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Summary

This paper describes a stochastic model to determine IBNR-reserves based on a
Compound Poisson distribution. The number of insureds per accident year and the
mean and second moment of payments by accident, reporting and development year
are used as input. The claim frequency is estimated by accident and reporting year
and the equality of the claim frequencies is tested using a % goodness-of-fit test.
Mean and second moment of the total claim amount are estimated as the sum of
payments in development years starting with the reporting year. After that, the
model is applied to a fictitious dataset and the arising difficulties are discussed. It is
shown that without testing the equality of claim frequencies, the calculated reserve
may lead to an underestimation of future liabilities.

Keywords: claim frequency, Poisson distribution, 3* goodness-of-fit test.
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1 Introduction

In this paper, a stochastic model is described to estimate IBNR-teserves.! It is
assumed in the model that future claim numbers are Poisson distributed, where the
Poisson parameter is proportional to the number of insureds. To estimate the
individual claim amounts, the average and second moment of annual payments per
claim are estimated from past observations for different accident, reporting years and
development years.

In order to establish the validity of past experiences to predict future claims, it can
be tested whether there have been signmificant changes in claim frequencies and
amounts during the observed accident years.

Others have used similar ideas before in the construction of IBNR-models. Larsen,
Monty and Clemensen (1996) model the number of future claims stochastically and
also use the number of insureds as input. Bihlmann, Schnieper and Straub (1980)
describe a model that uses a Compound Poisson distribution and the number of
insureds. The goal of the model described here is to use all the information available
by the insurance company as effectively as possible while maintaining fitness for use.

This paper is organised as follows: in section 2, the model structure is described. In
section 3 and 4, the estimation methods for claim numbers and claim amounts are
described respectively. In section 5, the model is applied to a fictitious dataset.
Section 6 contains the conclusion.

! The authors would like to thank prof. dr. W. Schaafsma, University of Groningen, The Netherlands,
department of Mathematics and Computer Science, for his advice in the construction of this model.
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2 General model assumptions

In this section, the mathematical structure of the model is described. The time frame
is defined in the first subsection, the stochastic model structure in the second.

2.1 Time frame

To determine the net present value of future liabilities at the end of a booking
period, a distinction is made between accident, reporting and development periods.
The accident period is the period in which the event leading to a claim has occurred,
the reporting period refers to the period in which the claim is reported and the
development periods refer to the periods in which payments, resulting from the
claim, are made.

The duration of the periods can be chosen arbitrarily, as long as all periods have the
same duration. In the following, the duration of all periods will be one year.
Accident years are indicated by calendar year, while reporting and development
years are related to accident years and indicated by the number of years passed since
the beginning of the accident year. For example, reporting year j is the /% calendar
year after the accident year, so that reporting year 0 is the accident year. Claim
numbers are observed separately for different accident and reporting years.

The following variables are defined:

n, = pumber of claims incurred in year { and reported in year j, the fh
calendar year after year i;

54 = net present value at the moment of reporting of the K" claim
originating in accident year i, reported in reporting year j,
k=1,2,...,n.7;

v = 1/ (1 +annual interest rate);

i = the financial year at the end of which the reserve is determined.

It is assumed that all claims are reported exactly in the middle of the year. Total
liabHiEies, denoted by !/, with respect to incurred but unreported claims at the end of
year { equal:

1= Z iskviq-i‘—m
R s

i+joi k=l
isi
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2.2 Description of the stochastic model

For the determination of the IBNR-reserve at the end of year i, a stochastic variable
N, is defined with outcome n, . It is assumed, that N is Poisson distributed with

parameter 4, and that 4; is proportional to the number of insureds x, in accident
year { and an expected claim frequency ¢, , depending on the accident year and the
reporting year. The claim frequency F, with outcome f; is defined as:

N, EN,
F, = T,sothatqo,, =EF,= - and EN;=7 =x, ¢@,.

The assumption of Poisson distributed claim numbers is made because the Poisson
distribution is an adequate distribution to model stochastic events occurring with a
small probability.

Furthermore, stochastic variables S, with outcomes s, are defined. L; represents

the et present value of all future liabilities to be taken-into account at the end of
year i resulting from claims incurred in year i, with i <i", and reported in reporting
year j. For the IBNR-teserve, only claims that have incurred in year i, with { < i,
and will be reported in year j, with i+j >i’, have to be taken into account. L, is

defined as:
Ny
L = Sy

ik

The net present value at the ead of year i of the total of future liabilities is defined
by L and equals:

L= YL

i+ f>i
isi

It is assumed that all the S, and ¥, are mutually independent. Mean and variance

of L, equal:

E[L,]= E[N,JELS, v,
VAR(L, 1= E[N,JE[S,](v"7 ),

Mean and variance of L equal:
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E[L]

i

2 EILY;

i+f>i
isi

Y. VAR(L,].

it
isi

VAR[L]

In the next two sections, estimation methods for the moments of N and § are
described. Based on the model structure described in this section, estimations for the
variance, expected value and all higher moments of future liabilities can be derived.
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3 Estimation of claim frequencies and the expected number of claims

In this section, methods to estimate the claim frequencies are described. This is done
using an example in which an IBNR reserve has to be computed at the end of 1997
for a product that was first given coverage in 1994. The frequency of claims is
estimated by accident and reporting year as described in the previous section.

Numbers of insureds and claims in the example are represented in the table below:

Table 1: numbers of insureds and claims by accident and reporting year
x, = number of insureds in accident year i.

n, = number of claims incurred in year i, reported in year ;.

Reporting year
Accident |Numberof10 |1 2 3[4 |5 6 7 B o To
lyear insureds _|Number of claims:

1994 X3 Ry30 |Mg31 Mo32 {Me3s
1995 X94 Rogn |Moar [Moaz
1996 Xa5 Nyso | Mgsy

1997 X6 Rgs0

It is assumed that no claims will be reported more than ten years after the accident
year. This is a more or less arbitrary assumption, which can be adapted depending
on the expected claim behaviour.

The claim frequencies £, can be observed when i < i"and i+j <i. Fori<i and
i+j >i’, the f; will be predicted under the assumption that ¢, = @, , whereg,

denotes the expected claim frequency in reporting year j, equal for all accident years
i. The hypothesis that ¢, = @, can be tested for given j and i+j < i". This
hypothesis can also be tested for all j together. See appendix I for the description of
the tests. If the claim frequency changes considerably through the years, the
hypothesis that @, = @, will possibly be rejected. In this case, one can remove the

earliest accident year from the test and perform the test again. This process can be
repeated until the hypothesis will not be rejected any more. Also if in one particular
accident year, other than the earliest observable one, claim frequencies differ greatly
from the other accident years for a known reason, one could remove this accident
year from the test. One should not, however, remove an accident year from the test
only because it differs greatly from all the other years, since by doing so the level of
the test would be influenced.
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Given ¢; = ¢, for all i and given j, the UMVU-estimator of ¢, is given by :

See appendix 1I for a proof.

The expected numbers of claims for future reporting years are predicted by

4, = ¢x, withi <i and i+j>i". In the example shown in table 1, no

observations are available for j 2 4. Additional assumptions are therefore necessary
in this case to estimate @, . These assumptions cannot be tested due 1o the absence of

data. Instead, they will have to be based on more general experience of the actuary
regarding late claims.
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4 Estimation of the distribution of liabilities per claim

In the first subsection of this section, the estimation of the individual claim amounts
is discussed. In the second subsection, some comments are made with respect to
testing the equality of claim distributions for different accident years.

4.1 Estimation of claim amounts

To estimate the net present value of the labilities resulting from an individual claim,
registrations of benefits paid and additional costs are available. Based on those
registrations, expected value, variance and possibly higher moments of the total costs
per claim can be estimated. The problem arises that at the instant the reserve has to
be determined, many claims have not been fully settled yet. Therefore, annual
payments per claim are estimated separately as a function of accident, reporting and
development year. The claim amount is estimated as the sum of the estimated
payments in different development years.

B, is defined as the total of payments in the /* development year after the accident

year resulting from the &* claim reported in the /® reporting year, incurred in
accident year i. In order to take inflation into account, payments done in the past can
be adjusted to the level at the end of year i". Future inflation can be taken into
account by assuming an inflation rate for the future and adjusting all payments B,

for which i+/>i" accordingly. Note that in case no paymenis are made in
development year /, B, equals zero, so that By, is defined for all /20.

All payments are assumed to be made exactly in the middle of the¢ year, so that the
delay between reporting and payment is exactly /-f years. Therefore,

Sijk = ZB:ykvl_j .

I2j

The first and second moment of the S, can be written in terms of the B,,, as:

E[S,] = 2 E{By}" and
2y

E(S] = LE B +ET BBl V7
2 ) 2j

mz2j
mzl
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To estimate £[S,,] and E[S},]it is assumed that:
1. E[B,,] and E[B},]are equal for all &, so that they can be written as E[B,,]
and E [B},] instead;
2. By, and B, are uncorrelated for [ # m, so that E[By,By,] = E[By] E[B,,].

The first assumption implies that all claims incurred in the same accident year and
reported in the same reporting year give rise to the same claim amount distribution.
Assuming this, any seasonal fluctuations that may be present in the claim pattern are
disregarded.

The second assumption is based on the assumption that the magnitude of a payment
in one development year possibly provides an indication of the variance of payments
in other development years but not of the expected value.

As a result, £ [&;k]can be rewritten as:

<H%]=ZEWQW”+ZEWJH%J¢“%
> >

m2j

mzl

so that unbiased estimates for E[S,] and E [S7] can be derived from unbiased
estimates for E [B,,] and £[B],].

" A2
For future development years, £ B,, and E B2, are estimated by £ By and E By, :

g1 il

- 1
EBijl 7 Z b,,y-kl y

melsi
<t
k

A 2 1
EBy= =Y bl
T maisi®

{Sl

where the b,,, denote the outcomes of the B, observed in the past and T is the
number of observations &, over which the summation is taken.
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4.2 Testing equality of annual payments for different accident years

It would be interesting to test the hypothesis that annual expected payments or claim
amounts after correction for inflation are equal for all observed accident years. For
given j and [, a test statistic can be derived for certain distribution functions of the
annual payments. It will not be possible, however, to derive a test for all j and /
simultaneously at any given level without making assumptions about the dependence
structure of the B, . Therefore, testing of the equality of moments of the claim

amounts and annual payments is left for further research.
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5 Calculation of the IBNR-reserve for an existing portfolio

In this section, the theory described in the previous sections is applied to an example
with fictitious data. In the first subsection, claim frequencies are estimated. In the
second subsection, the individual claim amounts are estimated and in the third
subsection, the effect of changes in the claim frequencies is investigated.

5.1 Estimation of the future number of claims

Future claim frequencies are estimated at the end of 1997 for a portfolio, that has
come into existence in 1988. The following numbers of claims and insureds for
accident years 1988 through 1997 are given:

Table 2: Number of insureds and claims by accident and reporting year
Reporting year

o [ PR ¢ [ I I8 o

\Accident |Number of Number of claims

year insureds
1988 3,520] 214 189 46 28 21 10 9 2 3 0
19891 3,740) 198 191 49 38 29 18 10 5 4
1990; 4,070 239{ 183 57 39 28 16 16 3
1991 4280 2231 201 51 36 30 21 12
1992 4,160 202} 232 55 28 38 19
1993 4340 207 221 59 39 29
1994 4,020{ 206 205 53 37
1995 4010 212] 184 52
1996 4,250] 252] 190
1997, 4,880 263

For each reporting year separately and for all reporting years together, the
hypothesis is tested that expected claim frequencies depend only on the reporting
year and not on the accident year. See appendix I for the calculation of the test-
values. The results are as follows:
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Table 3. Test values and critical values by reporting year and for all reporting years toge

Reporting year 0 1 2 3 4 5 6, 7 8| total
Test value 13.40] 10.39] 080 3.56| 3.27; 2.55] 1359} 137} 009} 37.02
Critical value’ for

o =10%. 14.68] 13.36] 12.02] 10.64] 9.24] 7.78] 625] 461} 2.71] 575
o =5% 16.92 15.50| 14.06{ 12.59} 11.07{ 9.49] 7.81] 599 3.841 61.7
o =1% 21.67{ 20.09] 18.48] 16.81] 15.09{ 13.28] 11.34] 9.21} 6.63] 70.0

The hypothesis is not rejected for any reporting year nor for all reporting years
together (total) at any reasonable test level. It can be discussed whether reporting
year 0, the accident year, should be involved in the test, since the IBNR-reserve at
the end of any financial year will not provide for claims reported during the accident
year. On the other hand, it is logical to assume that claim numbers in different
reporting years resulting from the same accident year are always interrelated.
Therefore, reporting year 0 is also involved in the test and the test results are shown
in the ‘total’-column.

The predictions of the claim frequencies in reporting years 1 through 8 are calculated
as the sum of claims in the reporting year divided by the number of insureds in the
corresponding accident years. In reporting year 9 and 10, respectively 2/3 and 1/3 of
the predicted claim frequency in reporting year § are taken as prediction values.

The following predictions for claim frequencies are found:

Table 4: Predicted claim frequencies by reporting year
Reporting year  |Claim frequency

0.0537
0.0494
0.0131
0.00871
0.00726
0.00425
0.00301
0.000883
0.000964
0.000643
0.000321

vl b jwino|—1o

—
S{wofo

Table 2 can now be extended with expected numbers of future claims:

2 The critical values are based on y’-distributions with df equal to 9 minus the reporting year. For the
“total® column, df equals 45, the sum of the df for the separate reporting years.
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5.2 Estimation of total costs per claim

Total costs per claim are estimated by summing over the estimated annual payments
in corresponding development years and dividing by the number of claims in the
reporting year. For the 10® development year, for which no observations are
available, an expected payment of 50% of the average payment in the 9°
development year and equal reporting year is assumed. For later development years,
it is assumed that no further payments will take place. The following estimates for
the mean and second moment of tota! liabilities per claim are found:

Table 6: Estimated mean and second moment of claims by reporting year

Reporting year Mean Second moment
1 561 320,539
2 540 296,777,
3 552 308,617
4 558 316,086
5 591 355,302
6 608 373,774
7 606 376,518
8 802) 651,267

Because of the small number of claims in reporting years 6, 7 and 8, one average
and one variance of total costs per claim are computed for those years together.
These are used to predict total costs per claim in reporting year 6,7,8,9, and 10. The
interest and inflation rate are assumed to be zero. The results are as follows:

Table 7: Expected value and standard deviation of future liabilities by reporting year

Reporiing year |Expected value Standard deviation
1 135,158 8,786
2 64,744/ 5,965
3 63,149 5,943
4 69,543 6,275
S 56,706/ 6,012
6 47,959 5,529
7 16,404 3,234
8 20,356 3,602
9 15,063 3,099
10 8,234 2,291
total 497,316 17,102
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5.3 Effects of changes in the claim frequency

In the next example, claim numbers in 1993 through 1997 are increased by 20%, while
the moments of the costs per claim remain unchanged. This adjustment is made to show
how the method deals with claim frequencies that differ significantly through the years.
If no test is performed on the frequencies and the method shown above is applied, the
following results are found.

Table 8: Expected value and standard deviation based on ail observations of claims

Reporting year |Expected value Standard deviation
1 147,124 9,167
2 69,500 6,180
3 66,758 6,110
4 71,530 6,364
5 56,706 6,012
6 47,959 5,529
7 16,404/ 3,234
8 20,356 3,602
9 15,063 3,099
10 8,234 2,291
total 519,633 17,466

Given the fact that claim frequencies are increased by 20% in the last 5 accident years,
the increase of the expected value with only 4.5% compared to table 7 is an
underestimation of the real increase of expected future liabilities.

The test of equality of claim frequencies by accident year gives the following results:

Table 9: Test results for the claim frequencies

[Reporting year| 0| i 2] 3| 4 st 6 7 8 total
Testvalue | 28.52] 18.89] 4.71] 633] 3.04] 2.55 1.59] 137] 0.09] 67.09
Critical value’ for

o =10%: 14.68] 13.36] 12.02] 10.64] 924 7.78] 6.25| 461 2.71] 575
o =5% 16.92] 1550 14.06] 1259 11070 9.49f 7.81] 599 384 617
a=1% 21.67] 20.09] 18.48] 1681] 1509] 1328] 11.34] 9.21] 663] 700

The test rejects the hypothesis for reporting year 0 at 1% and for reporting year 1
and for all reporting years together (total) at level 5%.

3 The critical values are based on y’-distributions with df equal to 9 minus the reporting year. For the
‘total’ column, df equals 45, the sum of the df for the separate reporting years.
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The earliest accident years will now be removed from the test one by one until the
hypothesis of equal expected claim frequencies in the remaining accident years is not
rejected any more at level 5%. This yields the following results:
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The test for all reporting years together does not reject once all accident years prior
to 1993 have been removed. Therefore, the IBNR-reserve is computed with different
claim frequencies for 1988 through 1992 and 1993 shongh 1997 For the total costs

per claim, estimates based on the entire period from 1988 through 1997 are used.

The results for accident years 1993 through 1997 cannot be given without additional
assumptions. Since the claim frequencies in the first five accident years differ
significantly from those in the last five years, there are no unbiased estimators
available for the latter. The additional assumptions that will have to be made cannot
be tested due to a lack of observations. They will have to be based on more general
assumptions about late claims.

One such assumption is that all the claim frequencies with respect to accident years
1993 through 1997 will increase by a constant factor compared to accident years
1988 through 1992. This factor can be estimated by comparing average claim
frequencies in 1988 through 1992 with those in 1993 through 1997. In the following,
it is assumed that claim numbers in the last five accident years will respectively be
20% and 50% higher than in the-first five accident years.

The results for this approach are given in the two tables below.

Table 11: Expected value and standard deviation of total future liabilities with 20% higher claim
numbers for the last five accident years

Reporting year |Expected value Standard deviation
1 158,018 9,500
2 77,732 6,536
3 78,056 6,607
4 75,059 6,519
5 68,047 6,586
6 55,996 5,974
7 18,760 3,458
8 22,929 3,823
9 16,779 3,270
10 9,092 2,407

total 580,467 18,473
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Table 12: Expected value and standard deviation of toral future liabilities with 50% higher claim
numbers for the last five accident years

Reporting year |Expected value {Standard deviation
1 158,018 9,500
2 77,732 6,536
3 78,056 6,607
4 75,059, 6,519
5 85,059 7,363
6 68,051 6,586)
7 22,293 3,770
8 26,790, 4,132
9 19,352 3,512
10 10,378 2,572
total 620,789 19, 156]

As one can see, the rejection of the hypothesis of equal claim frequencies for all
accident years leads to a considerably higher reserve. By the choice of test level, the
actuary’s belief in the hypothesis has a direct effect on the reserve that will be
determined.
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6 Conclusion

This model provides an estimation of expected value, variance and possibly higher
moments of the total of future liabilities resulting from incurred but not yet reported
claims. By way of statistical testing of additional assumptions, in particular shifts in
claim frequencies, the model provides extra insight into the nature of risks
undertaken. Statistical testing of the assumptions made leads to a prediction that is
more directly related to the company’s claim experience.

In the last section, it is shown that an increase of claim frequencies several years
after the earliest observable accident year may lead to a serious underestimation of
future liabilities in case all past accident years are used to determine the IBNR-
reserve. By testing the equality of claim frequencies, this underestimation can be
detected. To correct it, however, no explicit procediire can be prescribed.

The test results do not provide strict guidelines to determine an IBNR-reserve, but
can only be seen as a way of providing extra insight to the nature of risks. The
interpretation of the test results and the way estimations of future payments are made
in the absence of past observations is still largely dependent on specific choices to be
made by the actuary.
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Appendix I
1 Testing the equality of claim frequencies for each reporting year separately

Define Hg ¢; = @, for all i with given .
H,:3klsuchthat g, # ¢, .

Given H,, we have: N, ~Poisson (x,¢,) and also ZN ~Poisson (4’,2" )

i=1

The conditional distribution of the N, given ZN,,. is multinomially distributed

L
i=]

given Hy:
PN, =m;,. N, =n,]=
(2 N!
i

m

kM k[ whennye{0,1,..,> N, }and > n,=> N,

n,l.n,l
0 otherwise,
X. X
with k, = R

This assumption can be tested with a goodness-of-fit test.

N i

WM

Under the null-hypothesis we have: E[ N, | ZN 1= x, &

Zxk .

k=1

NLa’

DM

Define v, = x, 5

M

X,
=

The test value T}, with:

n (n, —v, )
]}__.Z_(_V_v’_) .
=l i

is approximately - distributed with m-1 degrees of freedom given Ho.
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2 Testing the equality of expected claim frequencies for all reporting years
together

Nuil hypothesis and alternative are now as follows:

H,: for all j we have: ¢, = @, for all { with given j.
H,: 3 j for which 3 k, I for which ¢, =p,.

If H, holds, then all 7, are y’- distributed. Also the sum of the 7} is then
distributed. The number of degrees of freedom of the sum, which is used as test
value, now equals the sum of the degrees of freedom of the separate T, .
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Appendix 1I

Proof, that ¢, is the UMVU-estimator of ¢, .

It will be shown, that (]IJ\J. satisfies the next three conditions:

1. q’)} is an unbiased estimator of ¢, ;
2. q’)\j is a sufficient statistic;

AL ..
3. @, is a complete statistic.

According to the theorems of Rao-Blackwell and Lehmann-Scheffé, an estimator is
the UMV U-estimator if these conditions are satisfied.

To verify the first condition, the expected value of ;3]. is computed:
E[¢]] =

Z,
Y
2 EN,]
2%
2%9,
s

?;

E[

To show that ¢'; , is a sufficient statistic, it has to be shown that the distribution of
the N, conditionally given ZNV. does not depend on ¢;. Given z‘:N,j = n, the

N, are multinomially distributed:
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PN, =n,, N =n,]=
( n!
ln,j!..,nmj!

0 otherwise.

Cmi it ot . < .. M I e
k.. k,” when nﬁ—O,l,...,zld N, and L’?., —L_,N,.j

with m the number of observable accident years and
k =x 1%, k =x2/Zx,. reees k3=xm/2x,.‘

@, is not a parameter in this distribution and so rfv\J is a sufficient statistic.

q/y\ , is a complete statistic if the following condition is satisfied:

If for all values of @, and for all functions f we have that E [f{ é\] )] =0 then we also
have that f(x) = 0 for all non-negative integers x.

This condition holds, which is now shown.

The condition that E [f(qgj )] =0 holds for all functions f is equivalent with the
condition that £ [g(z N,)]=0 holds for all functions g . Since the N, are Poisson
distributed, ZN,). is also Poisson distributed. Define & as the parameter of this
distribution. E[g(D,N,)] can be written as:
m’ e—aok
E[gN)]= 2 8.
: r=ciN g

-8k

(4
k) = 0 is equivalent with
k!

The condition )
k=0

k&

- @
2 7&=0.

o & k .

> il g(k)is a power series in 6 with coefficients &I(d_) Two power series in 6

k=0 . !

have equal values in an interval if and only if all coefficients are equal. Therefore,
'3

> 8
we have Z Fg(k) =0 if and only if g(k) =0 for all k=0,1,2,... This proofs, that
k=0 4

(;’7\] is a complete statistic.
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