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Aims and Objectives

Aims
» To explain core concepts

» To take away some of the mystique

Agenda

» Conceptual framework

» A basic example

» The over-dispersed Poisson model
» Mack’s model

» The 1 year view of reserve risk

» Conclusions
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Stochastic claims reserving EMB

» This has become a new academic ﬁ]

discipline

» It has spawned several PhDs

» Numerous papers appearing in Stu ChaSti c

academic journals : i
claims reserving
» Presentations at every actuarial methods
conference In Insurance
» A book has appeared

» There is a Wikipedia page

[

MARIO V. WIITHRICH
MICHAEL MERZ
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Reserving Risk EMB

» Reserving is concerned with forecasting outstanding liabilities
» There is uncertainty associated with any forecast
» Reserving risk attempts to capture that uncertainty

> We are interested in the predictive distribution of ultimate losses AND
the associated cash flows

» Don't just focus on “Ultimates” or “Reserves”

» We need distributions of cash flows for discounting and for capital
models

> We need methods that can provide those distributions

» The methods are still evolving
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Conceptual Framework

| &

EMB

Reserve Estimate

(Measure of Location)

Variability

(Prediction Error)

Predictive Distribution
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Traditional deterministic methods

Statistical assumptions required
Prediction Error = SD of Forecast

Can be estimated analytically

Usually cannot be obtained analytically

Simulation methods required
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Approaches to stochastic reserving EMB

“‘We can do this the easy way, or the hard way...”

» A lot of work in the academic literature has focused on specifying a model, then
devising analytic formulae for the standard deviation of the forecast. This is the
hard way.

» It doesn’t get us very far. A standard deviation is useful, but the formulae are
specific to the model. What if we want other models, other risk measures, or
a full distribution?

» More recent work has focused on using simulation techniques (bootstrap or
MCMC) to provide a full distribution of cash-flows (hence reserves). This is the
“‘easy” way.

» We still need to specify the model, and the analytic methods are useful for
checking the results

» There are still many practical difficulties and limitations
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The “ultimo” view and the one-year view O
An added complication EMB

» A standard actuarial reserving analysis tries to find the expected outstanding
liabilities, giving the expected ultimate cost of claims over the lifetime of the
liabilities

» The traditional actuarial approach to reserving risk is to look at the uncertainty in
the outcomes over the lifetime of the liabilities (the “ultimo” perspective)

» Under Solvency Il, a 1 year view is taken. We need a distribution of the
expected outstanding liabilities after 1 year. This is a different view of reserving
risk.

» Can the two views be reconciled in some way?
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Basic Concepts

Uncertainty when Forecasting:
Prediction errors and Predictive
distributions
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A Basic Example EMB

» Suppose you are an established Private Motor insurer and have written
the same number of policies for the last 11 years

> You have had the following number of large claims:

12 How many large claims

10 do you expect next year?
g 10
5 & 7 7 8 What is the uncertainty in
) .
= 6 6 your estimate?
d 8 5 5 5
5 4
'é +3 What is the uncertainty in
Z 2 the outcome?

1989 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
Reporting Year
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A Basic Example — A Solution EMB
] Sy mean - |
0

Suppose that the large claims 10

come from a Poisson distribution
with mean A.

Can estimate the mean A from the
observed large claims

Number of Large Claims
(o]

Wh at |S the va nance Of a PO'SSO” 1999 2000 2001 2002 2003 2004 2008 2006 2007 2008 2000 2010

(6) distribution’ e

How can we measure the uncertainty of using the sample mean?
Sample mean = () xi)/n

If xiare independent and identically distributed, then variance of the

sample mean = sample variance / n Estimation Variance = 0.314
Prediction Variance B il Estimation Variance
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The Bootstrap EMB

An alternative way of calculating the estimation variance is the bootstrap

Data must be independent and

Original Sample identically distributed

Produce a pseudo data
sample by re-sampling with g
replacement

Calculate the parameters of
interest

The SD gives a bootstrap estimate of Repeat many times, giving a
the standard error of the parameters distribution of the parameters

© 2010 EMB. All rights reserved. Slide 11



O

A Basic Example - Bootstrap EMB

Mean

omenes ;I EIIEIEIIEIEIEIENE O
Pseudo data 1 .

reaso a2 | KEEIEIEAENEACEAEAEY
et e o ENESEAENERERENEREDIENEN D

1.400

. Sample mean = 6.00 If we sample from
1,000 . . . .
: S Poisson distributions

800 Sample variance = 0.313 .

600 with these means, we
400 Estimation Variance C.an_ de”Ye f(he _
200 - predictive distribution
including process

variance.

P P P P o PP Pt et P P APl 4T AP AP P P
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A Basic Example - Bootstrap EMB

Mean
omeessee: I EIIEIEIEIEIENEIENED O
rsavcoces 1 I EAEIED
ooz [ ENEIEEIEIEAEARARIEN (2 KN
seuto s o [ NI ENEDEEN (0 BN

1400 1,800 .
1200 1.400 - Sample mean = 6.00
1000 1.200 -
E 800 E 1.000 -
800 -
600 o
400 ‘o .
200 - 200 -
0 - -
WP PP P PP P P PP aPaTAPaPAP P o P o 012345678 910111213141516171819
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Important Lessons EMB

» We could calculate the SD of the forecast (“prediction error”)
analytically, taking account of parameter uncertainty.

» This is the HARD way.

» Bootstrapping gives a distribution of parameters, hence an estimate
of the estimation error, without the hard maths

» When supplemented by a second simulation step incorporating the
process error, a distribution of the forecast is generated

» This is the EASY way

© 2010 EMB. All rights reserved. Slide 14



A More Complicated Example EMB

» Suppose now that the number of large claims had been:

i.e. The same number of large claims but in a different order

-
n)

How many large claims
do you expect next year?

-
o

o

What is the uncertainty in
your estimate?

Number of Large Claims
D

Residual for linear

regression = Actual - Fitted

1989 2000 2001 2002 2003 2004 2005 2008 2007 2008 2009 2010
Reporting Year

© 2010 EMB. All rights reserved. Slide 15



Regression-type problems and Bootstrapping

| &

EMB

Define and fit statistical model

Obtain residuals and pseudo data

Re-fit statistical model to pseudo data

Obtain forecast, including process error

Any model that can be clearly defined can be bootstrapped
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Bootstrapping a Linear Regression Problem EMB

» The bootstrap process for the estimation variance is then:

>

v Vv VvV Vv VvV VY

Specify a model (e.g. linear regression)

Define the residuals

Re-sample the residuals with replacement

Rearrange the residual definition to create new ‘pseudo’ data

Refit the model on the ‘pseudo’ data

Project forward to get a mean claim amount for the next time period

The variance of the trended mean gives the estimation variance

» We can still keep the Poisson assumption for the process distribution, just with a trended
mean

>
>

Simulate from a Poisson distribution, conditional on the simulated mean

The variance of the forecasts gives the prediction variance

> Note: We have used standard linear regression in this example for simplicity — ideally we
would fit a Poisson GLM
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Stochastic Reserving

Over-dispersed Poisson Model

Doing it the HARD way
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Over-Dispersed Poisson Model EMB

C; = Incremental claimsin origin year i and development year ; ’_|_|—|_I_
1
/11
Cij - ODP(IU;']"¢]') C;
£ [Cij ] — Hy
_ Variance proportional
=0 L. <€
VCZI/'[CU ] ¢J H Y to expected value
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Example Predictor Structures

EMB

|Og (:uij): un <€

n;, =c+a;+b,
n.(t) =c+a,+bt+dlog (1)

() = c+a;+s5,(t) +5,(log (1)
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Log “link” function

Chain Ladder

Hoerl Curve

Smoother



Parameter estimation EMB

> Write down joint density of the data given
the parameters — the “Likelihood”

» Treat as a function of the parameters

» Maximise the (log) Likelihood with respect
to the parameters
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Variability in Claims Reserves EMB

» Variability of a forecast

> Includes estimation variance and process variance

prediction error = (process variance + estimation variance)

> Problem reduces to estimating the two components

» This is difficult analytically, but possible (see, for example, E & V
2002)

> Note: “prediction error” is also known as “root mean square error of
prediction” (RMSEP)
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Stochastic Reserving

Over-dispersed Poisson Model

Doing it the EASY way
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Stochastic Reserving: Bootstrapping

» Bootstrapping assumes the data are
independent and identically distributed

» With regression type problems, the
data are often assumed to be
independent but are not identically
distributed (the means are different for
each observation)

> However, the residuals are usually
I.i.d, or can be made so

» Therefore, with regression problems, it
Is common to bootstrap the residuals
instead
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Reserving and Bootstrapping EMB8

Define and fit statistical model

Obtain residuals and pseudo data

Re-fit statistical model to pseudo data

Obtain forecast, including process error

Any model that can be clearly defined can be bootstrapped
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Bootstrapping the Chain Ladder
Over-dispersed Poisson model

EMB

1. Fit chain ladder model 5
i — M
2. Obtain Pearson residuals —— 7, = y__ Ty
. Nz
3. Resample residuals
4, Obtain pseudo data, given I”l;, M

Cy =1y Bkt + 1y

5. Use chain ladder to re-fit model, and estimate future incremental payments
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Bootstrapping the Chain Ladder EMB

6. Simulate observation from process distribution assuming mean is
incremental value obtained at Step 5

1. Repeat many times, storing the reserve estimates (this gives the predictive
distribution)

8. Prediction error is then standard deviation of results

Note: Where curve fitting has been used for smoothing and extrapolation (for tail estimation), replace
the chain ladder model in steps 1 and 5 by the actual model used
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Excel Example
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Taylor & Ashe Data

Observed incremental values

357,848

352,118

290,507

310,608

443,160

396,132

440,832

359,480

376,686

344,014

Dev Factors 3.49061

766,940

884,021

1,001,799

1,108,250

693,190

937,085

847,631

1,061,648

986,608

1.74733
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610,542

933,894

926,219

776,189

991,983

847,498

1,131,398

1,443,370

1.45741

482,940

1,183,289

1,016,654

1,562,400

769,488

805,037

1,063,269

1.17385

527,326

445,745

750,816

272,482

504,851

705,960

1.10382

574,398

320,996

146,923

352,053

470,639

1.08627

146,342

527,804

495,992

206,286

1.05387

139,950

266,172

280,405

1.07656

227,229

425,046

1.01772

67,948

1.00000



Taylor & Ashe Data

Fitted incremental values (chain ladder model) EMB
Reserve
270,061 672,617 704,494 753,438 417,350 292,571 268,344 182,035 272,606 67,948 0
376,125 936,779 981,176 1,049,342 581,260 407,474 373,732 253,527 379,669 94,634 94,634
372,325 927,316 971,264 1,038,741 575,388 403,358 369,957 250,966 375,833 93,678 469,511
366,724 913,365 956,652 1,023,114 566,731 397,290 364,391 247,190 370,179 92,268 709,638
336,287 837,559 877,254 938,200 519,695 364,316 334,148 226,674 339,456 84,611 984,889
353,798 881,172 922,933 987,053 546,756 383,287 351,548 238,477 357,132 89,016 1,419,459
391,842 975,923 1,022,175 1,093,189 605,548 424,501 389,349 264,121 395,534 98,588 2,177,641
469,648 1,169,707 1,225,143 1,310,258 725,788 508,792 466,660 316,566 474,073 118,164 3,920,301
390,561 972,733 1,018,834 1,089,616 603,569 423,113 388,076 263,257 394,241 98,266 4,278,972
344,014 856,804 897,410 959,756 531,636 372,687 341,826 231,882 347,255 86,555 4,625,811
Total 18,680,856
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Taylor & Ashe Data O

Scaled residuals : ODP with constant scale parameter EMB

0.737 0.501 -0.488 -1.359 0.742 2.272 -1.027 -0.430 -0.379 0.000
-0.171 -0.238 -0.208 0.570 -0.775 -0.591 1.099 0.110 0.321
-0.585 0.337 -0.199 -0.094 1.008 -1.760 0.903 0.256
-0.404 0.889 -0.804 2.325 -1.704 -0.313 -1.142
0.804 -0.688 0.534 -0.759 -0.090 0.768
0.310 0.260 -0.342 -0.799 0.939
0.341 -0.566 0.471 -0.125
-0.701 -0.436 0.860
-0.097 0.061
0.000
Scale”0.5 229.3 229.3 229.3 229.3 229.3 229.3 229.3 229.3 229.3 229.3
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Taylor & Ashe Data

Scaled residuals : ODP with constant scale parameter

EMB

Development Residuals (Scaled, Bias-Adjusted, Zero-Average) With Scale Values

3.0 1
X X
2.5
2.0 1
1.5 N
X X Bé X
107 3 X X
® 05 x %
=h i o 2 m m m m % B
2
» X
& 00 X s %
% x X
X X
-0.5 X X < X
X X X
X X
1.0 X X X
X
1.5 1 X
X
-2.0 1
X X
-2.5 T T T T T T T T
0 1 2 3 4 5 6 7 8 10

Note that the volatility is lower at the earlier and later development periods
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Development Year

r 230.4

~ 230.2

~ 230.0

~ 229.8

~ 229.6

- 229.4

229.2

= 229.0

~ 228.8

~ 228.6

~ 228.4

228.2

Residuals

Scale Values
(Forecasting)




Taylor & Ashe Data O

Scaled residuals : ODP with non-constant scale parameter EMB

1.207 0.808 -0.731 -0.980 0.602 1.348 -0.794 -1.176 -0.873 0.000
-0.280 -0.383 -0.312 0.411 -0.629 -0.350 0.849 0.299 0.740
-0.958 0.544 -0.299 -0.068 0.818 -1.045 0.698 0.701
-0.662 1.433 -1.206 1.676 -1.383 -0.186 -0.883
1.317 -1.109 0.800 -0.548 -0.073 0.456
0.509 0.419 -0.513 -0.576 0.762
0.559 -0.913 0.706 -0.090
-1.149 -0.702 1.288
-0.159 0.099
0.000
Scale”0.5 139.9 142.3 153.0 318.1 282.6 386.6 296.7 83.9 99.6 83.9
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Taylor & Ashe Data C)

Scaled residuals: ODP with non-constant scale parameter EMB

Development Residuals (Scaled) With Scale Values

2.0 — 400
X Residal
1.5 X = 350
X
X (] Scale Values (ritial)
1.0 = 300
0 X X B e
— 054 X X - 250
g X
3 X .
‘7, (Forecasting)
] X
00 200
X
X
X X
-0.5 = 150
X X X
X
1.0 X X < - 100
X
X X
X
-15 T T T T T T T T T 50
0 1 2 3 4 5 6 7 8 9 10

Development Year

Note that the residuals are standardised better when using non-constant scale parameters
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Taylor & Ashe Data

ODP: Constant vs Non-Constant Scale Parameters

EMB

Simulated
Constant Scale
Accident Prediction Prediction

Simulated
Non-Constant Scale
Prediction Prediction

Year Error Error % Error Error %
1 0 0.0% 0 0.0%
2 112,552 119.0% 43,882 45.3%
3 217,547 46.2% 109,449 23.0%
4 262,934 36.9% 141,509 19.8%
5 306,595 31.0% 256,031 25.7%
6 375,745 26.4% 398,377 27.8%
7 500,332 22.9% 529,898 24.2%
8 791,481 20.1% 735,245 18.7%
9 1,060,473 24.7% 809,457 18.9%
10 2,025,898 43.3%| 1,285,560 27.6%

Total 2,992,296 15.9%| 2,228,677 11.9%
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Over-dispersed Poisson model EMB

> Note the possibility of obtaining negative pseudo

: ; . C.— 1,

incremental values when using non-parametric fr =% "V thenC =+ [d 1. + 1.
bootstrapping (resampling residuals), which y /¢,U vy ¢J’u’f Hi
could in turn lead to negative pseudo cumulative g

values.

» This is a known issue with non-parametric
bootstrapping. For example:

“Although the [non-parametric] bootstrap/ simulation
procedure provides prediction errors that are consistent
with their analytic counterparts, the predictive distribution
produced in this way might have some undesirable
properties. For example, for some origin year reserves,
the minimum values of the predictive distribution could be

C =incremental amounts
u = expected incremental amounts

negative.” !

“It [non-parametric bootstrapping] is not without its ¢ =scale parameter
difficulties, for example: a small number of sets of _ :
pseudo data may be incompatible with the underlying r = scaled Pearson residual
model...”?

This issue disappears with parametric bootstrapping

(1) England (2002)
(2) England & Verrall (2006)
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ODP Bootstrapping — Practical Issues EMS

» Most suitable for paid amounts

» Can result in negative incrementals/reserves in some simulations when the
pseudo data are generated by re-sampling residuals and inverting

» If this is a problem, use parametric bootstrapping instead

> E&V (1999) only considered using a constant dispersion parameter: in
general it is better to use non-constant scale parameters

» Choice of process distribution?
> Ideally we want an “over-dispersed Poisson” distribution

» In practice just use a proxy (eg Gamma) with the same mean and
variance properties
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ODP Model — Characteristics EMB

» Itis a model of incremental amounts
» It is not suitable when development factors are less than 1

» When forecasting, by using a distribution that only allows positive values
(eg Gamma or Lognormal), forecast incremental values will be positive

» That is, simulated cumulative amounts will be strictly increasing
» Simulated reserves can never be negative

» The ultimate claims will be at least as big as the observed cumulative
paid for each origin period

» (Although note comments on parametric vs non-parametric
bootstrapping above)

© 2010 EMB. All rights reserved. Slide 38



Stochastic Reserving

Mack’s Model

Doing it the HARD way

© 2010 EMB. All rights reserved. Slide 39




Mack’s Model EMS8

Mack, T (1993), Distribution-free calculation of the standard error of
chain-ladder reserve estimates. ASTIN Bulletin, 22, 93-109

=

D, =Cumulative claimsin origin year i and development year ; I_|
Specified mean and variance only: /
D.
Ij
E(Dlj ) = ;LjDi,j—l < Expectgd value proportlonal
to previous cumulative

2 : .
V(D ) —o ) 1 Varlgnce propor’qonal to
) o previous cumulative
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Mack’'s Model EMS8

n—j+1
. 2 Wil
A =i < Estimator for lambda
J n—j+1
2 W
i=1
1 n—j+1 A N2
5-]2 — : Z W, (fl —/Ij) <«— Estimator for sigma squared
n_.] i=1
_ _ ij
w, =D, and f, = 5
i,j-1
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Variability in Claims Reserves ;B

» Variability of a forecast

> Includes estimation variance and process variance

prediction error = (process variance + estimation variance)

> Problem reduces to estimating the two components. For example, for
the reserves in origin year /.

( D
a1 A2
RMSEP| R, |~ f);kil?;ﬂ 151+nz,51
\ =n—i+l Mg ik Dqk
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Mack’s Model as a GLM EMB

Step 1: Reformulate Mack’s model as a model of the ratios

Step 2: Recognise that Mack’s “Scale” parameters are derived from
the squared residuals of a weighted normal regression model

e[ 5| £()-4

i,j-1

D, =Cumulative claimsin origin year i and development year ;
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@
Mack’s Model as a GLM EMB

Weighted normal

o’ .—  errors GLM with

Ji ~N| A, — weights w

I’l-]+l ~ 2
0= -2 Wi (fy J)
n_] i=1

Note: Mack’s model was not derived as a weighted normal GLM, but a
weighted normal GLM gives the same estimator of sigma

© 2010 EMB. All rights reserved. Slide 44



Stochastic Reserving

Mack’s Model

Doing it the EASY way
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Reserving and Bootstrapping EMB8

Define and fit statistical model

Obtain residuals and pseudo data

Re-fit statistical model to pseudo data

Obtain forecast, including process error

Any model that can be clearly defined can be bootstrapped

© 2010 EMB. All rights reserved. Slide 46



Bootstrapping the Chain Ladder EMB

W N

Fit chain ladder model to the observed link ratios

Obtain (scaled) Pearson residuals > VWi (fi' —/1J~>
ij
Resample residuals O,
Obtain pseudo data, given I”l;, A
. I.O,
_ i
Ji = t4
W..

y

Use chain ladder model to re-estimate the development factors (as a weighted
average of the pseudo-link ratios, using the original weights w)

© 2010 EMB. All rights reserved. Slide 47



Bootstrapping the Chain Ladder C)
Mack’s model EMB

6. Given the observed cumulative payments to date, move 1 period ahead by multiplying
the previous cumulative claims by the appropriate simulated development factor
obtained at Step 5

. Include the process error by sampling a single observation from the underlying
process distribution

7. Move to the next period, where the forecast cumulative amounts are now conditional
on the simulated 1 period ahead forecast obtained at Step 6 (including the process
error)

8. Repeat many times, storing the reserve estimates (this gives the predictive
distribution)

9. Prediction error is then standard deviation of results

Note: Where curve fitting has been used for smoothing and extrapolation (for tail estimation), replace
the chain ladder model in steps 1 and 5 by the actual model used
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Excel Example
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Taylor & Ashe Data O

Scaled residuals: Mack’'s model EMB

-0.519 1.117 -1.152 0.772 1.490 -0.850 -1.189 -0.759 0.000
0.030 0.047 0.632 -0.608 -0.322 0.939 0.346 0.651
1.290 -0.179 0.006 0.850 -1.141 0.758 0.682
1.500 -1.228 1.840 -1.594 -0.282 -0.907
-1.540 0.689 -0.683 0.005 0.543
-0.197 -0.664 -0.636 0.878
-0.942 0.764 -0.137
0.693 1.647 Note that the a parameters decrease rapidly
0.197
Mack's alpha 400.4 194.3 204.9 1232 117.2 905 21.1 33.9 21.1

™

This parameter is highly influential on the overall variability
© 2010 EMB. All rights reserved. Slide 50



Taylor & Ashe Data D)

Scaled residuals: Mack’s model EMB

Development Residuals (Scaled) With Alpha Values

2.0 1 450
X
X —
1.5 X 400 X Residiels
X
= 350
1.0 % O phaValus
X X
X & X X % - 300
X eI} ApraVaues
0.5 (Resichels)
X
= X = 250
= X
5 00 == @y
o
74 X ~ 200
-0.5 X
= 150
1.0 X
= 100
-1.5 1 X L 50
-2.0 T T T T T T T T T 0
0 1 2 3 4 5 6 7 8 9 10

Development Year

Note that the a parameters decrease rapidly
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Taylor & Ashe Data

Bootstrapping Mack’s Model

EMB

Analytic Simulated

Accident Prediction Prediction | Prediction Prediction
Year Error Error % Error Error %
1 0 0.0% 0 0.0%
2 75,535 79.8% 75,001 78.4%
3 121,699 25.9% 121,578 26.0%
4 133,549 18.8% 132,939 18.7%
5 261,406 26.5% 261,911 26.5%
6 411,010 29.0% 414,910 29.1%
7 558,317 25.6% 558,639 25.7%
8 875,328 22.3% 880,184 22.4%

9 971,258 22.7% 979,052 22.8%
10 1,363,155 29.5%| 1,368,720 29.4%
Total 2,447,095 13.1%| 2,454,616 13.1%
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Practical Issues EMB

» Choice of process distribution?
» Normal: theoretically correct, but allows negative cumulative amounts
» Gamma: pragmatic alternative
» When used with incurred data:
> Provides distribution of ultimate claims
» Provides distribution of IBNR+IBNER (not outstanding claims)

» Also provides a distribution of Ultimates
— By subtracting the observed paid amounts gives a distribution of outstanding amounts

» Requires (simulated) paid to incurred ratios if paid cash-flows are required
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Bootstrapping Mack’s Model @
Characteristics EMB

» |tis a model of the cumulative amounts

> It will work with negative incremental
observed claims where development
factors are less than 1

» Although it is possible to force simulated
cumulative amounts to be positive, there is
nothing to stop a simulated cumulative
amount being less than the previous
amount. That is, negative incremental
amounts are always possible.

» This may be beneficial with incurred
data, but possibly a disadvantage with
paid data

> Note: bootstrapping provides predictive
distributions for Mack’s model (including
cash-flows)
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Stochastic Reserving

Lognormal Models
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Lognormal Models O

> ltis also possible to fit linear regression
models to the log of the incremental claims
(log-normal models)

» Again, the prediction error can be
calculated the hard way (analytically) or
the easy way (using bootstrap or MCMC
methods)

> To bootstrap the lognormal models, simply
follow the steps outlined above for
reserving and bootstrapping (see E&V
2006)
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Stochastic Reserving

The one-yr view of risk
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A Projected Balance Sheet View

@

EMB

» When projecting Balance Sheets for
solvency, we have an opening
balance sheet with expected
outstanding liabilities

» We then project one year forwards,
simulating the payments that emerge
in the year

» We then require a closing balance
sheet, with (simulated) expected
outstanding liabilities conditional on
the payments in the year

» In a multi-year model, the closing
balance sheet after one year
becomes the opening balance sheet
in the second year, and so on
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O

Solvency Il EMB

» For Solvency Il, a 1 year perspective is taken, requiring a distribution of the
expected value of the liabilities after 1 year, for the 1 year ahead balance sheet
in internal capital models

» If the standard formula is used, a 1 year-ahead “reserve risk” standard deviation
% is required. This could be:

» The standard parameter for the line-of-business

» An undertaking specific parameter

» The 1 year-ahead “reserve risk” standard deviation is the SD of the distribution
of profit/loss on reserves after 1 year
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The one-year run-off result (undiscounted) 0
(the view of profit or loss on reserves after one year) EMB

For a particular origin year, let:

The opening reserve estimate be R,
The reserve estimate after one year be R,
The payments in the year be C,

The run-off result (claims development result) be  CDR,
Then

CDR, =R,-C, —R, =U,-U,

Where the opening estimate of ultimate claims and the estimate of the
ultimate after one yearare U,,U,
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The one-year run-off result C)

(the view of profit or loss on reserves after one year) EMB

Merz & Wuthrich (2008) derived analytic formulae for the standard deviation of the
claims development result after one year assuming:

» The opening reserves were set using the pure chain ladder model (no tail)

» Claims develop in the year according to the assumptions underlying Mack’s
model

> Reserves are set after one year using the pure chain ladder model (no tail)
» The mathematics is quite challenging. This is the HARD way

The M&W method is gaining popularity, but has limitations. What if:
» We need a tail factor to extrapolate into the future?

» Mack’s model is not used — other assumptions are used instead?
» We want another risk measure (say, VaR @ 99.5%)?

» We want a distribution of the CDR (not just a standard deviation)?
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Merz & Wuthrich (2008) |
Data Triangle EMB
Accident

Year 12m 24m 36m 48m 60m 72m 84m 96m 108m

0 2,202,584 3,210,449 3,468,122 3,545,070 3,621,627 3,644,636 3,669,012 3,674,511 3,678,633

1 2,350,650 3,553,023 3,783,846 3,840,067 3,865,187 3,878,744 3,898,281 3,902,425

2 2,321,885 3,424,190 3,700,876 3,798,198 3,854,755 3,878,993 3,898,825

3 2,171,487 3,165,274 3,395,841 3,466,453 3,515,703 3,548,422

4 2,140,328 3,157,079 3,399,262 3,500,520 3,585,812

5 2,290,664 3,338,197 3,550,332 3,641,036

6 2,148,216 3,219,775 3,428,335

7 2,143,728 3,158,581

8 2,144,738
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Merz & Wuthrich (2008) |

Prediction errors EMB

Analytic |
Prediction Errors

Accident 1 Year Mack
Year Ahead CDR Ultimate

0 0 0
1 567 567
2 1,488 1,566
3 3,923 4,157
4 9,723 10,536
5 28,443 30,319
6 20,954 35,967
7 28,119 45,090
8 93,320 69,5652
Total 81,080 108,401

Expressed as a percentage of the opening reserves, this forms a basis of the
reserve risk parameter under Solvency Il (QIS 5 Technical Specification)
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| &
QIS 5: Undertaking Specific Parameters EMB

For the reserving risk parameter: MSEP is from the Merz-Wuthrich
formulae. Clearly there are some
\/MSEP inconsistencies here:
Method 2: o, ,, = 2
» PCO is discounted, but MSEP is
\/MSEonb calcula;ted using undiscounted
Method 3: O ), = amounts
CLPCOlob » MSEP is only valid under the chain-
ladder model and Mack’s
assumptions
There is also a credibility weighting » What if other assumptions are used?
between this and the standard

parameter:

Gres,lob — C'GU,reS,lob + (l_ C)'O-M,res,lob
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The one-year run-off result in a simulation model 0
The EASY way EMB

For a particular origin year, let:

The opening reserve estimate be R,
The expected reserve estimate after one year be RY
The payments in the year be Cl(i)
The run-off result (claims development result) be  CDR,”
Then

CDR{” =R, ~C{" =R{" =U, ~U"

Where the opening estimate of ultimate claims and the expected ultimate
after one year are U, Ul(’)

for each simulation /
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The one-year run-off result in a simulation model @
The EASY way EMB

1. Given the opening reserve triangle, simulate all future claim payments to
ultimate using bootstrap (or Bayesian MCMC) techniques.

2. Now forget that we have already simulated what the future holds.

3. Move one year ahead. Augment the opening reserve triangle by one diagonal,
that is, by the simulated payments from step 1 in the next calendar year only.
An actuary only sees what emerges in the year.

4. For each simulation, estimate the outstanding liabilities, conditional only on
what has emerged to date. (The future is still “unknown™).

5. A reserving methodology is required for each simulation — an “actuary-in-the-
box” is required*. We call this re-reserving.

6. For a one-year model, this will underestimate the true volatility at the end of that
year (even if the mean across all simulations is correct).

* The term “actuary-in-the-box” was coined by Esbjérn Ohlsson
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Values by Simulation: Scaled Inflated Cumulative Amounts by Origin and Dev Period[*,7,%]

9,000,000 —
The standard actuarial perspective:
8,000,000 forecasting outcomes over the lifetime of
the liabilities, to their ultimate position
7,000,000 —
£,000,000 —
5,000,000 —
4,000,000 A single accident
year, 4 years
develpped
3,000,000 — el\p
“Actual” simulated
future amounts
2,000,000 —
1,000,000 —
0 I I I I I I \ I
1 2 3 4 5 7 3 10

Array Index



B E-B 4 - -

Value

9,000,000 —

8,000,000 —

7,000,000 —

6,000,000 4

5,000,000 4

4,000,000 -

3,000,000 —

2,000,000 —

1,000,000 —

Values by Simulation: Paid Claims Triangle Gross[*,7,%]

One year ahead forecast

Array Index
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Value

9,000,000 —

2,000,000 —

7.000,000 —

£.000,000 —

5,000,000 —

4,000,000 —

3,000,000 —

2.000,000 —

1.000,000 —

- - B B

Values by Simulation: Scaled Inflated Cumulative Amounts by Origin and Dev Period[*.7.7]

“Actual” simulated
future amounts

Array Index

Yalue

9,000,000 —

8,000,000 —

7.000,000 —

B.000,000 —

5.000,000 —

4,000,000 —

3,000,000 —

2,000,000 —

1.000,000 —

Values by Si

Paid Claims Triangle at End of Period[*.7.7]

Expected payments
conditional on year 1
position

Array Index
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ResQ Example

Bootstrap Results Summary — “Ultimo” perspective EMB

. File Edit Administration Windows Help

hed B8 o, 0

[ Show Mack prediction errors

Tl om A shEICE.

g

2006, 0.

Details | Residuals | Simulation ||Fbesu|ts ‘ Output ‘ MNotes | Audit Log |

Iunsmled Results | Targets ‘ Scaled Results ‘ Discounting ‘ Discounted Results | Diagnostics | Consalidation ‘

Isummary | Detail | Aggregates | Reserve Correlations | Cumulative Probability | Probability Density | Ultimates Graph |

cdentten | tatet | Epeces | mrdcon | Predein | e | 0| e
i Error® nate =SErVe : nee.
1996 0 0 0.00%| 3,673,533 o o
1997 3,902,425 4,379 | S68 | 12.98%| 3,906,804 4,378 | 1]
1998 3,898,825 | 9,345 | 1,54  16.73%| 3,908,170 9,347 3
1999 3,548,422 28,389 | 4,147 14.61%| 3576811 28,392 3|
000 | 3585812 51472 | 10,58 20.53%| 3,637,284 51,444 %
2001 3,641,038 111,961 | 30,296 37.06%| 3,752,997 111,811 150
2002 3,428,335 187,170 | 35951  19.21%| 3,615,505 187,084 a6
2003 3,158,581 411,687 | 44,996 10.93%| 3,570,268 411,864 77 |
2004 2,144,738 | 1,433,443 | 69,713 | 4.86%| 3,578,181 1,433,505 52 |
Total | 30,986,807 2,237,846 | 108,992  4.87%| 33,224,653 2,237,826 20
| Simulate H = apnly H o OK HxCancel‘

|qunecti:_m: Res( 3.5 Example Data u_|Use:: Master

| 4
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ResQ Example

1 Year ahead — Simulation 1

& i

Edit  Administration

DEeHE BB 5

Windows Help

£ Fs b - L = £ H £
Bl IedamE. e ine 00 e e NG
Basic Inpuis | Triangle | Results | Output | MNotes ‘ Audit Log |
Future Periods : 1 : Smulation Index (1 7|
1996 3,210, 4495 3,545,070 3,621,627 3,644,636 3,609 ,012 3,674, 511’ 3,678,633 3,678,633
1957 2,350, ESOI 3,553 n23' 3,840,067 3,898,281 3,902,425 3,907,232
1993 2,321,885 3, 424, . 3 98 azs 3,901, ?m
1999 2,171,487 3,165,2?4: 3 395 341 3 466,453 3,548,422 3 5?? 1?3
2000 2,140,328; 3,15?,079 3 399 xz 3,500, szn: 3,599,948
2001 2,290, 664i 3,338,197| 3 550 332 3,641,035
2002 2,148,216 3,219, ??5' 3,428, 335 3,496,277
2003 248, ?25 3 158 581 3,334, 6?2
2004 3,144, ?33 3,221, 939
| smuete || Heeoy || ook || X cancel |

|Conne!::ti_on:_ ResQ 3.5 Bxample Data v |L_Fser:_Master

é.
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ResQ Example O

1 Year ahead — Simulation 2 EMB

B file Edit Administration  Windows Help -8 X _
H = -~ v a Sz z H 3
oeEseaE 0 ¢ IeiatmE e w00 o NG
Basic Inpuis | Triangle | Results | Output | MNotes ‘ Audit Log |
Future Periods : 1 : Smulation Index (B 7|
FR he Pm}m 1905 3,210,499 3,468,122 3,545,070 3,621,627 3,644,636 3,669,012 3674511 3,678,633 3,678,633
1997 2,350,650 3,553,023 3,783,846 3,840,067 | 387, ?44 3,808,281 3,902,425 3,907,382 [
1998 2321,885 3424 3?00& 5| 3]‘98 ]38. 38?8 993. 38988 s 3,902,795
1999 2,171,487 3 165 2?4 3,395,841 3,466,453 3,548,422| 3 5?1 ?93 [
2000 2,140,3235 3,157,079 3,399,262 3,500,520 3,619,553
2001 2,290, 664i 3,338, 19?E 3,550,332 3,641,036
eseri s ! I { |
Rescrit 2002 2,148,216 3,219, ??5- 3,428,335 3,484,910
2003 2,143, ?285 3 158,581 3,357, 924
2004 2,144, ?3:3 3,237, .1.64'
Simis 3 sty | | || |
S | te || »!-.|:||3r v"DK xCanoel
| |Connecti_on: ResQ 3.5 Bxample Data v |E._Fser: Master | e
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ResQ Example O

1 Year ahead — Simulation 3 EMB

. File Edit Administration Windows Help = Haa
D HEsBREE IR AMEE. . REDUS.

Basic Inputs | ;riangie Results | Cutput | MNotes ‘ Audit Log |

FutrePeriods: |1 3| Smuatonindex B 3]

(=

1996 3,210, 4495 3,968,122 3,545 070 3,621,627 3,644,638 3,680 ,012 3,674, 511’ 3,678,633 3,678,633

1597 2,350, ESDI 3,553, n23' 3,783,846 3,840,067 3,898,281 3,902,425 {

1998 2,321,885 3, 424 . 3 sgs azs 3,904, 5'25

1999 2,171,487 3 165 2?4 3,385, 341 3 456,453 3,548,422 3,563,398 [

2000 2,140,328; 3,15?,079 B39, xz 3,500, szn: 3,610,368 |

2001 2,290, 664i 3,338,197| 3 550 332 3,641,035

2002 2,148,216 3,215, ??5' 3,428, 235 3,494,624,

2003 2,143, ?28 3 158 581 3,34, 680'

2004 3,144, ?33 3,244, ?81

| smuete || Heeoy || ook || X cancel |

| |Conne!::ti_on:_ ResQ 3.5 Bxample Data v |L_Fser:_Master | e
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ResQ Example O

Bootstrap Run-off Results Summary — 1 year perspective EMB

@l File Edit Administration Windows Help -8 X _

] '] L s H - v - i = = =

DELRET YN IEDEETLLMERLlA=r gy

Basic Inputs | Triangle Results | Qutput | Motes ‘ Audit Log |
|Summar'y | Detail ‘ Agagregates | Reserve Correlations ‘ Cumulative Probability | Probability Density | Ultimates Graph ‘
_ Avglatest | AvgClosing | SDeV Avg Closing | Avg Opening | Expected Sthev StDev Avg Opening
Accident Year | Cumulative Expected Closing Sthev % Expected Expected R:.m{!ﬂ: Run-Off Run-off P t Expected
Amount | Reserve E“*’E"fdn Ultimate | Reserve Result Result | ResutRatio | ~2/MEN Ultimate
1996 & 0 i} 0.00% | 3,678,633 0 0 i} 0,00% 0 3,678,633
1997 3,808,504 0 0 0.00% 3,906,304 4,379 0 565 12.98% 4,379 | 3,906,804
1993 3,903,790 4,330 293 6.69% 3,908,170 9,345 0 1,486 15.91% 4,965 3,908,170
1999 3,568,257 8,554 527 | 6.16% 3,576,811 23,389 0 3,915 13.80% 19,835 | 3,576,311
2000 3,608,419 23,864 1,081 3.74% | 3,637,284 | 51,472 0 9,745 18.93% 22,607 | 3,637,284 |
2001 3,699,570 53,127 2,272 | 4,28% 3,752,997 111,961 0 28,425 25.39% 58,834 3,752,997
2002 3,507,728 107,777 5,081 4.71% 3,615,505 187,170 0 20,986 11.21% 79,393 3,615,505
2003 3,385,653 184,615 5,884 3.19% | 3,570,268 411,687 0 28,110 6.83% 227,072 3,570,268
2004 3,165,496 412,635 3,019 2.19% | 3,578,181 1,433,443 0 53,406 3.73%| 1,020,758 3,578,181
Total 32,424,651 B00,002 19,608 [ 2.45% 33,224,653 2,237,846 L] 81,226 3.63%| 1,437,844 33,224,653
: A
i | Simulate | | anr | | v"DK | ‘ x Cancel ‘
|Connection: ResQ 3.5 Example Data v |User: Master | e
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ResQ Example
99.5th percentile of the Bootstrap Run-off Result

O

EMB

r

@ Fie

Edit  Administration
DEE & 2R .

Basic Inputs | Triangle

Windows

Help
T I AghEeE.:

Results | Output | Notes | Auditlog |

#% -

. EME ResQ Enterprise - W&M Astin - [Edit Bootstrap Run-off Result: "W&M\Bootstrap Run-off Result (11"]

BEDOM.

Summary ||De13j| ‘ Agagregates | Reserve Correlations ‘ Cumulative Probability | Probability Density | Ultimates Graph ‘

[Elmies]

-5 X

¢ @ . ——

Shaw:
(" Reserves * Statistics |n.1% Percentiles ;I
" Ultimates " By Simulation
{* Run-off result
1996 1997 1998 1999 2000 2001 2002 2003 2004 Total é
Mean ] 0 o| 0 ] o| 0 0 0
‘Standard Deviation 0 568 | 1,486 | 3,916 | 9,745|  28,478| 20,986 28,110 53,406 | 81,276 |
Coeffident of Variation 0.00% -227071604....-619616007... -187843621%... 1513398830. . -601092593.... 1009213656... 4625003622... -39 1296368 -731525607...
Minimum o 2,078 | 6,019 17,101, 40,915 -125274|  -8L605 |  -119,300 |  -233,566  -343,495 |
0.1% 0l 1,638 | 4587 | 12,200 | 30,570 | 87,645 |  £4,561| 87,361  -164,714| 249,932 |
0.2% o -1,540 4,274 11,329 | 28,070 | 81,233 60,096 §1,391| -154,961 |  -231,275
0.3% al 1,477 | 4085 0,812 | 26,770 | 77,651 57,715 77,600 |  -148,043 | 220,949 |
0.4% o 1,4% | 3,928 -10,462 | 25,906 74,919 55,771| 75,064 | -143,221 | 214523 |
0.5% o -1,400 | 3,817 -10,154 -25332|  -72,805  -54,171|  -72,890  -139,055 | -208,912
0.6% o 1,370 | 3,724 | 0,885  -24715| 7,106 -52,953|  -71,015| -1356 303,558
0.7% 0 1,344 3,644 8,666 | 24,089 | 69,676 51,938 69,675 -132,2%62  -198,425
0.8% al 1,317 | 3,579 0,487 | 23,612 68,627 50,862 | 68,351 14,446 194,141 |
0.9% o 1,208 | 3,522 | 9,325 -23,194| 67,450 50,000 66,901 Az7092  -190,918 |
1.0% 0l 4,781 3,457 1,155 | 22,783 66,182 49,165 65,50 / 124895 187,975
1.1% o 1,263 | 3,416 | 8,960 |  22,392| 65121 48,506 64, 172,982 | -1852% | |.
S | Simulate | | /_@/H:@! | | W o | ‘ X cancel ‘
|Connection: ResQ 3.5 Example Data v [User: Master | /, e
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Merz & Wuthrich (2008)

Analytic vs Simulated: Summary

EMB

Accident
Year

0O ~NO O hWDN-~O

Total
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Analytic
Prediction Errors

1 Year
Ahead
CDR

0

o567
1,488
3,923
9,723
28,443
20,954
28,119
53,320

81,080

Mack
Ultimate

0

567
1,566
4,157
10,536
30,319
35,967
45,090
69,552

108,401

Simulated
Prediction Errors

1 Year
Ahead
CDR

0

568
1,486
3,916
9,745
28,428
20,986
28,110
53,406

81,226

Mack
Ultimate

0

568
1,564
4,147
10,569
30,296
35,951
44,996
69,713

108,992



ResQ Example

Cascading Bootstrap Run-off Results

..E.Eiie
DeEeE $BR . 5.

i e

Edit  Administration

e &.in5m 0w 0o R
| Basic Inputs | Triangle | Results | Output | Notes | Audit]_og|

Windows Help

B A oh & eE .

Project

Mame : | Bootstrap Run-off Result (2) |

Output Type : | t

Bootstrap Method : "Eootsh'ap Run-off Result (1)

Originlength: |12 | DevelopmentLength®
—Result Adjustments
nhuetter Ferguson
%' None " None
" standard &+ Additive
 Modified ¢ Multiplicative The input to a Bootstrap Run-off Result can
be another Bootstrap Run-off Result

Simulate Apply W oK

x Cancel

|

(Connection: ResQ 3.5 Example Data y User: Master |
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ResQ Example O

Cascading Bootstrap Run-off Results EMB

. File Edit Administration Windows Help S S
el & B2BR - 5. I I 1 8 Achel=E.:g.

Basic Inputs | Triangle | Results | Output | MNotes | Audit Log |

Future Perinds ; |1 j| Simulation Index |1 jl

i
m
=
L]
&,
&
(<3

1996 3,210,449 3,468,122 3,545,070 3,621,627 3,644,636 3,669,012 3,674,511 3,678,633
1397 2,350,650 3,553,023 3,783,845 3,840,067 3,865,187 3,878,744 3,898,281 3,902,425 3,907,232
1998 2,321,885 3,424,190 3,700,876 3,795,198 3,854,755 3,878,993 3,898,825 3,901,701 3,905,587
1999 2,171,487 3,165,274 3,395,841 3,466,453 3,515,703 3,548,422 3,577,173 3,579,743 '
2000 2,140,328 3,157,079 3,399,262 3,500,520 3,585,812 3,599,948  3,618,4%0 |

2001 2,290,664 3,338,197 3,550,332 3,641,036 3,737,909 3,760,285 |

2002  3,148,216| 3,219,775 3,428,335 3,496,277, 3,606,082 '

2003 2,143,728 3,158,581 3,394,672 3,499,979 '

2004 2,144,738 3,221,989 3,407,550 :

The input to a Bootstrap Run-off Result can be another Bootstrap Run-off Result. This
can be used to give the CDR between the 15t and 2™ years ahead, and so on

| Simulate =} apply oK X cancel

External

|Cennection: ResQ 3.5 Biample Data v \User: Master | A
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ResQ Example O

Cascading Bootstrap Run-off Results EMB
‘@ File Edit Administration Windows Help -8 X
E L e £ F s - - L = = = =
neEiwe .l  ciAanE. g n000s. ¢c. I

Basic Inputs | Triangle Results | Output | MNotes | Audit Log |
|Summar? | Detail | Agaregates | Reserve Correlations | Cumulative Prabability | Probability Density | Ulitimates Graph |
_ Avglatest | Avg Closing :Dsm‘?"' Avg Closing | Avg Opening | Expected StDev StDev e
Accident Year | Cumulative Expected : StDev % Expected Expected Rm{!ﬁ: Run-Off Run-off P,
Amount Reserve ER';ECE& Ultimate Reserve Result Result | Result Ratio f
1996 i 0 0 0.00% | 3,078,033 1] a 0,00%
1997 3,908,304 0 0 0.00% 3,908,304 0 0 0.00%
1993 3,908, 170 o 0 0.00% 3,908,170 4,380 0 487 11,12%
1999 3,572,305 4,005 308 7.70% | 3,576,811 8,554 0 1,306 15,27%
2000 3,628,590 8,694 640 7.36% | 3,637,284 | 28,864 i 3,837 13.29%
2001 3,723,190 29,307 1,416 4,75% 3,752,997 53,127 i 9,679 18.72%
2002 3,564,374 51,131 2,822 | 5.52% 3,615,505 107,777 0 27,438 25,46%
2003 3,464,036 108,232 8,566 5.18% 3,570,268 184,515 0 20,404 11,05%
2004 3,393,018 135,163 8,104 | 4,38% 3,578,181 412,685 0 27,798 5.74%
Total 32,839,619 385,034 16,351 4.25% 33,224,653 800,002 o 52,344 6.54%
= S
T | Simulate H Apply ¢' K x Cancel
|Coqnectiom ResQ 3.5 Example Data v|User: Master | A
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Multiple 1 yr ahead CDRs

| &

An interesting result EMB
» Creating cascading CDRs over all years gives the following results:
Accident Number of years ahead Sqrt(Sum of Mack
Year 1Yr 2Yrs 3Yrs 4Yrs 5Yrs 6 Yrs 7Yrs 8 Yrs Squares) Ultimate
1 0 0 0 0 0 0 0 0 - 0
2 568 0 0 0 0 0 0 0 568 568
3 1,486 487 0 0 0 0 0 0 1,564 1,564
4 3,916 1,306 431 0 0 0 0 0 4,151 4,147
5 9,745 3,837 1,277 425 0 0 0 0 10,560 10,569
6 28,428 9,679 3,824 1,272 425 0 0 0 30,303 30,296
7 20,986 27,438 9,343 3,693 1,226 409 0 0 35,998 35,951
8 28,110 20,404 26,922 9,162 3,613 1,208 402 0 45,055 44,996
9 53,406 27,798 20,236 26,687 9,111 3,600 1,203 402 69,600 69,713
Total 81,226 52,344 38,513 29,010 10,120 3,879 1,285 402 108,543 108,992

» The sum of the variances of the repeated 1 yr ahead CDRs (over all years) equals the

variance over the lifetime of the liabilities

» Under Mack’s assumptions/chain ladder, this can be proved

» (The simulation based results are approximate due to numerical error)

> This means that we expect the risk under the 1 year view to be lower than the standard
“ultimo” perspective
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Re-reserving in Simulation-based Capital Models EMB

The advantage of investigating the claims development result (using re-reserving)
In a simulation environment is that the procedure can be generalised:

Not just the chain ladder model

Not just Mack’s assumptions

Can include curve fitting and extrapolation for tail estimation

Can incorporate a Bornhuetter-Ferguson step

Can be extended beyond the 1 year horizon to look at multi-year forecasts

Provides a distribution of the CDR, not just a standard deviation

v WV VvV Vv Vv Vv V¥

Can be used to help calibrate Solvency Il internal models
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» Stochastic reserving has a reputation for being difficult

> Attempted analytically, it can be, and the limitations of the formulae should be
recognised

» Simulation techniques can simplify the modelling enormously, giving results that
are analogous to the analytic results (when applied correctly), as well as
providing additional information and allowing the models to be generalised

» An understanding of both the analytic and simulation based approaches can be
obtained by following the key principles in each case

» The characteristics of the models and the effect of their key parameters should
be understood. This will help with interpretation of outputs, especially when
things go wrong.

» A reconciliation between the 1 year view and the “ultimo” view can be obtained
by understanding the differences between the perspectives.
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Risk Theory and Simulation EMB

“Modern computer simulation techniques open up a wide field of
practical applications for risk theory concepts, without the restrictive
assumptions, and sophisticated mathematics, of many traditional aspects
of risk theory”.

- Daykin, Pentikainen and Pesonen, 1996

“I believe that stochastic modelling is fundamental to our profession.
How else can we seriously advise our clients and our wider public on the
consequences of managing uncertainty in the different areas in which we
work?”

- Chris Daykin, 1995
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Recent developments in stochastic reserving
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Wuthrich & Merz (book & papers)
Esbjorn Ohlsson (one yr view)
Dorothea Diers (one yr view)

Tom Wright (LMAG presentation one yr
view)

» They [M&W] use a completely different
approach to the one described here,
but the two methods give exactly the
same variance for the one-year CDR

Schnieper/Liu (splitting IBNR into new
reported claims and IBNER)

Quarg & Mack/Liu (combining information
in paid and incurred)

Stochastic BF — Mack, Verrall, Alai,
Wuthrich

Greg Taylor et al (individual claims)
Magda Schiegl (3D)
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» Verrall & Brydon (calendar year trends)
» Jens Perch-Nielsen (calendar year trends)
» Susanna Bjorkwall (parametric bootstrap,

separation technique)

> Pavel Shevchenko (Bayesian)
> Fabrizio Restione (Bayesian)
» Anders Jessen (Bayesian - incorporating

claim numbers)

Piet de Jong (estimating correlations for
multiple triangles)

Murphy and McLennan (projecting
individual open large claims and netting
down)

+ many others
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