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ABSTRACT 

The paper addresses the problem of estimating future claim payments from the ‘run-off’ of past claim 
payments. A model of the claim payment process is postulated. Results from risk theory are applied 
to give a model for the incremental paid claims data by development period. A fitting method is 
developed which takes account of the error structure of the data implied by the underlying model of 
the claim payment process. The application of a similar method to incremental incurred data is 
considered. A numerical example is given. 
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1. INTRODUCTION 

THE problem addressed in this paper is the estimation of total claim payments 
to be made in the future under insurance contracts written in the past. Usually, an 
estimate is required for each past year of account. Reserves are set on the basis of 
such estimation. A stochastic claims reserving method should give both a best 
estimate and a standard error: reserves can then be set at any desired degree of 
prudence by adding a multiple of the standard error to the best estimate. A year 
of account or origin year can be either: 

(i) an underwriting year; that is, the calendar year in which cover com- 
menced, or 

(ii) an accident year; that is, the calendar year in which the event giving rise to 
a claim occurred, or 

(iii) a reporting year, that is, the calendar year in which the event giving rise to 
a claim was reported. 

Whichever definition of origin year is used, claim payments relating to a 
particular origin year are usually classified according to the delay between the 
beginning of the origin year and the time of payment. The classification is into 
discrete intervals such as quarters, half-years, or years; in this paper, development 
period will be used as a generic term. P will denote the number of development 
periods per year, thus P = 4, 2, 1, according to whether development periods are 
quarters, half-years or years. If W represents the origin year (W = 1, 2, . . . M) 
and D the development period (D = 0, 1, 2 . . . T – 1), data exist for each (W, D) 
combination satisfying: 
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where T is the number of complete periods since the beginning of the first year of 
origin. Other (W, D) combinations correspond to the future. 

This paper addresses the usual situation in which the data consist primarily of 
a single figure for each past (W, D) combination, being the total of all claim 
payments. This will be denoted Y WD. It is conventional to tabulate such data with 
one row for each year of origin as illustrated below: 

Y10 Y11 . . . . . . . . . . Y1,T – 1 
Y20 Y21 . . . . . . Y2,T–1–P 

. . . . . . . . . . 

YM – 1,0 YM – 1,1 

YM,0 

This arrangement is usually referred to as a run-off triangle, or development 
triangle. In practice, it is common for some values to be missing, for example: 

-the triangle may be truncated at the right, due to a belief that claim payments 
are negligible beyond a certain development period, 

-the top left corner may be missing due to data not having been collated prior to 
a certain calendar year, 

-there may be individual figures missing in the body of the array due to various 
adverse circumstances, 

-the bottom corner of the triangle may be truncated due to termination of 
business in the class concerned (strictly speaking, this is not missing data). 

The method described in this paper does not require any data other than the 
totals YWD of paid claims, among which there may be any arrangement of missing 
values. The only constraints are that there must be some data for at least three 
different development periods (i.e. three different values of D) and the total 
number of data-points must not be very small, less than about a dozen. However, 
estimation is much improved if there is also some measure of exposure for each 
origin year, such as the number of claims reported by the end of development 
period zero. Similarly, it is desirable, but not essential, to have some prior 
information on the rate of inflation in claim payments. 

In addition to the paid claims triangle, there is frequently a triangle of incurred 
data available. The cumulative incurred for a particular origin year is defined to be 
the total of sums paid to date and estimates of amounts that will be paid on claims 
which have been reported but not yet settled; that is, cumulative incurred is 
cumulative paid, i.e. 

plus the total of case estimates on claims outstanding. In this paper, the notation 
IWD is used to denote the increments, by devesopment period, of this quantity. 
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These data are often very valuable for reserving purposes, particularly if the 
accidents tend to be reported relatively quickly and the main delay is between 
reporting and settlement. An extreme case of this is when the origin years are 
reporting years. However, the value of incurred data clearly depends on the 
reliability of case estimates, and can approach zero. Because of the great 
variability in procedures for producing case estimates between different classes 
of business and insurance companies, it is difficult to formulate a generally 
applicable stochastic method which takes these data into account. One approach 
is described in this paper. It is rather more approximate than the method for paid 
data alone, but it has been found useful on occasions. 

The methods described in this paper exist as a computer program and have 
been used in practice many times. 

2. MOTIVATION AND SUMMARY 

The application of statistical methods to claims reserving has been character- 
ised in the past by an empirical approach, in which the model used for prediction 
is determined to a great extent, in each particular application, by the data. 
Obviously, the data must be used to calibrate the model; the issue raised here is 
the extent to which this approach is taken. 

Recall that a statistical model has a systematic component and a random 
component; if Z denotes the data (or some transformation thereof), a statistical 
model can invariably be expressed in the form: Z = M + E, where E is a random 
term with expected value zero. and both the expected value, M, and the variance, 
Var(E), of the data (and possibly higher moments) depend on unknown 
parameters of the model. M is called the systematic component of the model, and 
E (specified by its variance and possibly higher moments) is known as the random 
component. In general, Z, M and E are vectors. 

Previously proposed statistical methods have relied on separate calibration by 
the data of both the systematic and random components of a family of models. 
The view taken here is that this approach is dangerous when the number of data- 
points is as small as in the typical run-off triangle (there are typically 20 to 100 
data-points). The danger is not just that the parameters of such a model may not 
all be reliably estimated (this can be quantified), but that there may be too few 
data-points to indicate that the assumed form of the random component is not 
valid. The validity of the random component of a model is important, primarily, 
because the random component dictates how the systematic component should 
be fitted (i.e. calibrated). The author believes that most previously published 
statistical claims reserving models have a random component which is unlikely to 
be valid (the reasons for this belief are given briefly in Appendix 4) and that the 
invalidity will often not be apparent from post-fit diagnostic checks, because of 
the small number of data-points involved. In diagnostic tests (and statistical tests 
generally) a hypothesis is rejected only if there is very clear evidence against it; 
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such evidence is unlikely to be present with only a few data-points. In technical 
terms, the power of a test generally decreases with sample size. These comments 
apply equally to formal significance tests and informal procedures, such as the 
visual examination of residual plots. In either case, the power is the probability of 
realising that the model is not valid when this is actually the case. 

The approach adopted here is less empirical in the sense that, rather than 
beginning by looking at data, the process which gives rise to the data is 
considered first. A model of the claim payment process is proposed in Section 3. 
This model dictates the form of the model for the actual data, the incremental 
paid claims YWD. In Section 4 it is shown how both the systematic and the 
random components of the actual data are determined by the assumed model of 
the underlying claim payment process. This ensures consistency in the model 
used for the data; whenever the assumptions of the underlying claim payment 
model are appropriate, then the model for the data is valid in both its systematic 
and random components. There is no need for a separate validation of the 
random component, so the problem of having too few data-points to do this 
reliably does not arise. 

Having obtained a complete model for the data, YWD, from the assumed model 
of the generating process, a fitting method is developed (Section 5). This method 
makes use of Quasi-likelihood estimation and the Kalman filter. Several 
mathematical approximations and asymptotic results are used in developing the 
fitting method, so it is not obvious how near-optimal the final method is, or 
whether the standard errors associated with the parameter estimates are valid. To 
answer these questions, simulations have been carried out in which the true 
values of the parameters are known and can be compared with the estimates. The 
results of simulations carried out so far have been favourable. Further details and 
results of the simulations are not given in this paper. 

The final component of the method for paid data is the prediction of future 
claim payments and standard errors, using the calibrated model. This is dealt 
with in Section 6. 

The same method cannot validly be applied directly to incremental incurred 
data, IWD, because the model of the generating process which underpins the 
method is not appropriate in this case. However, if some adjustments are made to 
the incurred data, then the underlying model can be a good approximation 
in some cases, so the method can be applied to the adjusted incurred data. 
The question then arises of how to combine the predictions obtained using 
incurred data with those obtained using the paid data. This matter is addressed in 
Section 7. 

Sections 3 to 7 are mainly mathematical, dealing with the detailed derivation of 
the method. An example application to real-life data is given in Section 8. This is 
followed, in Section 9, by a discussion of some of the issues raised in other 
sections. Some readers may find the paper more accessible by reading these last 
two sections before, or in parallel with, Sections 3 to 7. 
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3. BASIC MODEL OF THE CLAIM PAYMENT PROCESS 

3.1 Delay to Payment (Single Origin Year) 
The paid claims data for a single origin year are made up of a number of 

individual claim payments. For each of these payments there is a delay between 
the beginning of the origin year and the payment. These delays are modelled as 
independent identically distributed (iid) random variables. Thus we can define: 

pD = probability that payment is made in development period D, 

where 

The total number of claim payments for a particular origin year is modelled as a 
Poisson variable with expected value . ( is referred to in this paper as the 
exposure, and is given by: 

= (number of units of risk) x (expected number of claims per unit risk) 
x (expected number of payments per claim) 

for classes of business where these terms are meaningful. Note that this usage is 
not strictly conventional: exposure usually means the number of units of risk.) 

If ND = number of payments in development period D, then ND is also Poisson, 
with: 

v(ND)=E(ND)= •pD 

and the ND are mutually independent. (Throughout this paper V( ) is used to 
indicate the variance of a random variable, and E( ) the expected value.) 

Further modelling assumptions, on the form of the distribution pD, are made in 
Section 4.5. 

3.2 Size of Payments 
For most classes of general insurance business the mean severity (after 

allowing for inflation) is not the same for all development periods. For example, 
large claims might take longer to settle, on average, than smaller claims: in this 
case the mean severity increases with delay. The magnitude of a payment is, 
therefore, modelled as a random variable with mean and variance depending on 
delay. If Xd represents an inflation adjusted payment made at delay d (where d 
represents continuous time) the model is: 

(i) E(Xd) = kŽd2 for some constants k and , and 

(ii) the coefficient of variation of Xd does not depend on d, i.e. 
V(Xd) = p2•E(Xd)2 for some constant p. 

Despite its simplicity, part (i) of this model allows for a wide range of 
possibilities; the variation of mean severity with delay implied by various values 
of is shown in Figure 3.1. Note that these plots show the mean severity, E(Xd). 
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Delay 

Figure 3.1. 

The severity of an individual claim, Xd, is a random variable which (in the 
absence of reinsurance) can take any value in the range (0, ∞), regardless of the 
delay, d. Part (ii) of this model is simply an assumption that the percentage 
variation in individual claim payments is the same for all delays. 

Moving to discrete time (delay, d, is measured by development period D = 0, 1, 
2 …), this model is approximated by: 

(i) (1) 

(ii) 

where D’ is a function of D, given in Appendix 1. 
Individual claim severities are assumed to be mutually independent. Note that 

no assumption is made about the actual distribution other than that the variance 
exists. 

4. MODEL OF INCREMENTAL PAID DATA 

4.1 Single Origin Year 
Letting YD = inflation adjusted incremental paid claims, note that YD is the 

sum of ND iid payments, XD. Applying standard results from risk theory we have: 
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Hence 

and the YD are independent for different D. This follows from the mutual 
independence of the severities, XD, and the claim numbers, ND. 

4.2 Several Origin Years 
The entire run-off array is now considered, by introducing subscript W to 

represent origin year; W = 1, 2, ... 
YWD is the inflation corrected increment for development period D of origin 

year W. 
The model described above is assumed to hold for each origin year, with k, 

and p being the same for all origin years. Thus we have: 

4.3 Including Inflation 
Let be the average force of claims inflation per annum between payment 
periods T - 1 and T. (T = D + P W, where P is the number of periods per annum, 
usually 1, 2 or 4.) 

Equation (1) becomes: 

where 

(i.e. e T is the inflation factor from period 0 to period T) so the model for data 
YWD, not adjusted for inflation, is: 

Writing 

By earlier assumptions, 0 is the same for all origin years; it is referred to as the 
scale parameter. 
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4.4 Adjusting for Exposure 
Suppose exposure is estimated as and define W by W = W W (SO 

represents the error in the estimate W). 
The normalised data are defined by: 

If µ'WD is similarly defined by: 

then the model becomes: 

where 

4.5 Distribution of Payments over Development Periods 
It is convenient to complete the model of the underlying claim payment 

process of Section 3 at this point, by introducing an assumption about the form 
of the distribution, pWD, for each origin year, W. 

4.5.1 Stochastic Chain Ladder Model 
One possibility is to make no assumption about the form of this distribution, 

other than that it is the same for all origin years. Thus we can write pWD = pD. 
Note that µ'WD has one factor e T depending on T. If the factors involving D are 

collected together as e D and the remaining factors are collected together as e W, 
we have: 

where 

In this form, it is clear that the systematic part of the model (i.e. the non- 
random part) is essentially the same as that assumed in the chain ladder method: 
if the data were corrected for inflation, making the factor exp( T) redundant, we 
would have an origin year factor, exp( w), and a development factor, exp( D). 
The development factors, exp ( D), are completely unconstrained by the model, 
because of the lack of any assumption for the distribution, pD; the presence of the 
factor D' does not impose any constraint on the s. 
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Note that the mean of the data, µ'WD, is a function of a linear combination of 
unknown parameters 

Also, the variance of the data can be written: 

Thus, the relative variance is a known function of the same parameters W, D, 
T. (If is not known, it can be estimated iteratively as described in Section 5.6). 

Such a model is known as a generalised linear model. Maximum (quasi-) 
likelihood estimates of the parameters can be obtained for such models using 
Fisher’s scoring method (Appendix 2). Predictions and their standard errors can 
then be obtained in a manner similar to that described in Section 6. 

The chain ladder model is not pursued further in this paper, because it suffers 
from two major limitations (these apply equally whether it is fitted using 
statistical techniques or in the traditional way): 

(i) Estimates cannot be produced beyond a stage of development which has 
already been observed for at least one year of origin. This is clearly 
unsatisfactory when the oldest year of origin is not believed to have 
reached full development. 

(ii) The model assumes that the systematic run-off pattern has been the same 
for all years of origin. This is rarely a plausible assumption in practice. 

4.5.2 The Hoerl Curve Model 
From Section 4.4, the model of the normalised data: 

is 

where 

The following model for the probabilities, pWD, is now proposed: 

for some constants KW. AW and BW, where D and D' are functions of D, P and 
whether or not the origin years are underwriting years (see Appendix 1). 

This model for pWD, arises because the delay, d, from accident to payment is 
likely to have approximately a Gamma distribution (because payment occurs 
when several successive processes have been completed and each of these 
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processes is likely to have approximately a negative exponential delay). That is, 
the pdf of the delay, d (continuous time) is: 

for some constants k, A, B (which may depend on W). 
D and D' are introduced in transferring this model from continuous time to 

discrete time, as represented by development period, D. For example, consider 
development year 0 in the case of annual accident-year data. Since accidents can 
generally occur at any time during a year (not just on 1 January), there is, on 
average, only about six months available if payment is to be made in the accident 
year itself (i.e. development year 0), whereas later development years are a full 12 
months; hence the default value of 0·5 for alpha in this case. The mean delay for 
payments made in development year 0 will be about four months in this case, but 
an approximation of the Gamma pdf by a step function suggests that 0·5 is a 
more appropriate value for D', given that ( is to be 0·5. A complete table of and 
D' values, all calculated in a consistent way, is given in Appendix 1. 

It is convenient to redefine normalised data now as: 

The model then becomes: 

where 

i.e. 

To make fitting tractable, it is necessary to assume that past claims inflation 
has been at a constant rate. (If this is not a plausible assumption, then the data 
should be adjusted to remove the non-uniform component of inflation which is 
supposed to exist.) If the uniform force of inflation is denoted by l we have: 

and the model becomes: 
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This can be written: 

where 

5. FITTING THE MODEL 

5.1 Independent Fitting for each Origin Year 
If W and D are known, this is a generalised linear model (Appendix 2) for we 

have: 

where: 

and so can be fitted using Fisher’s scoring method (Appendix 2) to give 
parameter estimates,· W, and corresponding variance covariance matrices, W, 
satisfying (approximately): 

Note that, given values for W and D, the estimates W are mutually 
independent for different origin years, W. 

Of course, W and D are not known initially, but an iterative procedure can be 
adopted whereby initial values of 0, l and (the weight parameters) are assumed, 
to give initial values to W and D; the model is then fitted for each origin year in 
turn, and the results (for all origin years) used to give new estimates of the weight 
parameters for use in the next fit. (The post-fit estimation of the weight 
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parameters is detailed in Section 5.6.) This iterative procedure leads to a small 
measure of dependence between the estimates W for different origin years, but 
this dependence is clearly very slight and is ignored in what follows. 

Estimates w can only be obtained in this way for origin years with at least 3 
data-points. The treatment of origin years with less than 3 data-points is 
described in Section 5.3. 

For some origin years with 3 or more data-points, the data may be such that 
estimates w cannot be obtained by the method of scoring, due to near 
singularity of the information matrix (Appendix 2). A possible remedy is 
described in Section 5.4. 

5.2 Transmission of Information across Origin Years 
Clearly, the estimates, w, are likely to be very unreliable for origin years with 

few (but at least 3) data-points. However, an examination of the sources of 
variation in the true values, w, between origin years, suggests a way of very 
much improving the reliability. The W are defined (Section 4.5.2) by: 

where kW, AW, BW are parameters of the distribution of payments over delay, 
and W represents the error in the exposure factors used to normalise the data. 

The variation in W is modelled as follows: 

where W is a random perturbation, 

with 

(This variance is assumed to be the same for all pairs of origin years; there is 
usually no reason for expecting it to vary.) 

If BW is defined by: 

we have: (2) 
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This can be regarded as the system equation of a dynamic linear model (see 
Appendix 3). The are called system variances or adaptive variances in what 
follows. 

For years of origin with sufficient data, the estimates, W (obtained by the 
method of scoring as described in Section 5.1) are regarded as the observations, so 
the observation equation is: 

(3) 

where 

Equations (2) and (3) specify a dynamic linear model. Therefore, the Kalman 
filter (Appendix 3) will extract maximum information from the observations ( W, 
W) to give optimal estimates of the parameters, BW, taking into account the 
relationship between different origin years, as described by equation (2). 
However, before applying the Kalman filter it is necessary to: 

-include the data for origin years for which independent estimates W cannot be 
obtained, and 

-assign realistic values to the adaptive variances, 

The first of these matters is dealt with in Section 5.3, the second in Section 5.5. 

5.3 Treatment of Origin Years with only 1 or 2 Data-Points 
For years of origin with insufficient data to fit the model independently (by 

putting the data for that origin year alone into the scoring method to obtain 
estimates, W) an alternative method of obtaining a linear observation equation of 
the same form as equation (3): 

(with and VW all known) is required. 

We have: 

(The quantities on the right are defined in Section 4.5.2.) 

The coefficient of variation WD of Y'WD is given by: 
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Hence: 

but 

and 

hence: 

from which it is seen that the coefficient of variation of the normalised data is 
invariably much less than 1 for early development periods. 

Now consider the random variable, Fwo, defined by: 

This has: 

and 

Also, we have: 

which can be written: 

(34 

where 

If the distribution of Y'WD is approximated by a log-Normal distribution (n.b. 
this is only for those origin years with only 1 or 2 data-points), we have: 

ln FWD N(vWD, for some v and 

but: (4) 

(5) 

We invariably have yWD 1 for the values of D concerned here (i.e. D = 0, l), so 
equation (5) implies: 

and with equation (4) this implies: 
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Hence: 

to a good approximation, and equation (3a) is of the required form: it will be 
regarded as the observation equation for those origin years with too few points to 
allow equation (3) to be used. The var-covariance matrix of the error term, In FW, 
is the diagonal matrix of values which can be calculated from: 

using parameter estimates from the previous origin year to give an estimate 

of µ'WD. 

5.4 Treatment of Origin Years for which Method of Scoring Fails 
If the data for a certain origin year are such that the model (Section 5.1) cannot 

be fitted by the method of scoring, then, rather than discarding the data for that 
origin year, it will often be preferable to assume that the underlying run-off 
pattern is the same as for an adjacent year (or years) and to apply the method of 
scoring to several years of origin simultaneously. 

For example, suppose W labels an origin year for which fitting fails, then it 
may be reasonable to combine this with year W+1 by assuming: 

In the notation of Section 5.2, this is: 

The assumption is that the adaptive variances between years Wand W+1 are 
all zero. 

The model of Section 5.1 can be rewritten for these two years as: 

where and V(error) = as before. 
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Fitting this by the method of scoring gives the observation equation: 

where XW is now the identity matrix and an estimate, W, of V( W) is given by the 
method of scoring, as before. 

This takes the place of equation (3) for origin year W, and there is clearly no 
separate observation equation for year W+1; both origin years are dealt with by 
a single call of the Kalman filter. 

5.5 Estimation of Adaptive Variances 
In order to apply the Kalman filter to the dynamic linear model specified by 

equations (2), (3) and (3a) (Sections 5.2 and 5.3), values must be assigned to the 
of equation (2). These quantities represent the variance of the random 
perturbations in the run-off parameters, Wi, from one origin year to the next. 

By fitting Hoerl curves individually for each origin year with sufficient data 
(as described in Section 5.1). we have independent estimates W and W satisfying 
(approximately): 

(the approximation being better the greater the number of data-points). The 
variances, , can be estimated from the observed variation in these independent 
estimates, wi. However, it is necessary to take account of the observation errors. 
represented by the W: we are interested in the variance of differences in the true 
(unknown) run-off parameters W, not the estimates W. Intuitively, we wish to 
look at the estimates W, and to ‘see through’ the error in these estimates, in order 
to get at the amount of variation in the true values represented by these estimates. 
This is done as follows: 

Consider i=2 or 3 initially. 

We have: 

and 

where Wi is from the leading diagonal of W 

If W denotes for W = 2, 3, . . . then we have: 

hence the var-covariance matrix, , of the vector A is given by: 

(subscript i 
has been 
dropped) 
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and we have: 

hence: 

( denotes the chi-squared distribution with n degrees of freedom, where n is the 
dimensionality of , i.e. one less than the number of origin years for which curve- 
fitting has been carried out.) 

The expected value of is n, so an estimate of u2 is given by solving the 
equation: 

for u2. 

This is a high-order polynomial equation; it is solved numerically. If the 
observation variances, W, are so large compared to the differences, A W, that 

for all u2 > 0 then it is assumed that u2 = 0. 

In the case i = 1 we have: 

and 

In this case W is defined by: 

where is the current estimate of l, as used in the calculation of W and D. 
Ultimately (after several iterations of the entire fitting procedure), the estimate of 

is generally very reliable, so the estimation error in is ignored here to give: 

as for i=2, 3. 

Hence the same method as used to estimate u22 and u23 can be used for u21. 

5.6 Post-Fit Estimation of the Weight Parameters (l, 0 and ) 
The Kalman filter gives estimates of the parameters: 

together with the variance covariance matrix, , of these estimates. (BW is 
defined in Section 5.2.). 

Before using these results to calculate predictions of future payments (as 
described in Section 6) it is necessary to test whether or not the values of the 
weight parameters used in the fit are plausible. Post-fit estimates of these 
quantities are calculated; if any of these differs significantly from the value used 
for the fit, then the conclusion must be that the value used was incorrect, and the 
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fit should be repeated using a new value. This is then repeated until none of the 
post-fit estimates differs significantly from the value used. 

The simplest of the three weight parameters to test in this way is the force of 
inflation, l. This is one of the parameters of the model; the post-fit estimate is the 
first element of and the variance of this estimate is the first component of . 

Post-fit estimates of the other two parameters are based on the standardised 
residuals, which are defined by: 

Suppose and are the values used for the fit. If these are correct, we have 
approximately: 

and for all Wand D. 

For these approximations to be reasonably good, the estimates, used in 
calculating the standardised residuals must be approximately unbiased. 

The model (Section 5.1) has: 

where: 

From the Kalman filter we have: 

where CW is the appropriate sub-matrix of . 

Hence: 

where: 

so: 

and an approximately unbiased estimate of is given by: 

Now suppose that the value, used in the fit is not correct. Since in 
the denominator of WD has a factor in place of the correct factor have 
(to a first approximation): 

so the post-fit estimate is given by: 
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(where N = number of data points, and P = number of parameters in the 
model). 

It is possible to devise post-fit tests and estimation procedures for , but these 
will not in general be very reliable, because of the small sample size (see 
discussion in Section 2). It is believed that as good a check as any on the value of 
is provided by the conventional scatter-plot of standardised residuals, RWD, 
against explanatory variable, which is development period in this case. This plot 
is examined visually to verify that V(RWD) = 1 for all D. Suppose, for example, 
that this plot shows clear ‘fanning out’, that is appears to increase with 
D. This suggests that the factor, in the denominator of is not increasing 
with D as rapidly as it should. which, in turn, suggests that the current value of 
is too small. To put this another way, a larger variance in the tail of the run-off 
suggests that the data in the tail are made up of a smaller number of larger claims 
than has been assumed: claim severity appears to increase more rapidly with 
delay than has been assumed: the value assumed for is too small. 

It could be argued that this is precisely the type of calibration of the random 
component of the model which, according to Section 2, should be avoided. 
However. the parameter, , has a concrete interpretation, and, with experience, 
substantial prior knowledge about its likely value for each class of business can 
be brought to bear, and the data in each individual analysis will have only a 
minimal influence (via the residual plot, as described above). 

5.7 Free-Fitting for Early Development Periods 
It often happens that the distribution of claims over development periods 

differs significantly from that assumed in the Hoerl curve model for pWD (Section 
4.5.2) when the default values for (Appendix 1) are used. If this occurs, it is 
evident from the plot against development period of the residuals obtained using 
the Hoerl curve model. In such cases, the model can be used, but without the 
assumption that takes the values given in Appendix 1; none of the theory in 
earlier sections is altered. Trials have shown that a satisfactory model is 
invariably obtained by allowing free-fitting for the first f development periods 
(that is, the default values are not imposed for (By ‘satisfactory 
model’ is meant that the standardised residuals appear to be identically 
distributed: the data support the modelling assumptions.) 

When free-fitting is selected (f > 0), the first f data-points for each origin year 
are excluded in curve fitting for each origin year independently by Fisher’s 
scoring method. When an origin year is met for which too few points remain to 
allow curve fitting (i.e. less than three points) the latest excluded point (i.e. that 
for D=f—1) is reincluded. using an empirically determined -value. f–1 is 
estimated using the data and the fitted curves for all previous origin years, as 
described below. If necessary. more than one excluded point are reincluded in 
this way, until there are sufficient points to allow curve fitting (three points). 
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The normalised data are defined (Section 4.5.2) by: 

and the model for the normalised data (Section 5.1) is: 

where 

If is the (unbiased) estimate of obtained from the curve fitted for year 
W by the method of scoring, then we have: 

random error 

where the random error now contains a component due to the uncertainty in the 
estimate, but its expected value is still zero. 

Hence: random error. 

It is assumed that, to a first approximation, the random error here has variance 
proportional to hence can be estimated by regression through the origin of 
the original data, YWD, on the fitted values using as weights. 

That is: 

where summation is over all origin years for which curve fitting has already been 
carried out. 

6. PREDICTIONS AND STANDARD ERRORS 

6.1 Bias and Root-Mean-Square Error 
The Kalman filter produces estimates: 

together with an estimated variance—covariance matrix , satisfying 
where the parameter vector BW is defined by: 
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The model can be written in terms of BW as: 

where 

Recall that is the incremental paid claims data, corrected for a and 
exposure, but still containing inflation at force l. 

At first sight it might appear that estimates of future incremental claim 
payments YWD can be obtained simply by using the systematic part of the model: 

with the estimates and in place of and However, this 
procedure could introduce bias into the estimation of future values of 
because if or is overestimated, the exponential ensures that E(YWD) 
is substantially overestimated, whereas if or is underestimated, the 
underestimation of is not so great. This works the other way around for 

It is shown in Sections 6.2 and 6.3 how the var-covariance matrix, , can be 
used in conjunction with the parameter estimates, , to produce approximately 
unbiased predictions of the incremental paid figures, including the effects of a 
and exposure. together with root-mean-square errors of these predictions. 

If denotes such a prediction, unbiasedness means: 

that is, the expected value of the prediction error must be zero. Since 
by definition, is an unbiased prediction if 

The mean-square-error of prediction is 

Note that the mean-square-error of prediction can be considered as the sum of 
two components, the estimation variance and the process variance: 

This last equality holds because and YWD are mutually independent under 
the model assumptions; is based on past data, whereas YWD is a future data- 
point. 
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The term standard error means an estimate of the standard deviation of the 
prediction error. It is calculated as the square root of an estimate of the mean- 
square-error of prediction. 

6.2 Results in Current Money Terms 
The first step in calculating a prediction is to calculate the linear predictor 

for the normalised data: 

Clearly, the linear predictor can be calculated for all required (W, D) 
combinations simultaneously, using: 

where X is a known matrix with one row for each (W, D) combination, e.g. 

We have: 

hence: 

where: 

An estimate of can be obtained using the Kalman filter output: 

A subscript, i, is now introduced to label rows of X(each value of i corresponds 
to a particular (W, D) combination for the future). 

We have: 

Therefore, using standard results for the log-normal distribution, we have: 

—unbiased estimate of 

—var-covariance of these estimates: 

where are the elements of . 
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These quantities are approximated using estimates on the right-hand-side to 
give: 

These will be denoted and 
It is a simple matter to convert these into estimates, of the un-normalised 

incremental paid figures, together with the estimated variance-covariance 
matrix . 

If f is the vector given by we require: 

(dyadic multiplication) 

Note that the vector f may also contain discount factors and/or factors 
representing a small difference between future inflation and average past 
inflation. 

has one element for each future (W,D) combination. The prediction, , of 
the total for a certain set of (W,D) combinations (e.g. a particular origin year or a 
particular payment year) can be obtained by constructing the appropriate vector 
a of 0S and 1s, to give: 

with estimated variance: 

To obtain the mean-square-error of prediction S2, it is necessary to add the 
process variance for the future data-points concerned: 

The model has: 

but: 

so: 

This can be estimated as: 

hence the standard error. S, is given by: 
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6.3 Results in Constant Money Terms 
The calculations of Section 6.2 give results in current terms, because inflation, 

l, is a component of the parameters and (see Section 4.5.2). (Current 
terms means estimates of amounts to be paid in 1978 are in 1978 terms, amounts 
to be paid in 1979 are in 1979 terms, etc.) 

If results are required in constant terms, then average past inflation must not 
be projected into the future. It is not correct simply to remove the estimated 
inflation, , from the current-price results by including discount factors in f, 
because this ignores the estimation variance of and the covariance between and 
. It is better to proceed as in Section 6.2, but with X as follows (for example): 

7. USE OF INCURRED DATA 

7.1 Modelling Incurred Data 
The value of incurred data lies in the fact that cumulative incurred approaches 

the same ultimate value as cumulative paid, and since we know what has been 
paid so far, reserve estimation is equivalent to the estimation of ultimate 
cumulative paid. 

In the examples given in Figures 7. la and b, the continuous line is cumulative 
paid, the broken line is cumulative incurred. The difference between the two 
curves represents cumulative outstanding, that is, the sum of current case 
estimates. 

The second example illustrates the effect of a positive bias in the case estimates. 
When a claim is reported, outstanding (and therefore incurred) increases by the 
amount of the case estimate; when a claim is paid, outstanding decreases by the 
amount of the case estimate, and simultaneously, paid increases by the amount 
actually paid. If case estimation has a positive bias, the increase in paid is 
typically less than the decrease in outstanding, so incurred is reduced. The peak 
of the incurred curve represents the stage of development at which the increments 
due to new reportings are outweighed by these decrements due to settlements. 

There is also the possibility of negative bias in case estimation. This would 
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Figure 7.1 a. 

Figure 7.1c. 

Figure 7.1 b. 

Figure 7.1d. 

differ from the first example, in that incurred would approach ultimate paid more 
slowly, continuing to increase even when no more claims are being reported. 

The incremental plots corresponding to these cumulative plots are shown in 
Figures 7.1c and d. 

It is clear from these graphs (Figure 7a–d) that it is not valid in general to apply 
the Hoerl curve model of Sections 3 to 6 directly to incremental incurred data. 
It seems reasonable to model the time of reporting as a Gamma-distributed 
random variable (as was done for the time of settlement in the paid context), but 
the claim size occurring at this time is now a case-estimate, not a final payment. 
This case estimate may subsequently vary and will, eventually, be replaced by an 
actual payment, which may differ from the case estimate; no allowance is made 
for these possibilities in the paid claims model. However, in some cases, it is 
possible largely to remove these effects from the incurred data and to apply the 
method to the adjusted incurred data. 

Suppose amendments to case estimates, while a claim is outstanding, have an 
expected value of zero. Then, if we are dealing with a sufficiently large number of 
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claims, the total of these amendments can reasonably be ignored. Incremental 
outstanding, which is denoted ZD, can thus be broken down into just two 
components: 

ZD = Z(1)D – Z(2)D 

where: Z(1)D = total of case estimates of claims reported at time D, and 

Z(2)D = total of case estimates of claims settled at time D. 

It would be reasonable to apply the method developed for paid increments, YD, 
to the quantity Z(1)D (or to Z (2)D ), if this could be isolated. 

Since: ID = Y + ZD 

we have: Z(1)D = ID + Z(2)D – YD. 

Suppose that case estimates are biased by a factor b, that is, for individual 
claims we have: 

case-estimate = b x amount paid + random error 

where the expected value of the random error is zero. 
Again, if we are dealing with sufficiently large numbers of claims, the random 

error of the aggregate Z(2)D may be ignored and we have: 

Z(2)D = b · YD 

hence: Z(1)D = ID+ (b – 1) · YD. 

By the bias assumption, the ultimate cumulative of the Z(1)D is b times ultimate 
paid, so in order to estimate ultimate paid, we require: 

This will be denoted I'D and called adjusted incurred: 

The method described in Sections 3 to 6 may be applied using this quantity in 
place of incremental paid. Note that adjusted incurred is a weighted average of 
the original incremental incurred and the incremental paid data. 

The bias factor might, in general, incorporate a component due to bias in claim 
numbers as well as in claim size. There may be two classes of reported claims: 
those which lead to a final settlement of around (case-estimate)/b, as already 
described; and those which lead to a final settlement without any payment. If the 
proportion settled for no payment is constant over D, this situation can be 
accommodated by using b to represent the product of the bias in both 
outstanding severities and outstanding claim numbers. Thus, it may be plausible 
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for b to take quite large values (e.g. b = 3) for some classes of business. (Note that 
claims in this second class do not affect the paid model, as they are outside its 
scope.) 

In general, the bias factor, b, may vary. Variation of b from one origin year to 
the next clearly causes no complications to the above, because a single origin year 
was considered. However, it is normally more plausible for b to be constant for 
each calender year (like the force of claims inflation). Variation of b between 
calendar years causes a complication, because the claims making up each Z 
will, in general, have been reported in various development years, d < D, and so 
will have been subject to differing amounts of bias. We require an overall bias 
factor, bD, such that: E(bD YD— Z ) = 0. An approximate value for b, can be 
obtained as a weighted average of the bias factors assumed for each of the earlier 
development years, using the incurred data ID as weights. 

If no specific information is available on the calendar year bias factors, a trial 
and error approach can be used to adjust the incurred data. Plausible values for 
the bias factors are tried, and these used to determine , as described above, until 
two criteria are satisfied simultaneously: 

(i) the adjusted incremental incurred data, , appear to follow a Gamma 
curve for each origin year, and 

(ii) the cumulative paid, YD, and adjusted incurred, , both appear to 
approach the same ultimate value, for each origin year. 

Clearly, both these criteria are most easily judged for well-developed years of 
origin: if there are no such years, estimation of the bias factors will be poor. It is 
not vital that criterion (ii) be satisfied; provided the ratio of the two ultimates 
does not appear to vary significantly between origin years, the paid and incurred 
results can be combined. as described in Section 7.2. 

7.2 Combining Paid and Incurred Results 
If Uw represents the ultimate paid, 

Pw represents paid so far, and 
Rw represents the future payments for origin year W, 

then we have: 

Uw=Rw+Pw. 

From analysing the paid data, we have one set of estimates Û ,with standard 
errors, S , and from the adjusted incurred data we have a second set, Û ,with 
standard errors. S The problem now is to combine these two sets of estimates 
to obtain final estimates. ÛW(from which final estimates W can be obtained 
trivially), and standard errors SW. 

In practice, it sometimes happens that the two sets of estimates differ 
significantly from one another, that is (Û –Û ) is large compared to 
(S + S )½. This indicates that the adjusted incurred data are not tending 
towards ultimate paid for some reason (which is, perhaps, not surprising, in view 
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of the approximate nature of the incurred method). To cope with this, a bias 
factor, k, is hypothesised in the estimation of ultimate paid using adjusted 
incurred data. Thus we have: 

Û =UW+ E 

where: E has E(E ) = 0 and V(E ) = S 

and Û = k . UW + E 

where: E has E(E ) = 0 and V(E ) =S . 

To simplify matters, the incurred-estimates, Û , are taken to be statistically 
independent of the paid estimates, Û . This is not actually true for two reasons. 
Firstly, the paid data and the incurred data are both generated by the same set 
of individual claims; and, secondly, the paid data contribute directly to the 
adjusted incurred data if the case-estimate bias factors are not all one. It would be 
extremely difficult to calculate the effects of these two factors, but it is believed 
they will be slight, provided the case-estimate bias factors are not too large. 

If T(i) is used to represent the vector of estimates Û for W = 1 to M, then 
rewriting the above in vector notation we have: 

T(l) = Û + E(1) and T(2) = k . Û + E(2). 

As well as the variances, S , the covariances between origin years of the 
estimated ultimates can be estimated fairly straightforwardly for each set of 

results, so we have for i = 1, 2: E(E(i)) = 0 and V(E(i))= Φ(ι), where Φ(ι) is a 
known (estimated) (M x M) matrix. 

The problem is to use the two observations, T(1) and T(2) (and their known 
var-covariance matrices Φ(1) and Φ(2)), to produce the optimal estimate, Û 
(together with its var-covariance matrix). We are not interested in the value of the 
unknown parameter, k: it is a nuisance parameter. An approximate solution to 
this problem has been found, but the details are not given here. 

8. EXAMPLE 

8.1 Analysis of Paid Data 
The data for this example are annual professional indemnity data for accident 

years 1978 to 1988 inclusive: 

2 39 175 347 408 278 295 122 204 112 153 
2 31 237 409 592 549 167 247 100 31 

11 213 291 694 473 522 393 284 254 
1 208 568 947 748 807 668 730 
4 375 1349 717 1076 892 1162 

116 622 2174 2101 2255 2832 
5 692 1749 2448 2898 

109 697 2253 3011 
23 509 1693 
19 1473 

277 
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The table below gives: (i) the numbers of claims reported during development 
year zero of each origin year (for example, the figure for 1978 is the number of 
reports during 1978 of claim events which occurred during 1978), and (ii) the 
relative exposures (derived from (i) by dividing by 448): 

1978 
1979 
1980 
1981 
1982 
1983 
1984 
1985 
1986 
1987 
1988 

(i) (ii) 

448 1 .00 
502 1.12 
583 1.30 
677 1.51 
789 1.76 

1013 2.26 
977 2.18 

1071 2.39 
1147 2.56 
1322 2.95 
1273 2.84 

(iii) 

0.086 
0.067 
0.039 

—0.021 
—0.022 
—0.029 
—0.019 
—0.038 
—0.037 
—0.024 

The model assumes a uniform rate of claims inflation, so any non-uniform 
component of inflation believed to be present must be removed from the data 
before proceeding. Changes in the inflation rate for professional indemnity 
claims are believed to have reflected changes in RPI inflation. The average force 
of inflation in the RPI over the period end-of-78 to end-of-88 was 0.074. 
Subtracting this from the force of RPI inflation for each origin year, gives the 
variable component of force of inflation in column (iii) above. Removing this 
element of inflation from the data gives: 

2 36 150 287 344 240 262 110 192 109 153 
2 27 196 345 511 488 151 232 98 31 
9 176 245 599 420 473 370 277 254 
1 175 490 841 677 759 652 730 
3 323 1198 649 1012 871 1162 

100 552 1968 1976 2201 2832 
4 626 1645 2389 2898 

99 655 2199 3011 
22 497 1693 
19 1473 

277 

The values for the first and last payment years (diagonals of the triangle) have, 
of course, not been affected by this adjustment. 

A line plot of these data. further adjusted for exposure (the figures are divided 
by the appropriate figure from column (ii) of the table above), is shown in 
Figure 8.1a. 

This plot shows the typical Hoerl curve type shape of the run-off. It also shows 
that the later the origin year (i.e. the shorter the curve), the higher the level of the 
curve. This is because of the uniform component of claims inflation; as this is a 
component of the model, no attempt is made to remove it from the data. 
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Inflation And Exposure Adjusted Paid Claims 

Amount 

1200-- 

Development Year 

Figure 8.la. 

The first stage of model calibration is to use Fisher’s scoring method to fit the 
Hoerl curve model of Section 5.1 to the data for each of origin years 1978 to 1986 
separately. Since λ W is constant throughout each origin year, this first stage can 
be accomplished given values of Y. To calculate values for Ψ D it is necessary to 
assume values for λ and the constant force of inflation, i; the values 0 and 0.18 are 
used initially. After fitting the model for each origin year, the residuals for all nine 
origin years together are used in the obvious way to estimate the scale parameter 
as Φ 0 = 9.573. This value is used to calculate the Φ w, which are used to scale the 
inverse information matrices, to give the variance-covariance matrices W. 

The next stage is to use the method described in Section 5.5, to estimate the 
variance of the perturbations in the run-off parameters from one origin year to 
the next. These calculations give the following adaptive standard deviations ui: 

Beta- 1 Beta-2 Beta-3 

0.072 0.087 0.000 

The final stage of fitting is to apply the Kalman filter to all origin years 
(including the last two) as described in Sections 5.2 and 5.3. For the present 
example, the Kalman filter is initialised using uninformative priors for the beta 
parameters, and a prior estimate of 0.18, with a standard error of 0.06, for the 
constant force of claims inflation. 
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The posterior estimate of the constant force of inflation (which is one of the 
model parameters estimated through the Kalman filter) is 0.20, with a standard 
error of 0.03. As this differs somewhat from the value used to calculate the ψ D 
values which were used to fit the model, the other parameter estimates are 
disregarded. The estimate î=0·20 is used to recalculate the ψ D values, and the 
entire fitting procedure is repeated. 

As before, Hoerl curve fitting is successful for each of the first nine origin years 
(so Section 5.4 is not needed). The scale parameter is estimated as 8.25 and the 
adaptive standard deviations as: 

Beta - 1 Beta-2 

0·036 0·102 

Beta-3 

0·000 

The substantial decrease in the adaptive standard deviation for beta- 1 should 
not be surprising: the value of I was previously too small, so part of the trend 
increase in the beta-l values was being falsely attributed to random perturbation 
(see end of Section 5.5). 

The Kalman filter is applied using the same prior distributions as before. This 
time the posterior estimate of i is 0.201, with a standard error of 0.027: the 
difference between this and the value of 0.200 used for calculating ψ D and ψ W is 
very insignificant. 

The post-fit estimate of the scale parameter, calculated as described in Section 
5.6, is 8.89, which differs from the value of 8.25 used in fitting. Therefore, fitting is 
repeated using this new value. Note, however, that there is no need to repeat the 
first stage of the fitting process; the curves fitted for individual origin years do not 
depend on the value of the scale parameter. The second stage of fitting; the 
calculation of the adaptive standard deviations (Section 5.5) does depend on the 
value of the scale parameter (through the var-covariance matrices, VW), but the 
initial estimate of the scale parameter is the most appropriate value for this 
purpose. Thus. it is only the final stage of fitting, the Kalman filter, which needs 
to be redone. using the new estimate of the scale parameter; in two further 
iterations the estimate of the scale parameter converges to 8.94. 

The parameter estimates are then as follows: 

Beta-l 

1978 4·803 
1979 5·006 
1980 5·212 
1981 5·425 
1982 5·638 
1983 5·857 
1984 6·047 
1985 6·231 
1986 6·414 
1987 6·614 
1988 6·816 

Standard 
Error 

0·151 
0·130 
0·113 
0·099 
0·091 
0·089 
0·093 
0·102 
O-117 
0·136 
0·159 

Beta-2 

2·448 
2·415 
2·389 
2·437 
2·458 
2·591 
2·589 
2·555 
2·524 
2·552 
2·544 

Standard 
Error 

0·250 
0·238 
0·229 
0·217 
0·205 
0·192 
0·185 
0·187 
0·203 
0·222 
0·242 

Beta-3 

0·623 
0·623 
0·623 
0·623 
0·623 
0·623 
0·623 
0·623 
0·623 
0·623 
0·623 

Standard 
Error 

0·071 
0·071 
0·071 
0·071 
0·071 
0·071 
0·071 
0·071 
0·071 
0·071 
0·071 
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The variation in the true values of beta-l from one origin year to the next is 
made up of two components. There is a trend increase of 0.20 (the force of past 
claims inflation), and there is random perturbation with a standard deviation of 
about 0.036. There is additional variation in the estimates displayed above 
because of estimation error: the magnitude of this is indicated by the standard 
errors to the right of the estimates. The values of beta-2 are subject only to 
genuine random variation, with a standard deviation of 0.102, and estimation 
error with a standard deviation given in the table. For beta-3, the data showed no 
evidence of any variation in the underlying value between origin years (the 
adaptive standard deviation was estimated to be zero). Therefore, the value was 
assumed to be the same for all origin years, and has been estimated as 0.623, the 
standard error of estimation being 0.071. 

The plots of standardised residuals against both origin year and development 
year are shown in Figure 8.1b. These are consistent with the hypotheses 
E(RWD)=0 and V(RWD)= 1 for all W and D, (see Section 5.6). In particular, 
there is no evidence of heteroscedasticity (varying variance) with respect to 
development year, so the value of 0 for λ is empirically satisfactory. There is also 
no evidence that the mean of the residuals differs from zero for the early 
development years: the default values of α have provided a satisfactory fit and 
free-fitting as described in Section 5.7 is not necessary in this case. 

At first sight, the fact that all three residuals are negative for origin year 1986 
may cause some concern, but, in fact, this is not significant. The same sort of 
occurrence is very common in purely random scatter-plots. 

Figure 8.1c shows plots of observed and fitted values for two of the origin 
years. 

Results in current terms, calculated as described in Section 6.2, with 
projection to the end of the twentieth development year, are given below. These 
are not discounted, and the projected force of inflation for the future is the 
estimated past value of 0.20. (Discounted results could easily have been obtained: 
see Section 6.2.) 

1978 
1979 
1980 
1981 
1982 
1983 
1984 
1985 
1986 
1987 
1988 

s P Û 
118.81 139.45 2135.00 2253.81 
232.82 203.38 2365.00 2597.82 
475.59 306.71 3135.00 3610.59 

1131.35 521.10 4677.00 5808.35 
2449.38 875.60 5575.00 8024.38 
7165.96 1950.25 10100.00 17265.96 

10867.05 2775.95 7792.00 18659.05 
16753.35 4216.08 6070.00 22823.35 
23861.52 6516.97 2225.00 26086.52 
38378.76 11719.82 1492.00 39870.76 
45315.88 15638.14 277.00 45592.88 

Totals: 146750.48 35827.14 45843.00 192593.48 

is the total of projected future increments for each origin year, S is the 



Plot Of Residuals Against Accident Year 

Plot Of Residuals Against Delay 

Figure 8.1b. 



Curve Fitted To 1978’s Data 

Curve Fitted To 1982’s Data 

Figure 8.1c. 
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standard error of this total, P is the sum of the original paid data, and Û is the 
estimated ultimate of cumulative paid, that is Û= + P. For each of the later 
origin years (those with substantial future development, R) the standard error, S, 
is about 35% of the estimate Rˆ itself. However, the estimated total for all origin 
years combined has a standard error of only about 25%. This improvement is due 
to partial cancellation of the random variation when origin years are combined. 

The same estimates are given below, broken down by payment year: 

1989 
1990 
1991 
1992 
1993 
1994 
1995 
1996 
1997 
1998 
1999 
2000 
2001 
2002 
2003 
2004 
2005 
2006 
2007 

18308.45 
22089.53 
22871.03 
20949.33 
17528.01 
13703.20 
10165.60 

7232.51 
4972.47 
3321.30 
2164.26 
1379.98 
862.55 
528.84 
315.67 
183.29 
101.97 
52.50 

9.97 

S 

2049.88 
3205.79 
4327.32 
4972.34 
5064.77 
4734.28 
4160.69 
3499.06 
2855.82 
2289.60 
1823.09 
1454.74 
1170.11 
950.56 
775.55 
633.44 
511.97 
401.04 
271.09 

Results, in 1988 terms, calculated as described in Section 6.3, are given below: 

S P Û 
1978 74.87 82.65 5306.30 5381.16 
1979 145.05 118.23 5347.61 5492.67 
1980 292.49 174.17 6155.12 6447.61 
1981 682.72 289.20 7694.25 8376.97 
1982 1447.58 473.17 8484.68 9932.27 
1983 4081.20 1011.39 13568.37 17649.57 
1984 5976.39 1390.98 9425.68 15402.07 
1985 8819.93 2005.40 6857.22 15677.15 
1986 11804.87 2816.86 2333.22 14138.10 
1987 17031.91 4307.06 1496.22 18528.13 
1988 17185.70 4715.19 277.00 17462.70 

Totals: 67542.72 13249.70 66945.68 134488.40 

Here, P is the sum of the original increments, each inflated to 1988 terms, using 
the estimated force of claims inflation 0.20. These results can be useful for 
comparing the experience of different origin years in real terms. The variation in 
the estimated ultimate. , between origin years is mainly because of varying 
exposure—1983 appears to have been a particularly bad year, even after allowing 
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for exposure (this is also clear from the original data). The standard errors are 
lower in percentage terms than in the current price results; in those results there 
was an additional element of uncertainty because of the projection of an 
uncertain inflation rate into the future. The current price results could also be 
broken down by payment year if required. 

It is interesting to examine the sensitivity of the results to the run-off horizon. 
The table below gives the total prediction in current terms: 

Number of 
Development 

Years S 

20 146750 35827 
22 146831 35898 
24 146857 35924 
26 146865 35933 
28 146867 35936 
30 146868 35937 

There is clearly no need to project any further: only 0.1% of future payments 
are expected to occur between development years 20 and 30, and S increases by 
only 0.3% over this interval. 

The actual reserve should be + C × S, where C is a factor chosen to reflect 
the required level of prudence. In the present example, the distribution of the 
standardised residuals is approximately Normal. This implies that the prediction 
errors are also approximately Normal. and the factor, C, can be chosen on this 
basis. For example, C = 1.28 gives an upper 90% confidence limit for the total of 
future payments; there is only a 1 in 10 chance that the total for all origin years 
will exceed 193000. 

8.2 Analysis of Incurred Data 
The incremental incurred data is given below for each of the origin years 1978 

to 1988: 

229 737 882 746 533 36 114 –356 –202 19 –117 

118 1163 851 846 –94 231 –189 58 –73 55 
48 1143 1744 983 652 –522 –33 111 –103 

337 2035 2022 1664 211 –65 121 –415 
485 4054 2462 202 751 162 569 
994 6993 5117 1283 767 741 

1461 7297 6822 1114 503 
2101 8119 7107 2574 

915 8963 6614 
1423 13142 
6011 

Cumulative plots of these data on the same axes as the cumulative paid data 
are shown in Figure 8.2a for two of the origin years. Cumulative incurred appears 
to be approaching the same ultimate as cumulative paid, but not monotonically; 
incurred decreases in the tail when case-estimates are being replaced by actual 
payments. This suggests that there is a positive bias in case estimates. 



Figure 8.2a.



Figure 2c.
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By trial and error, it is found that if the incurred data are adjusted on the 
assumption of a bias factor of 1.5 for all calendar years (as described in Section 
7.1), then the adjusted data appear to be consistent with the Hoerl curve model 
for each origin year except 1978: adjusted cumulative plots are shown in Figure 
8.2b. The incurred data for 1978 appear to follow a pattern different from those 
for all other origin years: it is, therefore, not very useful and is discarded. (As 
1978 is sufficiently well developed for the paid data alone to give a reliable 
estimate, it is unlikely that any useful information is lost by discarding the 
incurred data. It is quite common for the incurred data for the first one or two 
origin years in a triangle to contain little useful information; it seems that case 
estimates are often poor initially due to the lack of past experience.) 

The adjusted incurred data are given below for origin years 1979 to 1988 
inclusive: 

79 
36 

225 
325 
701 
976 

1437 
618 
955 

4100 

786 
833 

1426 
2828 
4869 
5095 
5645 
6145 
9252 

646 700 135 337 –70 121 –15 47 
1260 887 592 –174 109 169 16 
1537 1425 390 226 303 –33 
2091 374 859 405 767 
4136 1556 1263 1438 
5131 1559 1301 
5489 2720 
4974 

The methods of Sections 3 to 6 can be applied to these data. Initial values of 
0 and 0201 are taken for and The value 0.201 is the estimate previously 
obtained from the paid data. Fisher’s scoring method can then be applied to fit a 
Hoerl curve to each origin year separately, and the results used, as described in 
Section 5.5, to estimate the adaptive standard deviations. These estimates are all 
zero, indicating that the underlying run-off pattern of the adjusted incurred data 
is the same for all origin years 1979 to 1988. The Kalman filter could now be 
applied as before, but, as the adaptive standard deviations are all zero, there is no 
need to use the Kalman filter to link the origin years; a single Hoerl curve (with 
allowance for inflation) can be fitted to all origin years simultaneously, as 
described in Section 5.4. (This procedure is preferable to the use of the Kalman 
filter, because it avoids the Normal approximation for quasi-likelihood estimates 
obtained from small numbers of data-points.) The Kalman filter is used only to 
combine the curve-fitting results with the prior information. As for paid, no prior 
information is assumed for the beta parameters. However, the prior distribution 
for the force of inflation is taken as the posterior distribution from the analysis of 
paid data; the estimate is 0.201, with a standard error of 0.027. 

The scale parameter converges to 48.5 in three iterations of the Kalman filter. 
The posterior estimate of the force of inflation is then 0.193, with a standard error 
0.018. The value of 0.201, used to calculate for the initial curve fits, does not 
differ significantly from the posterior estimate, so there is no need to refit using 
the new value. The other parameter estimates are given below: 
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Standard Standard Standard 
Beta-l Error Beta-2 Error Beta-3 Error 

1978 7.514 0.221 1.884 0.275 1.201 0.160 
1979 7.707 0.212 1.884 0.275 1.201 0.160 
1980 7.900 0.205 1.884 0.275 1.201 0.160 
1981 8.093 0.199 1.884 0.275 1.201 0.160 
1982 8.287 0.195 1.884 0.275 1.201 0.160 
1983 8.480 0.192 1.884 0.275 1.201 0.160 
1984 8.673 0.191 1.884 0.275 1.201 0.160 
1985 8.866 0.192 1.884 0.275 1.201 0.160 
1986 9.059 0.194 1.884 0.275 1.201 0.160 
1987 9.253 0.198 1.884 0.275 1.201 0.160 
1988 9.446 0.204 1.884 0.275 1.201 0.160 

The residual plots (Figure 8.2c) and fitted-value plots (Figure 8.2d) are 
satisfactory, so final results may be calculated as described in Section 6.2. These 
are given below for a development horizon of 16 years: 

S P Û 

1979 402.19 26.73 2365.00 2767.19 
1980 598.13 55.87 3135.00 3733.13 
1981 843.31 114.90 4677.00 5520.31 
1982 2158.96 233.27 5575.00 7733.96 
1983 4217.64 493.11 10100.00 14317.64 
1984 7317.05 875.91 7792.00 15109.05 
1985 12479.31 1614.91 6070.00 18549.31 
1986 18460.72 2791.88 2225.00 20685.72 
1987 31430.08 4819.52 1492.00 32922.08 
1988 41065.50 6843.68 277.00 41342.50 

Totals: 118872.82 45843.00 164715.82 

Here, is the projected ultimate of the cumulative adjusted incurred data, S is 
the standard error of , P is again the total of the original paid data, and is Û 
minus P (thus S is also the standard error of ). The standard error of the total 
for all origin years has not been calculated. 

Combining these results with the paid results to the end of twenty development 
years, as outlined in Section 7.2, yields the following final estimates: 

1978 
1979 
1980 
1981 
1982 
1983 
1984 
1985 
1986 
1987 
1988 

118.81 
323.03 
492.79 
707.79 

1973.73 
4006.51 
7234.53 

12542.21 
18763.79 
31590.29 
40733.85 

Totals: 118466.33 

S 
139.45 
25.77 
53.47 

109.19 
219.49 
465.42 
813.91 

1470.94 
2505.03 
4349.66 
6120.88 

P 

2135.00 
2365.00 
3135.00 
4677.00 
5575.00 

10100.00 
7792.00 
6070.00 
2225.00 
1492.00 
277.00 

Û 
2253.81 
2688.03 
3627.79 
5384.79 
7548.73 

14106.51 
15026.53 
18612.21 
20988.79 
33082.29 
41010.85 

45843.00 164309.33 



Plot Of Residuals Against Accident Year 

Plot Of Residuals Against Delay Plot Of Residuals Against Delay 

Figure 8.2c.



Curve Fitted To 1979’s Data 

Curve Fitted To 1981's Data 

Figure 2d.
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These estimates, , are substantially less for the later years of origin than those 
based on the paid data alone. However, the paid estimates did not purport to be 
very reliable; the differences between the two sets of estimates are no more than 
about one standard error of the paid estimates. 

9. CONCLUDING REMARKS 

The main strengths of the method proposed in this paper when compared to 
other stochastic claims reserving methods are believed to be: 

(a) that it requires only data that are normally readily available, 
(b) that the model for these data is based entirely (both systematic and 

random components) on a model of the generating process, and 
(c) that it involves no specific assumptions about the distribution of the data 

or of individual claim severities. 

The ideas that the process which generates claims run-off data should be 
considered in stochastic reserving methods, and that results from risk theory are 
likely to be relevant. have previously been discussed in general terms by Hayne(6). 

The estimation method developed in Section 5 of this paper makes use of 
Fisher’s scoring method and the Kalman filter. Fisher’s scoring method is the 
algorithm used in the well-known statistical package GLIM. The mechanics 
are given in Appendix 2. For a derivation, Dobson(4) is recommended, whilst 
McCullagh & Nelder(9) gives the theory in more depth, including a full account of 
quasi-likelihood. 

The Kalman filter is now almost commonplace in claims reserving. Its 
application in this field appears to have been first suggested by de Jong & 
Zehnwirth(3), but, in the author’s opinion, the best general account remains that 
of Harrison & Stevens(5). The Kalman filter is, in essence, no more than the 
recursive use of Bayes’ theorem. In the present context, prior information for 
the run-off of an origin year is provided by the run-off already estimated for the 
previous origin year. Bayes’ theorem is used to combine this prior information 
with the data for the origin year in question to give the posterior estimate of the 
run-off. This, in turn. is taken as the prior estimate for the next origin year. 

The assignment of values for the system variances in a dynamic linear model 
has been considered a problem area in the past in applications of the Kalman 
filter. The approach adopted in this paper is: first to use each set of observations 
alone to estimate the corresponding system state, and then to use these estimates 
to estimate the system variance (Section 5.5). This approach arises naturally in 
the present application, but, in fact, could be used quite generally in any 
application of the Kalman filter. The properties of the particular estimation 
procedure proposed in Section 5.5 have not yet been fully explored; some other 
procedure may be more appropriate in general. 

In previous applications of the Kalman filter in the claims reserving context, 
the system variances are not necessarily the same between all pairs of origin years 
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(e.g. Zehnwirth(13)). They are sometimes reduced between later pairs of origin 
years, if this can be done without adversely affecting the fit, the ‘justification’ 
being that the standard errors of the final results diminish as a consequence. This 
could equally well be done using the present method, but is not recommended. In 
the example of Section 8, the quality of fit is hardly reduced if all adaptive 
variances for 1987 to 1988 are set to zero. This is equivalent to assuming that the 
underlying run-off pattern will be the same for both these origin years. The 
calculated standard error diminishes, because there are now three data-points for 
the estimation of this single curve, instead of two for the 87 curve and only one for 
the 88 curve. However, the calculated value is not valid, because the assumption 
cannot be justified. The values for the adaptive variances calculated as in Section 
5.5 are estimates of the actual amount of variation in the underlying run-off 
pattern from one origin year to the next, that has occurred in the past. 
(‘Underlying’ means after allowing for random variation in individual data- 
points.) It is usually unjustifiable to assume that the run-off pattern will be more 
stable in the future than it has been in the past, so the estimated system variances 
should be used, even if the resulting standard errors are disappointingly large. 

If there is no exposure information available the method can still be used. In 
such a case we have for all W, and so the error, represents the whole of 
the unknown exposure, (see Section 4.4 for notation). This is subsumed into 
beta-l, which, in Section 5.2, is assumed to follow a random walk. Thus, the 
effect of not correcting for exposure is to increase the system variance for beta-l. 
This, in turn, is likely to increase the standard errors of the reserve estimates, 
especially for the latest years of origin. This is not a flaw in the method, it is a 
manifestation of the obvious fact that, with only one or two data-points and not 
much idea about how the exposure relates to that for better developed years, it is 
impossible to estimate future payments with any reliability. 

Stochastic models for paid claims have previously been proposed with both 
forms of the systematic component given in Section 4.5. Kremer(8), and several 
more recent papers (e.g. Renshaw(10) and Verrall(12)) have considered a stochastic 
version of the Chain Ladder model, whilst Zehnwirth(13) has proposed a 
stochastic Hoerl curve model. In all these cases, the random component is 
assumed to be additive and Normally distributed after taking logs of the data. 

This assumption allows ordinary linear regression to be used for fitting the 
model (via the Kalman filter in the case of Verrall(12) and Zehnwirth(13)). 
However, the present author believes this assumption for the error component of 
incremental paid claims data to be untenable, that it can lead to very misleading 
results, and that its invalidity is quite unlikely to be detected using diagnostic 
tests (see Section 2 and Appendix 4). 

The first of the problems of the Chain Ladder model, mentioned in Section 
4.5.1 (namely that it does not help with prediction beyond a stage of development 
already observed) can be overcome by fitting a curve to the development factors 
estimated from the data. Development factors for stages of development not 
yet observed can then be estimated by extrapolation (see Craighead(2) and 
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Sherman(11) for example). However, this procedure is not statistically efficient; if 
there are reasons to expect the run-off pattern to follow a certain curve, then this 
model should be invoked at the outset. By first fitting the Chain Ladder model, 
the data are reduced to a single figure (or perhaps two, using stochastic methods) 
for each development period; valuable information on the shape of the curve 
could be lost in the process. Also, it would be difficult to calculate valid standard 
errors of estimates obtained by projecting development factors in this way. 

The procedure described in Section 5.7, of using values estimated from the 
early origin years, in modelling the latest origin years, is likely to lead to an 
overstatement of the reliability of the final results (because uncertainty in these 
empirical a values is not reflected in the final standard errors). However, it is 
believed that this effect will be slight, unless f is unusually large or the data are 
unusually variable. 

A recent paper by Jewell(7) considered in detail, and without approximations,, 
the problem dealt with in this paper by the x factors and by using D' instead of D 
(namely that claim events continue to occur during the first one or more 
development periods). The approximate solution to this problem adopted in this 
paper is believed to be adequate when the exposure interval is small compared to 
the length of the run-off. A more exact treatment of this aspect, such as that in 
Jewell, may be desirable for short-tailed lines of business. However, Jewell has 
so far considered only claim numbers, not severities, and it is not immediately 
obvious how to incorporate his work into a practicable claims reserving method. 

The assumptions in the model of the claim payment process from which the 
methods in this paper have been derived are as follows: 

(i) that the number of claim payments for each origin year is a Poisson 
variate, 

(ii) that delay to payment is Gamma-distributed, 
(iii) that the mean size of payments increases as some power function of delay, 
(iv) that the coefficient of variation of severities is the same for all delays, and 
(v) that payment delays and sizes are all mutually independent. 

Assumption (i) is quite likely to be violated; there may be contagion, as 
described by Beard et al.(1). In property insurance, for example, positive 
contagion may be caused by weather conditions; we would expect the variance 
of the number of claims to exceed the mean. Assumption (i) is not a vital 
assumption, however; any effects of contagion will either be offset by the use of 
a random measure of exposure (such as the number of claims reported in 
development year zero), or will be incorporated in the system variance of beta-1. 
The distribution of the number, ND, of claim payments falling in development 
year D is not subject to these contagion effects; the assumed Poisson distribution 
can be regarded as the usual approximation of the multinomial. 

Assumptions (ii), (iii) and (iv) are capable of direct testing. This has not yet 
been done, but these assumptions have been accepted as plausible by actuaries 
practising in general insurance who are familiar with this work. 
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Assumption (v) is known to be false, because separate payments relating to the 
same claim are obviously not independent. However, the number of claims is 
invariably large enough for this assumption to provide a good approximation. 

As well as investigating the degree of truth of these assumptions, some further 
work needs to be done to investigate the sensitivity of the method to the truth of 
the assumptions. This could best be done by simulation. 

The method for incurred data, described in Section 7, is not expected to be very 
widely applicable. For most datasets it is not as easy as in the example of Section 
8.2 to find case-estimate bias factors which have the desired effect when used to 
adjust the incurred data. When these can be found, a range of values will usually 
do. Unfortunately, in such cases, the final results (estimated ultimates) are often 
sensitive to the values used. The method can only be used satisfactorily if either: 
bias factors are known from sources other than the data; or the criteria are 
satisfied only by small values of the bias factors. 

It would be much more satisfactory to have a method which could be applied 
to both paid and incurred data simultaneously, taking into account the fact that 
they are both generated by the same set of claims. The development of such a 
method which is generally applicable is extremely difficult. Modern theory of 
stochastic processes looks quite promising here. 
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APPENDIX 1 

1/8 

3/8 

5/8 

7/8 

1 

DEFAULT VALUES FOR D’ AND 

A1.1 Accident Year Data 

Annual 

Six-monthly 

Quarterly 

D 

0 
1 

0 
1 

2 

0 
1 
2 
3 

4 

A1.2 Underwriting Year Data 

Annual 

Six-monthly 

Quarterly 

D α 

0 l/6 
1 5/6 

2 1 

0 
1 
2 
3 

4 

0 
1 
2 
3 
4 
5 
6 
7 

8 

l/24 
7/24 

17/24 
23/24 

1 

l/96 
7/96 

19/96 
37/96 
59/96 

77/96 
89/96 
95/96 

1 

α 

1/2 
1 

l/4 
3/4 

1 

D’ 

1/2 
D 

1/2 
5/6 

D–1/2 

1/2 
5/6 

13/10 
25/14 

D-3/2 

D’ 

l/2 
7/10 

D–1/2 

1/2 
9/14 

33/34 
73/46 

D–3/2 

1/2 
9/14 

35/38 
91/74 

187/118 
323/154 
489/178 
673/190 
D–7/2 

A1.3 Similar values can be obtained for monthly data. 
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APPENDIX 2 

GENERALISED LINEAR MODELS AND 
METHOD OF SCORING 

A2.1 Suppose we have n independent observations, Yi If µi and σ 2i denote the 
mean and variance of the ith observation, we can write: 

Yi = µi + Ei 

where: E(Ei) = 0 and V(Ei) = σ 2i. 

A generalised linear model is a model which relates the means and variances 
(µi, σ 2i) to a number, p, of parameters, β j (p < n), through equations of the form: 

where xi is a p-vector of known coefficients, and h and vi are known functions 
(differentiable, etc.). 

A2.2 There is an iterative algorithm known as Fisher’s scoring method (or just 
the method of scoring), which gives a sequence of estimates, of the parameters 

denotes the estimates given by the rth iteration.) We often find that this 
sequence of estimates converges; will denote the limit. It can be shown that, if 
the distributions of the data, Yi, are from one of the exponential families of 
distributions (e.g. the Normal family, or the Gamma family), then is the 
maximum likelihood estimate of the parameters β . The algorithm is as follows: 

where: (n-vector) 

(diagonal n x n matrix) 

(n x p matrix of known coefficients). 

It can also be shown that, in the limit, as the sample size, n, tends to infinity, we 
have: 
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and a good estimate of V is the inverse of the information matrix: 

725 

If the distributions of the data, Yi, do not belong to an exponential family, 
then, if the method of scoring converges, the estimate, , so obtained, is known as 
a quasi-likelihood estimate. The asymptotic distribution of (as the sample size 
tends to infinity) remains as given above; this justifies application of the method 
of scoring, regardless of the distribution of the data. 

A2.3 In both the models of Section 4.5, we have: 

(i) h(–) = exp(–) and hence h’(–) = exp(–) also, 

(where , is a known function of λ ). 

Hence the method of scoring becomes: 

where: 

In the fitting procedure, described in Section 5, the method of scoring is 
initially applied for each origin year, W, separately, and the asymptotic Normal 
distribution is used to approximate the distribution of the resulting estimates w. 
The later origin years may have very few data points, so the Normal 
approximation may be poor. However, simulations suggest that the overall 
accuracy is acceptable. 
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APPENDIX 3 

DYNAMIC LINEAR MODELS AND THE KALMAN FILTER 

A3.1 Suppose we have a sequence of data-points, Zt, where t is the indexing 
variable for the sequence. (In many applications t represents time.) In general, 
each data-point, Zt, is a vector. Suppose an ordinary linear model is believed to 
be appropriate for each data-point, Zt: 

(A.1) 

where: β t is the vector of unknown parameters to be estimated, 
Xt is the matrix of known explanatory variables, and 
Vt is the assumed variance-covariance matrix for the random component 
of the data. 

Suppose, also, that the unknown parameters are believed to be related for 
different values oft, as follows: 

(A.2) 

where: Gt is a known matrix, and 
Ut is the assumed variance–covariance matrix of the difference between β t 
and Gt β i–1. 

Thus we have a model specified by two equations: (A.1) is known as the 
observation equation; (A.2) is known as the system equation. Such a model is 
known as a dynamic linear model (DLM). 

A3.2 The Kalman filter is an algorithm which gives optimal estimates of the 
parameters, β t, of a dynamic linear model. It is a recursive algorithm; one 
iteration is necessary for each t. Each iteration starts with a probability 
distribution describing the state of knowledge about the parameters, β t, prior 
to analysis of the data Z t. The algorithm optimally combines the data, Zt, with 
this prior distribution to give a posterior distribution describing the state of 
knowledge about β t after inclusion of the information contained in Zt. This 
posterior distribution for β 1, together with the system equation (equation (A.2)), 
gives the prior distribution for β t+1 for use in the next iteration. For the first 
iteration, the prior distribution for β 1 must be obtained from external sources. If 
there is no prior information about β 1 the algorithm is initialised using an 
uninformative prior: i.e. the prior distribution has a very large variance. 

A3.3 The Kalman filter is given below. It can be shown that this follows from 
Bayes theorem. The mean and variance–covariance of a distribution for β t are 
denoted respectively by mt and Ct, with an additional subscript, – or +, to 
distinguish between prior and posterior distributions. 

(i) Suppose the prior distribution for β t is N(mt–, Ct–). 
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(ii) The prior estimate of Zt (the one-step-ahead forecast) is given by: 

(from equation A.1) 

(iii) The variance–covariance of this prior estimate, is given by: 

(from (i). (ii) and equation (A.1)) 

(iv) The Kalman gain matrix is given by: 

(v) When the data, Zt, become available, the prediction error is given by: 

(vi) The posterior distribution of β t is N(mt+, Ct+) where: 

(vii) The prior distribution of β t+1 is N(m(t+1)–, C(t+1)–) where: 

(from equation (A.2)). 

A3.4 The direct application of the Kalman filter to a dynamic linear model 
gives optimal estimates of each set of parameters, β t, based on the data received 
up to and including time t. This is appropriate in control systems where t is real 
time and the best estimate of the state of the system (represented by β t) is required 
at each time, t, in order to decide on control actions to be made at time t. In such 
applications, the past states of the system ( β s for s < t) are not of interest. 
However, in claims reserving, at each point in time, reserves are required for all 
past origin years, so we require not only the best estimates of the most recent run- 
off parameters, but also the best estimates of all past run-off parameters. For this 
reason, it is appropriate to use the smoothed Kalman filter, in which estimates of 
parameters for past years of origin are affected by data received for later years of 
origin. Obviously, there can be no causal effect in this direction on the true 
parameter values, but data for later origin years allow us to improve the estimates 
of the values for past years, by virtue of the assumed system equation. 

There is nothing essentially new in the smoothed Kalman filter: it is simply a 
matter of rewriting the original model in a different way to give another dynamic 
linear model, and then applying the ordinary Kalman filter to this. 
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If β *t is defined by: 

(so β *t is a vector of length t·p, if each β t is of length p) then the observation 
equation (equation (A.1)) can be written: 

where X*t is a matrix with t·p columns, the last p columns being Xt and the other 
columns being zero. 

The system equation (equation (A.2)) can be written: 

where: and 

This is of the same form as the original model, and so the Kalman filter can be 
applied to give optimal estimates of β *t based on all the data up to and including 
Zt. But β *t contains all present and past parameter values, b t. In the claims 
reserving context each iteration brings in data for another origin year to give the 
best estimates of the run-off parameters for that origin year and all past origin 
years. 
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APPENDIX 4 

CRITIQUE OF ERROR STRUCTURE IN OTHER STOCHASTIC 
CLAIMS RESERVING MODELS 

A4.1 The model proposed in this paper can be written: 

where: YD is incremental paid claims, 
µD is the systematic component of YD, and 
ED is the random component of YD with E(ED)=0 

and we have: for some known vector x, 

and 

where Ø is an unknown constant, but the D are known. 
No further assumptions are made about the distribution of ED. 
A4.2 The stochastic models used in Kremer(8), Renshaw(10), Verrall(12) and 

Zehnwirth(13) are all of the form: 

where: for some known vector, xD 

and ED is assumed to be Normally distributed, with V(ED) = σ 2D, say. 

Taking logs of the model equation gives: 

i.e.: 

Hence ordinary linear regression (weighted least squares) can be used to fit such 
models (this is done via the Kalman filter in Verrall(12) and Zehnwirth(13)). 

NB: (1) An assumption is generally made about the form of the variance func- 
tion but it contains unknown parameters which are estimated from 
the data. 

(2) In a model of this form, µD is not the expected value of YD as we have; 

(3) Such models do not allow for negative values of YD, although these are 
not uncommon. 

A4.3 It is well known that the variance of a sum of independent random 
variables is the sum of their variances. Since each data-point, YD, is the sum of all 
claim payments made in development year D, both the variance and the expected 
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value of YD are proportional to the expected number of payments. We should, 
therefore, expect If individual payments are all mutually 
independent, and if their distribution does not depend on D, then there is no 
approximation here; we have exactly for some constant, φ . A 
numerical example may make this clearer. 

Suppose: 

(i) the expected number of payments is: 

1000 in development year 1 
4000 in development year 2. 

(ii) the expected size of payments is £10 for both these development years. 

Then we have: 
E(Y1) = £10,000 

E(Y2) = £40,000 
and if φ = 100: 

SD (Y1) = £1000 

SD (Y2) = £2000 

(where SD( ) means standard deviation, i.e. 

Thus we have 10% random variation in Y1, but only 5% random variation in 
Y2; with more individual payments in Y2 there is increased opportunity for 
random variation in individual payments to cancel out. 

A4.4 From A4.1 we see that the model proposed in this paper has: 

The factor, Ψ D, appears in order to take account of two complications not 
considered in A4.3: 

(i) inflation may cause the payment severities to depend on D, and 
(ii) payment severities in real terms may depend on D. 

Ψ D is given by (the denominator α D is not necessary here 
because we are dealing with un-normalised data, YD). If effect (i) is absent we 
have i = 0 and if effect (ii) is absent we have λ = 0, so if both are absent we have 

which gives as in A4.3. 
A4.5 Now consider models of the form: 

with 

Suppose 

then with high probability, so and, approximately, we 
have: 
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Thus we have an additive error term, ED•µD, with E(ED•µD) = 0 and 
V(ED•µD) = 2D•µ2D. 

Clearly, for this variance to be of the form •µD, as argued in A4.3, we must 
have: 2D= /µD. Thus, the reasoning of A4.3 can be satisfied provided µD is 
sufficiently large for all D to satisfy the condition (*) above. However, in general, 
µD 0 as D 0 or D , so (*) is violated for both small and large values of D, 
and some other form for 2D would be appropriate in these ranges. Clearly, in 
order to use approximately ‘correct’ weights (according to A4.3) in the 
regression, the form of the function, 2D, would have to be complex; and this is 
before allowing for the possibility that the claim severity distribution may vary 
with delay. 

The fitting method proposed for such models is generally as follows: 

(i) Initially take 2D= 2 (the same for all D) and fit the model 
lnYD = xTD• + ED using ordinary linear regression. 

(ii) Examine the dependence of the residuals on D (heteroscedasticity), and 
use this to give a second approximation to the form of 2D. 

(iii) Refit the model using weighted linear regression, as dictated by the 
latest approximation of 2D. 

Steps (ii) and (iii) are then iterated until there is no obvious heteroscedasticity 
remaining in the residuals. 

The chances of finding the ‘correct’ profile (according to A4.3) for 2D in this 
way are fairly remote, given the complex form of this function and the small 
sample size (typically about 50 points, of which there are very few for large values 
of D because of the triangular shape). The approach generally adopted for step 
(ii) is to postulate quite a simple functional form and to use the residuals for 
calibration. For example, Zehnwirth (13) assumes: 

and uses the residuals to estimate 2 and . It can be shown that this form for 
2D; cannot possibly give anything like ‘correct’ variances for all values of D 
simultaneously. 

Note that the question of correctness of the assumed variances is not of merely 
academic interest; they determine the weights given to the data-points in fitting 
any model. The reasonableness of the variance assumptions is, therefore, crucial 
for the validity of the estimates. 




