standard deviation is the SD of the distribution 
of profit/loss on reserves after 1 year
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The one-year run-off result (undiscounted)
(the view of profit or loss on reserves after one year)

For a particular origin year, let:

The opening reserve estimate be

The reserve estimate after one year be

The payments in the year be

The run-off result (claims development result) be

Then

Where the opening estimate of ultimate claims and the estimate of the 
ultimate after one year are

0R

1R

1C

1CDR

101101 UURCRCDR −=−−=

10 ,UU
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The one-year run-off result
(the view of profit or loss on reserves after one year)

Merz & Wuthrich (2008) derived analytic formulae for the standard deviation of the 
claims development result after one year assuming:

The opening reserves were set using the pure chain ladder model (no tail)
Claims develop in the year according to the assumptions underlying Mack’s 
model
Reserves are set after one year using the pure chain ladder model (no tail)
The mathematics is quite challenging.  This is the HARD way

The M&W method is gaining popularity, but has limitations.  What if:
We need a tail factor to extrapolate into the future?
Mack’s model is not used – other assumptions are used instead?
We want another risk measure (say, VaR @ 99.5%)?
We want a distribution of the CDR (not just a standard deviation)?
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Merz & Wuthrich (2008)
Data Triangle

Accident 
Year 12m 24m 36m 48m 60m 72m 84m 96m 108m

0 2,202,584 3,210,449 3,468,122 3,545,070 3,621,627 3,644,636 3,669,012 3,674,511 3,678,633
1 2,350,650 3,553,023 3,783,846 3,840,067 3,865,187 3,878,744 3,898,281 3,902,425
2 2,321,885 3,424,190 3,700,876 3,798,198 3,854,755 3,878,993 3,898,825
3 2,171,487 3,165,274 3,395,841 3,466,453 3,515,703 3,548,422
4 2,140,328 3,157,079 3,399,262 3,500,520 3,585,812
5 2,290,664 3,338,197 3,550,332 3,641,036
6 2,148,216 3,219,775 3,428,335
7 2,143,728 3,158,581
8 2,144,738
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Merz & Wuthrich (2008)
Prediction errors

Accident 
Year

1 Year 
Ahead CDR

Mack 
Ultimate

0 0 0
1 567 567
2 1,488 1,566
3 3,923 4,157
4 9,723 10,536
5 28,443 30,319
6 20,954 35,967
7 28,119 45,090
8 53,320 69,552

Total 81,080 108,401

Prediction Errors
Analytic

Expressed as a percentage of the opening reserves, this forms a basis of the 
reserve risk parameter under Solvency II (QIS 5 Technical Specification)
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QIS 5: Undertaking Specific Parameters

For the reserving risk parameter:

Method 2:

Method 3:

There is also a credibility weighting 
between this and the standard 
parameter:

MSEP is from the Merz-Wuthrich
formulae.  Clearly there are some 
inconsistencies here:

PCO is discounted, but MSEP is 
calculated using undiscounted 
amounts

MSEP is only valid under the chain-
ladder model and Mack’s 
assumptions

What if other assumptions are used?

lob

lob
lobU PCO

MSEP
=,σ

lob

lob
lobU CLPCO

MSEP
=,σ

lobresMlobresUlobres cc ,,,,, ).1(. σσσ −+=
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The one-year run-off result in a simulation model
The EASY way

For a particular origin year, let:

The opening reserve estimate be

The expected reserve estimate after one year be

The payments in the year be

The run-off result (claims development result) be

Then

Where the opening estimate of ultimate claims and the expected ultimate 
after one year are

for each simulation i

0R
)(

1
iR
)(

1
iC

)(
1

iCDR

)(
10

)(
1

)(
10

)(
1

iiii UURCRCDR −=−−=

)(
10 , iUU
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The one-year run-off result in a simulation model
The EASY way

1. Given the opening reserve triangle, simulate all future claim payments to 
ultimate using bootstrap (or Bayesian MCMC) techniques.

2. Now forget that we have already simulated what the future holds.
3. Move one year ahead. Augment the opening reserve triangle by one diagonal, 

that is, by the simulated payments from step 1 in the next calendar year only. 
An actuary only sees what emerges in the year.

4. For each simulation, estimate the outstanding liabilities, conditional only on 
what has emerged to date. (The future is still “unknown”).

5. A reserving methodology is required for each simulation – an “actuary-in-the-
box” is required*.  We call this re-reserving.

6. For a one-year model, this will underestimate the true volatility at the end of that 
year (even if the mean across all simulations is correct).

* The term “actuary-in-the-box” was coined by Esbjörn Ohlsson
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A single accident 
year, 4 years 
developed

“Actual” simulated 
future amounts

The standard actuarial perspective: 
forecasting outcomes over the lifetime of 

the liabilities, to their ultimate position
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One year ahead forecast
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“Actual” simulated 
future amounts

Expected payments 
conditional on year 1 

position
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EMB ResQ Example
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ResQ Example
Bootstrap Results Summary – “Ultimo” perspective
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ResQ Example
1 Year ahead – Simulation 1
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ResQ Example
1 Year ahead – Simulation 2
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ResQ Example
1 Year ahead – Simulation 3
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ResQ Example
Bootstrap Run-off Results Summary – 1 year perspective
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Var @ 99.5% = - (0.5th percentile) = 208,912

ResQ Example
99.5th percentile of the Bootstrap Run-off Result
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Merz & Wuthrich (2008)
Analytic vs Simulated: Summary

Accident 
Year

1 Year 
Ahead 
CDR

Mack 
Ultimate

1 Year 
Ahead 
CDR

Mack 
Ultimate

0 0 0 0 0
1 567 567 568 568
2 1,488 1,566 1,486 1,564
3 3,923 4,157 3,916 4,147
4 9,723 10,536 9,745 10,569
5 28,443 30,319 28,428 30,296
6 20,954 35,967 20,986 35,951
7 28,119 45,090 28,110 44,996
8 53,320 69,552 53,406 69,713

Total 81,080 108,401 81,226 108,992

Prediction Errors Prediction Errors
Analytic Simulated
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ResQ Example
Cascading Bootstrap Run-off Results

The input to a Bootstrap Run-off Result can 
be another Bootstrap Run-off Result
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ResQ Example
Cascading Bootstrap Run-off Results

The input to a Bootstrap Run-off Result can be another Bootstrap Run-off Result. This 
can be used to give the CDR between the 1st and 2nd years ahead, and so on



© 2010 EMB. All rights reserved. Slide 80

ResQ Example
Cascading Bootstrap Run-off Results
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Creating cascading CDRs over all years gives the following results:

The sum of the variances of the repeated 1 yr ahead CDRs (over all years) equals the 
variance over the lifetime of the liabilities

Under Mack’s assumptions/chain ladder, this can be proved
(The simulation based results are approximate due to numerical error)

This means that we expect the risk under the 1 year view to be lower than the standard 
“ultimo” perspective

Multiple 1 yr ahead CDRs
An interesting result

Accident Sqrt(Sum of Mack
Year 1 Yr 2 Yrs 3 Yrs 4 Yrs 5 Yrs 6 Yrs 7 Yrs 8 Yrs Squares) Ultimate

1 0 0 0 0 0 0 0 0 -                 0
2 568 0 0 0 0 0 0 0 568                568
3 1,486 487 0 0 0 0 0 0 1,564             1,564
4 3,916 1,306 431 0 0 0 0 0 4,151             4,147
5 9,745 3,837 1,277 425 0 0 0 0 10,560           10,569
6 28,428 9,679 3,824 1,272 425 0 0 0 30,303           30,296
7 20,986 27,438 9,343 3,693 1,226 409 0 0 35,998           35,951
8 28,110 20,404 26,922 9,162 3,613 1,208 402 0 45,055           44,996
9 53,406 27,798 20,236 26,687 9,111 3,600 1,203 402 69,600           69,713

Total 81,226 52,344 38,513 29,010 10,120 3,879 1,285 402 108,543         108,992

Number of years ahead
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Re-reserving in Simulation-based Capital Models

The advantage of investigating the claims development result (using re-reserving) 
in a simulation environment is that the procedure can be generalised:

Not just the chain ladder model

Not just Mack’s assumptions

Can include curve fitting and extrapolation for tail estimation

Can incorporate a Bornhuetter-Ferguson step

Can be extended beyond the 1 year horizon to look at multi-year forecasts

Provides a distribution of the CDR, not just a standard deviation

Can be used to help calibrate Solvency II internal models
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Conclusions

Stochastic reserving has a reputation for being difficult

Attempted analytically, it can be, and the limitations of the formulae should be 
recognised

Simulation techniques can simplify the modelling enormously, giving results that 
are analogous to the analytic results (when applied correctly), as well as 
providing additional information and allowing the models to be generalised

An understanding of both the analytic and simulation based approaches can be 
obtained by following the key principles in each case

The characteristics of the models and the effect of their key parameters should 
be understood.  This will help with interpretation of outputs, especially when 
things go wrong.

A reconciliation between the 1 year view and the “ultimo” view can be obtained 
by understanding the differences between the perspectives.
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“Modern computer simulation techniques open up a wide field of 
practical applications for risk theory concepts, without the restrictive 
assumptions, and sophisticated mathematics, of many traditional aspects 
of risk theory”.

- Daykin, Pentikainen and Pesonen, 1996

Risk Theory and Simulation

“I believe that stochastic modelling is fundamental to our profession.  
How else can we seriously advise our clients and our wider public on the 
consequences of managing uncertainty in the different areas in which we 
work?”

- Chris Daykin, 1995
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Recent developments in stochastic reserving

Wuthrich & Merz (book & papers)
Esbjorn Ohlsson (one yr view)
Dorothea Diers (one yr view)
Tom Wright (LMAG presentation one yr 
view)

They [M&W] use a completely different 
approach to the one described here, 
but the two methods give exactly the 
same variance for the one-year CDR

Schnieper/Liu (splitting IBNR into new 
reported claims and IBNER)
Quarg & Mack/Liu (combining information 
in paid and incurred)
Stochastic BF – Mack, Verrall, Alai, 
Wuthrich
Greg Taylor et al (individual claims)
Magda Schiegl (3D)

Verrall & Brydon (calendar year trends)
Jens Perch-Nielsen (calendar year trends)
Susanna Bjorkwall (parametric bootstrap, 
separation technique)
Pavel Shevchenko (Bayesian)
Fabrizio Restione (Bayesian)
Anders Jessen (Bayesian - incorporating 
claim numbers)
Piet de Jong (estimating correlations for 
multiple triangles)
Murphy and McLennan (projecting 
individual open large claims and netting 
down)
+ many others
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