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Abstract 

Stochastic models for asset prices processes are now familiar to 
actuaries. Many of the models used in life office and pension fund 
valuation and asset-liability modelling studies assume deterministic 
volatility parameters. 

Empirical evidence however, suggests that volatility in asset prices 
varies with time. Further, volatilities implied by traded option prices 
show a term structure for implied volatility, as well as an apparent 
dependence on the "moneyness" of the option. These 
observations seem to be at odds with a constant volatility assumption. 

In this paper we present some empirical observations concerning 
volatility, and consider the impact of volatility on actuarial work. We 
then review some of the common models which incorporate stochastic 
volatility and consider issues related to parameterising such models. 

                                                

 

1 We are indebted to Stuart Jones for his patience and for providing invaluable technical assistance. We 
would also like to thank Dylan Brooks and Carmela Calvosa for providing data and fruitful 
discussions.  
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1. Introduction  

Volatility is central to many applied issues in finance and financial engineering, 
ranging from asset pricing and asset allocation to risk management. Financial 
economists have always been intrigued by the very high precision with which 
volatility can be estimated under the diffusion assumption routinely invoked in 
theoretical work. The basic insight follows from the observation that precise 
estimation of diffusion volatility does not require a long calendar span of data; rather, 
volatility can be estimated arbitrarily well from an arbitrarily short span of data, 
provided that returns are sampled sufficiently frequently. This contrasts sharply with 
precise estimation of the drift, which generally requires a long calendar span of data, 
regardless of the frequency with which returns are sampled. There is also the baffling 
range of volatility terms used: Historical Volatility , Implied Volatility , Forecast 
Volatility , etc..  In this paper, the first two terms are most important. 

Historical volatility is a measure of the previous fluctuations in share price (crudely: 
an indicator of the share's up/downess). There is much discussion over the best 
method of calculating the historic volatility. The most usual method is the standard 
deviation of the log of price returns - this procedure is fairly standard and can be 
found in most textbooks.  While the calculation itself is straight-forward, it is accurate 
only within the parameters of each calculation (e.g. the specific time period: 3 
months, 3 years etc.). There is great scope for analysing the share price behaviour 
over different time periods, and thereby calculating different historic volatilities.  

Instead of inputting a volatility parameter into an option model (e.g. Black-Scholes) 
to determine an option's fair value, the calculation can be turned round, where the 
actual current option price is input and the volatility is output. The term implied 
volatility is obviously self-explanatory - that level of volatility that will calculate a 
fair value actually equal to the current trading option price. This calculation can be 
very useful when comparing different options. The implied volatility can be regarded 
as a measure of an option's "expensiveness" in the market, and is used by traders 
setting up combination strategies, where they have to identify relatively cheap and 
expensive options (even though these options have different terms). It is perhaps 
useful to note that implied volatility only has any meaning in the context of a 
particular option model (it is not intrinsic to the option itself). So, although options 
have existed for a long time, implied volatility has only had any meaning since the 
option pricing model of Fisher Black and Myron Scholes (devised in the early 1970's) 
stated that the value of an option was a function of the volatility of the underlying 
share price.  

To calculate the fair value, an option model requires the input of volatility, or, more 
precisely, the input of: forecast volatility of the share price over the period to expiry 
of the option. The big question (the art) of option theory is how to estimate this 
forecast volatility. This single stage provides gainful employment for a legion of 
academics, analysts and traders. An estimate of future share price fluctuations - 
plenty of room for "wooliness" there!  
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Below we explore the relationship between these three concepts, but first we 
motivate our paper: why volatility, and why bother with volatility models? 

The paper is organised as follows:  Section one gives a brief history of the concept 
of volatility, and introduces some of the products traded in the broader financial 
markets. Section two discusses the definitions of, and differences between various 
concepts of volatility, and considers problems related to reliably estimating their 
values. In section three we review evidence that volatility is random, and in 
section four consider several models of asset prices which attempt to capture this. 
Section five comprises of the application of these models to actuarial problems 

 

as alluded to above, the problem of market-consistent valuation of life insurance 
business, and effective risk control of the same. We summarise our conclusions in 
section six. 

Note that we will often refer to options in this paper. Everything applicable to 
exchange traded options can be read as being applicable to life contracts with 
guarantees. We take this as dictated by the regulators, and do not enter into the 
debate as to whether this is the most appropriate methodology.  

1.1. Why volatility?  

Recently volatility

 

has become part of the standard actuarial jargon. Particularly 
for life company actuaries, discussions about volatility  what it is, the appropriate 
value it should take, how it behaves, and what it does, are now part of the job. 

Modern (Life Company) actuarial work consists broadly of two tasks 

 

the 
valuation of assets and liabilities, and risk control. 

For those involved in valuation, the move to market-consistent valuation has 
meant applying option pricing techniques to life insurance contracts. At the heart 
of these valuation techniques is the concept of volatility, so volatility has been 
placed directly on the balance sheets of life companies 

 

both on the asset and 
liability side. As a result of this auditors are asking increasingly sophisticated 
questions about volatility parameters 

 

are they appropriate for the contracts in 
question, will they reproduce market prices at a fine level of detail, or only in 
aggregate, and if so, why? Key concepts to answering these questions are: the 
assets in a given fund, the terms of the liabilities, and the levels of guarantees of 
those liabilities.  Each combination will produce a different market consistent

 

value for the liabilities, and requires a different value of implied volatility. In [24] 
Sheldon and Smith provide methodologies to make the appropriate choice of 
implied volatility based on the assets in a fund. In this paper we will address the 
remaining two issues. 

Risk control involves calculating the possible movements of assets and liabilities 
on an insurer s balance sheet. Again, volatility is a key parameter, and in this case 
it is internal risk managers, and possibly the regulator, who should be asking 
tough questions about valuation techniques and particularly about volatility 
parameters. 

A longer term concern is the increasing number of investment banks developing 
structured products aimed for sale to insurers. Many of these products will contain 
complex derivative instruments. Understanding the two related concepts of 
volatility 

 

volatility influencing asset price movements, and implied volatility 
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governing derivative values, will allow us make informed decisions on the value 
and risks of such products. 

The fact that the well-known Black-Scholes model does not fit empirical 
observations will be familiar to most readers. Below we consider a class of models 
which attempt to more closely explain the data. In particular: option prices given 
by the Black-Scholes model do not fit those observed in the market, and asset 
price movements have fat-tails. Stochastic volatility models may allow the 
valuation actuary to achieve a closer match to the relevant market-traded assets, 
and may allow the risk control actuary to capture an area of risk which might 
otherwise be ignored.   

1.2. A brief history of volatility   

It has become traditional recently in any paper concerning options to make a 
historical reference to Louis Bachelier. Since most actuaries will be unfamiliar 
with Bachelier, we provide a brief summary.  

In his 1900 paper Théorie de la Spéculation

 

[2], Bachelier considered a model 
of stock markets where prices follow what is now known as a Wiener process 

 

Brownian motion. In this paper he derived, amongst other things, the price of a 
barrier option 

 

a full 73 years before Fisher Black and Myron Scholes published 
their famous paper [4]. This result was remarkable, given that it predates the birth 
of modern statistics, and even Einstein s 1905 paper on Brownian motion. So far 
ahead of its time, it was lost until fairly recently, and instead the glory went to 
Black and Scholes. 

Most readers will recall that Black and Scholes surprising (at the time) result was 
that the value of an option is independent of the expected return of the underlying 
stock  but explicitly dependent on its (expected) volatility.  

Thus the financial-mathematical concept of volatility appears to date back at least 
100 years. No doubt the purely financial concept (intuitively the amount of 
variation manifest in stock prices in a given time period  we consider the concept 
in some depth below) has been recognised ever since men began trading together 
in markets. 

Although there is some evidence that option-type contracts were used in ancient 
Greece, Rome and the Arab world, trading in modern Black-Scholes style options 
(with their explicit dependence on volatility) began on the Chicago Board of 
Exchange in 1973 with calls written on 16 stocks. Trading in puts started 4 years 
later [7]. 

Growth in the options market has exploded since then, with notional principle on 
outstanding exchange traded derivatives estimated at $52trn, with OTC (Over The 
Counter) contracts perhaps accounting for five times that [12]. 

The growth in trade of options 

 

essentially trading in volatility 

 

has lead to 
increasingly complicated and sophisticated strategies being undertaken. Market 
players wishing to gain exposure purely to volatility movements can, for example, 
adopt positions in options, and then delta hedge , or adopt a position in the 
underlying which negates the effect of movements in the price of the underlying 
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but leaves exposure to changes in implied volatility. Another possible trade is to 
take positions in two options with different strikes 

 
known as a strangle 

 
a 

highly risky trade with pure volatility exposure. More recently several 
standardised products have begun trading which offer cheaper and easier access to 
pure volatility plays. 

In 1998 two new financial products were launched: volatility futures on the 
Deutsche Terminborse and volatility swaps from Salomon Smith Barney (now 
part of Citigroup) [15]. 

The first of these instruments allowed traders to hedge against the movement in 
the price of options written on the DAX index due to changes in volatility [6]. The 
second allowed traders to gain exposure to only the volatility of underlying 
instruments, without labour intensive and expensive delta hedging. 

The VIX is an index of implied volatility on the S&P100 index. OTC derivatives 
are available to trade on this index.    
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2. Definitions and concepts   

We now consider exactly what we mean by volatility. Primarily we must 
distinguish between two related, but distinct, concepts: the volatility of a financial 
instrument, and the implied volatility of an option written on such an instrument.   

2.1.  Underlying volatility  

The price of a financial instrument can be thought of as a random variable. In 
order to describe how much that price might vary over a particular time period we 
would look for some appropriate statistic. 

A natural place to start would be to consider the average of the price movements, 
measured at some time frequency (every 5 minutes, every day, at year end). Since 
we are interested in the scale rather than the direction of changes, we would take 
absolute values, giving a statistic     

dN

k
k

d

S
N 1

1

   

(2.1) 

Where Nd is the number of time periods observed, and Sk is the price change in 
the kth time period. 

Students of finance will, however, be familiar with the fact that it is more often 
returns that are of interest, rather than absolute price changes. We are then lead to 
consider log price changes. Then, for reasons related to the differentiability of the 
modulus function, we could take squares of log price changes, normalised by 
subtracting the mean price change over the observation period. Finally, taking the 
square root of the final statistic would yield the familiar Root Mean Square (RMS) 
statistic:    
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(2.2) 

The purpose of rehashing what will be long since forgotten material for most is to 
emphasise that (2.2), despite being the more familiar equation, is in some respects 
the more artificial. In studying the behaviour of market prices (2.1) can reveal 
some important aspects 

 

see for example [5], chapter 2.4, where high frequency 
data is analysed. 

Statistics are almost inevitably quoted as RMS or sample variance, which is 
useful, given that the latter is an unbiased estimator for the population variance.  

Black and Scholes proposed the following dynamics for asset prices:    

tttt dWSdtSdS

   

(2.3) 

This equation says that the instantaneous change in the price of an asset is driven 
by a deterministic average component, and a random component given by a 
normal random variable. Calculating (2.2) for a large number of observations of 
price changes would give an accurate estimate for  directly. 
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The situation becomes more complicated when  is non-constant however 

 
for 

example if it varies randomly as in the models considered below.     

2.2. Implied volatility  

Above in equation (2.3) we recalled the Black-Scholes model for asset prices. The 
Black-Scholes price of a call option written on an asset is then given by the well 
known formula    

tT

tTr
d
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dNKedNSC
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S

tTr
tt

t ))((ln
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2
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(2.4) 

It was Black and Scholes original belief that a historically estimated  would be 
used to derive a single, objective value for an option. The market quickly proved 
them wrong. 

Some elementary calculus will show that (2.4) is a monotonic function of , 
meaning that we can invert it. Now the price of an option is not dictated by the 
above equation based on some external value of 

 

(as Black and Scholes initially 
thought), but is set, as with all prices, by supply and demand. So if we invert the 
function, we reveal the value of  implied by market prices. This is referred to 
as the implied volatility. 

As stated above, the prices of all financial instruments are set by supply and 
demand. There are only a certain number of shares in a company. The price of 
those shares balances supply and demand. Now consider the following argument: 
derivatives written on the shares of a company are different 

 

there is no limit to 
the number of derivative contracts written on the shares, they can be created at 
no cost in infinite amounts (assuming settlement in cash). So excess demand for 
option contracts should be immediately matched by market makers attempting to 
make a profit selling such derivatives. Assuming that the market is competitive, 
margins should be driven to zero, leaving implied volatility as the value at which 
there is zero net supply of options. This value should be the market expectation of 
future volatility. 

The above argument, whilst attractive, is wrong. Firstly, the argument seeks to 
relate equation (2.3) to (2.4) through market prices. However, as discussed below, 
given that (2.3) is not an adequate model of the market, this is not necessarily a 
robust argument. Further, option markets do not have the postulated perfect 
elasticity of supply. Writing options requires capital, which is a scarce resource, 
and will constrict supply, as will many other frictional costs.  

There are in fact many reasons to suppose that implied volatility would be at best 
a biased estimator of future volatility, including the facts that option prices will 
contain loadings for capital costs and possibly profit. See [24] for a more detailed 
list. 
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We prefer to think of implied volatilities as normalised option prices. Just as we 
can compare the price of a 3 month 5% coupon bond with that of a five year 10% 
coupon bond by comparing the yield, so we can compare prices of options with 
different strikes, maturities, etc, by comparing implied volatilities.   

2.3. Volatility as risk  

Note that we have not made the common identification of volatility with risk. This 
identification dates back to the CAPM and beyond, and arises from the 
assumptions of such early finance models  essentially that investor preferences or 
asset returns are adequately described by two parameters.  

In a world of normal returns all risk measures are equivalent 

 

a portfolio selected 
using standard deviations of returns (our underlying volatility above) and one 
selected using Value at Risk (V@R) as optimisation parameters will be identical. 

However, as discussed below, we do not live in a normal world. In the real world 
not all risk measures give identical results, and in particular, the standard 
deviation of returns is not an adequate measure of risk. V@R (or one of its 
coherent relatives) is preferred. 

Volatility is important for risk control, as we will see, but as a risk factor, not a 
measure of risk. We point the interested reader to the excellent reference [5].    
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3. Empirical evidence of Stochastic Volatility  

Having defined what we mean by volatility, we now motivate the remainder of 
our discussion by discussing evidence that volatility varies stochastically. We 
(broadly) follow [18] here in presenting some empirical observations of observed 
price behaviour in both the cash and options markets. We consider some 
economic explanations, and relate them to the topic at hand:  

3.1 Fat tails 

It is now generally accepted that the empirical distribution of asset returns is 
leptokurtic 

 

meaning (roughly) that the fourth moment about the mean is greater 
than the same statistic for a normal distribution with the same variance. See for 
example [5] chapter 2.  

This means that more extreme returns, and fewer midrange returns are 
observed, than would be expected under a Gaussian distribution.  

Figure 3.1 

 

Empirical daily S&P log return distribution 1 June 1988 

 

31 December 2004 vs. 
Gaussian PDF. The higher peak and fatter tails of the empirical distribution are 
evident.  

3.2 Volatility clustering & persistence 

A glance at a financial time series often immediately reveals periods of high 
volatility and periods of low volatility.  

 

Figure 3.2 

 

S&P daily log return absolute value, 2004. Period of high volatility circled in red, 
period of low volatility in green.  
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In fact, fat tails and volatility clustering are two sides of the same coin. It is well 
known that a mixture of distributions, for example price changes distributed 
according to a normal distribution, but with a random variance, can replicate fat 
tails. 

However, both fat tails and volatility clustering may be equally well explained by 
directly modelling the underlying price distribution as having fat-tails. 

Another empirical fact is the persistence of volatility regimes  there are periods

 

of high volatility, and periods

 

of low volatility, not just random incidences. This 
observation indicates something about any proposed model of volatility. See [16] 
for an interesting characterisation of this behaviour, or [17] for further 
development.  

3.3 Leverage effects 

The empirical observation that volatility and share prices are negatively correlated 
is well known. The term leverage effect was first coined in [3]. The argument is 
that falling share prices increase the debt-to-equity ratio of firms. This leads to 
higher uncertainty or risk, which increases the volatility of the share price. Hence 
price movements and volatility are negatively correlated.  

In market lore the same phenomenon is often explained by the fear and greed 
effect. When times are good and prices are rising, traders become lazy, and are 
happy to sit back as their P&L s increase. Fewer trades means lower volatility. 
When prices start dropping however, traders (and their clients) start panicking, 
rush to cover positions, and generally create more market activity (and hence 
volatility).  

3.4 Information arrivals and market activity 

Movements in share prices occur due to the arrival of information (this is 
essentially the efficient markets hypothesis). Clearly news does not arrive as a 
steady stream; hence the timing of price movements is random. However, the 
random process governing the arrival of information is such that it seems to be 
incompatible with simple models such as the Black-Scholes geometric Brownian 
motion model of share prices. 

One can consider a trading day: the markets open at 08:00, and there is a flurry of 
activity as traders and their clients look to act on information read in the morning 
newspapers. After an hour or two, the market calms down a little, with traders 
keeping an eye on the Reuters monitor. During the mid-afternoon traders may go 
out for a coffee, few big trades will go through and the market will generally be 
quiet. Then there will be another flurry of activity just before the market closes, as 
people close out open positions, companies try to announce unflattering 
information at the last possible minute, etc.  

In fact, studies show precisely these sorts of intraday seasonal activity effects. 
Similar effects are observed on longer time intervals. Further studies show that 
volatility and market activity are correlated.  
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3.5 Volatility co-movements 

We observe that volatility is dependent across markets. The old adage that when 
New York sneezes, London catches a cold holds in the scale of price movements 
as well as the direction. When modelling multiple asset classes it may be 
important to capture this behaviour.  

3.6 Implied volatilities 

A study of implied volatility, as discusses above, is primarily a study of 
normalised option prices. However, implied volatilities of options on a given 

underlying, but with differing strikes and maturities, reveals some interesting 
behaviour, which can be directly linked to the observations above. 

Firstly, implied volatilities vary with term to expiry 

 

we call this the term 
structure of implied volatility. 

If we accept that implied volatilities are, in part, an estimate of future volatility, 
then it seems reasonable that a trader might have a different estimate depending 
on the time horizon. The volatility of the share price of a company before it makes 
its next earnings report might reasonably be expected to be lower than after the 
report is made. Hence options maturing before the next report date would have a 
lower (time averaged) implied volatility than those maturing later. 

We could also relate this observation to 3.2: if traders think we are currently in a 
low volatility environment, they would expect volatilities to increase. If they can 
make a rough guess (based on past experience) as to the rate of increase, they will 
adjust their expectations of future volatilities accordingly. 

The volatility smile

 

is a well known feature of option prices. Essentially the 
volatility smile shows that options which further into or out of the money are 
undervalued by the Black-Scholes formula. This shows that the market expects the 
options to be exercised with greater probability than indicated by the geometric 
Brownian motion assumption. This is a direct consequence of the fat tails 
displayed by the price process discussed in 3.1.   
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Figure 3.3 Implied volatilities of short dated options on the FTSE100 showing the implied 
volatility smile  
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An additional feature in some markets is the fact that this smile is asymmetric 

 
the so-called volatility skew , or sometimes volatility smirk . This shows that 
deep out of the money puts are valued by the market more highly than similarly 
deep out of the money calls. This observation seems to be linked to 3.3 . 

The skew was apparently only observed after the 1987 stock market crash. 
Institutions who had written deep out of the money puts were in the worst position 
at the crash 

 

not only had their own portfolios lost money, but they had to pay out 
claims to others as well. Many such players did not survive. After the crash 
anyone writing puts demanded a premium against the possibility of having to pay 
out at the worst possible time.  

Economic pricing theories (see the excellent [8] for example) would place a 
higher relative price on assets which pay out well when all other assets are making 
losses. The high price the market puts on these options should tell us something 
about the frequency of such crashes (or of people s aversion to them)!  

Implied volatilities
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Figure 3.4 Implied volatilities of 2 year FTSE100 options showing the skew of implied 
volatilties   

Items 3.1 - 3.5 are relevant to the risk control actuary, who seeks a realistic model 
of the markets. Item 3.6 is of interest to the valuation actuary. In placing a market 
consistent value on a book of insurance contracts, he is seeking to replicate the 
prices of market traded options, and hence must capture the smile effect.   
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4. Stochastic volatility models  

In the previous section we discussed the reasons why we may want to model 
volatility as a random variable. In this section we consider first consider a simple 
but effective extension of the Black-Scholes model, before describing true 
stochastic volatility models, and some of the mathematics involved. 

It is not our intention to reproduce a full derivation of all relevant results. Instead 
we hope to offer a bluffer s guide to the subject, with some qualitative 
discussion of the important results. Readers wanting full proofs are pointed 
towards the references.  

4.1. Local Volatility models  

Local volatility models as a concept were first suggested by Dupire in [14]. These 
models are not stochastic volatility models, in that they do not add any further 
sources of risk (or randomness). Instead they are an attempt to modify the basic 
Black-Scholes model to fit observed option prices. 

We include them, not only as a historical note on the development of full 
stochastic volatility models, but also because they are still in use today on some 
trading floors, and may be of some use to actuaries attempting to value life 
contracts in a market-consistent way. 

Essentially Dupire s contribution was to demonstrate that, given a set of option 
prices (subject to certain reasonable constraints), one can find a deterministic 
function b(S,t) of the underlying and time, such that the price of the underlying 
can be written as a diffusion-type equation:    

SdWtSbrSdtdS ),(

 

and the option prices implied by this equation fit the observed prices. 

To demonstrate how this may be done, we consider a simple example (in fact, this 
example predates Dupire s work).  

Recall in 3.1.6 we discussed the term structure of implied volatilities. We note the 

value of the at-the-money (say) implied volatility at each time t, and write it )(t . 
We could then construct a (deterministic) process )(t  such that      

t

t dsst
0

21
2

)()(

 

i.e. each observed implied volatility is the average of a volatility function 

 

analogous to observed spot interest rates being the average of (unseen) forward 
rates. We then consider the process     

tttt dWStdtrSdS )(

 

which has solution (by applying Ito s Lemma) 
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t

st dWst
t

rSS
0

2

0 )(
2

)(
exp

  
the price of a European call on S can be seen to be given by the usual Black-

Scholes formula with volatility term )(
2

t - and thus we retrieve the implied 

volatilities we started with. 

To see this consider that the Black-Scholes formula gives the price of an option 
assuming that the terminal price of the underlying is log-normally distributed. 
Note that    

si

t

s WsdWs )(lim)(
0

 

and recalling that the sum of normally distributed random variables is again 
normal, we see that S is indeed log-normally distributed. 

Dupire showed that this procedure can also be used to find consistent functions to 
describe  to fit the smile and skew of observed implied volatilities. In fact, as he 
noted, there is little trouble obtaining this fit because the number of possible 
parameters is large. For example, to capture a skew effect, one could write  as a 
linear (affine) function of S. 

The term structure of implied volatilities for swaptions derived from some interest 
rate models will be the implicit product of a similar mechanism. 

Note that, in general, since local volatility models do not add any randomness, the 
resulting distribution of asset prices will be Gaussian 

 

so for example there will 
be no allowance for fat tails in the resulting model.   

4.2. The general form of stochastic volatility   

Continuous time financial models are written as diffusion processes using 
stochastic differential equations. The general form of the models we are 
investigating is 

( , )

( , ) ( , )

S
t t t t t t t

t t t t

S
t t

dS S dt f S S dW

and

d m t dt t dW

with

dW dW dt

   

(4.1) 

These equations mean that the instantaneous return on S is given by some 
deterministic term 

 

plus some random noise, the scale of which is given by 
f( ).  itself follows similar (but more general) random dynamics.  
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Before continuing, we pause to consider some desirable qualities of a model of 
volatility. Drawing on section 3 and intuition, we would presume that a model of 
volatility should: 

 
Be always positive 

 
Revert to some mean value 

 
Display a term structure 

 

Have some form of negative relationship with price movements 

The first three qualities would lead us to consider interest rate models, which 
share these characteristics, as an appropriate starting point for models of the 
volatility process.  

4.3. The Heston model 

The Heston model [21] is the classic model of stochastic volatility 

 

the model 
which has perhaps come closest to matching the success of Black-Scholes. Most 
stochastic volatility models are benchmarked against Heston, and Bloomberg 
offers a Heston implementation as standard. We explain the model in some detail 
below, in order to examine the workings of a typical stochastic volatility model. 

Heston assumed that the spot variance process
2

t  obeys the dynamics:  
22 2( )

t t t td dt dW

  

This is of course the process proposed by Cox, Ingersoll and Ross in [9] to model 
the short interest rate. The model is mean reverting.  

The parameters may be interpreted as: 

 

- the long-run mean level of volatility of the asset price. 

 

- the mean-reversion rate of the process 

 

a higher value means that 
volatility will revert back to its long-term mean faster from a given 
perturbation. 

- the vol-of-vol , i.e. the scale of changed in the volatility process itself. 
This parameter essentially controls the depth of the implied volatility 
smile, together with . 

0 - the initial level of the volatility process. This sets the level of the smile. 

- in the Heston model shocks to the asset price and volatility process may be 
correlated, as empirical evidence suggests. A negative correlation will 
result in an implied volatility skew. 

The solution to the system of equations (4.1) will have an asset price volatility 
term of the form      

t

s ds
0

2
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So the volatility of price changes in separate time periods will be autocorrelated 

 
a desirable feature of a volatility model if we are to capture the market behaviour 
described in 3.2. 

Having chosen a process for volatility, the next task is to use the model to price 
options. Readers will recall that the Black-Scholes formula for the price of an 
option is obtained by solving the Black-Scholes partial differential equation 
(PDE). The PDE is derived by considering a portfolio consisting of a derivative 
instrument and offsetting positions in the underlying asset and a risk free asset. 
Some manipulation using Ito s Lemma gives the PDE:  

2

2

2 21
2 0C C C

t S S
rS S rC

 

A similar argument can allow for other sources of risk 

 

such as stochastic 
volatility 

 

giving the Heston PDE. To avoid awkward notation we write v for 
2

t , and the resulting equation reads  
2 2 2

2 2

2 21 12
( )2 2 0C C C C C C
vt S v v SS v

rS vS vS rC

 

Heston proceeded to solve this equation, giving a (semi) closed form solution for 
the price of a call. Note that the first three and last terms of this equation form the 
Black-Scholes PDE. The remaining terms are due to the volatility risk, and a 
cross-risk term.  

Each of the partial derivatives in the Black-Scholes equation has a familiar name 

 

delta, gamma, etc, which we associate with a source of risk 

 

movement in the 
price of the underlying, risk free rate, etc. In a stochastic volatility world there are 
additional sources of risk and hence additional partials derivatives. These also 
have names 

 

Volga is the second partial derivative with respect to volatility, 
Vanna is the second partial derivative with respect to both volatility and the 
underlying. 

The new term  in the Heston PDE arises as a price of volatility risk . This 
term is unknown. The reader will recall that a complete market is one in which 
all derivative claims can be hedged, in an incomplete market some risks cannot 
be hedged. So in a complete market, all risks are priced by the market, and the 
market price of volatility risk will be known, resulting in a unique solution to the 
PDE. In an incomplete market there will be many, possibly an infinite number, of 
solutions. Heston assumed that the price of volatility risk was proportional to 
volatility. Other researchers have assumed that the volatility risk commands no 
premium (an unlikely scenario). Recent research uses the price of other traded 
options, or of volatility swaps, to complete the market and derive a unique price. 
See [17]. 

Heston solved the above PDE for the price of a call. This solution has the form:  
( )

1 2
r T t

tC SP Ke P

 

where P1 and P2 are pseudo- or risk-neutral probabilities. 

Readers will note the similarity with the Black-Scholes formula. In fact the price 
of a call will always have this form, in any model. The full formula is long, and 
hence we have relegated it to an appendix.  
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Closed form formulae for the prices of options are considered essential for the 
success of a model by those working in short term finance. Given that banks must 
mark their books to market and run risk control overnight, it is easy to see why.   

4.4. Other models 

Many alternative models have been proposed to Heston. The Hull-White [22] 
model is similar to the Heston model, with dynamics for the variance process 
given by a mean-reverting geometric random walk.  

A recent and popular model is SABR (Stochastic Alpha Beta Rho) [20], which 
combines some features of stochastic volatility and local volatility models. 

Fouque et al. propose a model in [17] where volatility is driven by an Ornstein-
Uhlenbeck (mean-reverting arithmetic random walk) process, Yt, and positivity is 
achieved by setting  = exp(Yt).   

4.5. GARCH models 

Another approach for modelling the variability of returns over time is to let the 
conditional variance be a function of the squares of previous observations and past 
variances. This leads to the autoregressive conditional heteroscedasticity (ARCH) 
models. ARCH processes have proved to be an extremely popular class of non-
linear models for financial time series.  The importance of ARCH processes in 
modelling financial time series is seen most clearly in models of asset pricing 
which involve agents, maximising expected utility over uncertain events. 
Analogous to Stochastic variance models being discrete approximations to 
continuous time option valuation models that use diffusion processes, ARCH 
models can also approximate a wide range of stochastic differential equations.   

The ARCH(1) model can be written as   

tt

tt

tttt
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The ARCH(1) model can be seen as an extension to linear time series models by 
adding a component for the variance that varies with past values of the time series. 
New information has been added to the model and it is expected that the model 
fits the data better. The presence of ARCH can lead to serious model 
misspecification if it ignored: as with all forms of heteroskedasticity, analysis 
assuming its absence will result in inappropriate parameter standard errors, and 
these will be typically too small 



 

18

 
A practical difficulty with ARCH models is that for large lags, unconstrained 
estimation will often lead to the violation of the non-negativity constraints that 
need to ensure that the conditional variance is always positive. To obtain more 
flexibility the generalised ARCH (GARCH) process was proposed. The 
GARCH(p,q) process has the conditional variance function (replacing equation 
4.5b)   

qt

i
iti

pt

i
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2
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For positive variances all the coefficients must be positive. Because ARCH 
processes are thick tailed the conditions for weak stationarity are often more 
stringent [23]. Many extensions of the simple GARCH model have been 
developed in the literature.   

4.6. A brief note on parameters and parameter estimation 

The devil, as always, is in the details. And the detail of all financial models 
includes parameter estimation or calibration. Hence it is often far more difficult to 
obtain information about calibration techniques than to obtain specifications of 
models. However, discussions with practitioners reveal some information. 

To a trading desk quant, the problem is to obtain a set of parameters such that his 
chosen model most closely replicates the market prices of the calibration 
instruments. A typical calibration may use three options as calibration instruments 
 generally the at-the-money forward, and options with strikes at 105% and 95% 

of this level. The model is then calibrated by minimising the square difference 
between the model predicted prices and the observed prices, using the Levenberg-
Marquardt algorithm, or a more robust algorithm known as Differential Evolution. 
Minimisation is complicated somewhat by restrictions on some parameter values 

 

in the Heston model above for example, obviously  must be between -1 and +1. 

This methodology is inappropriate for a risk control environment, as it will give 
risk adjusted parameters. The real-world parameters may be estimated from 
historical data, or a combination of historical data and option data, with some 
assumption about market prices of risk allowing risk-neutral parameters to be 
inverted to give real-world ones. 

Historical estimation generally proceeds iteratively 

 

in the Heston model  and 
the mean  may be estimated first assuming no stochastic volatility by standard 
regression techniques. Then the full model will be assumed and the remaining 
parameters estimated.       
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4.7. An important result - The 1st theorem of stochastic volatility  

We now present an important result which relates the return on a book of options 
(or a book of life contacts with guarantees) to the return predicted by Black-
Scholes. Recall that in the Black-Scholes world a derivative position can be 
hedged by taking offsetting positions in the underlying and in a risk-free savings 
account. However, in the real world the implied volatility of the derivative may 
change, without any change in the value of the underlying. The hedged portfolio 
would no longer be hedged. 

Now assume we have hedged our portfolio by using a Black-Scholes model, with 
implied volatility . Suppose that the actual volatility between time 0 and t instead 
follows a process t, for example it may follow one of the processes given above. 
We will expect our portfolio to have value zero at all times in the future. In fact, 
what we find is that the hedging error evolves as a random process with 
dynamics  

2
( ) 2 2 21

2
0

( )
t

r t s
t s s sZ e S ds

 

where the reader will recall that  is the 2nd derivative of the option price with 
respect to the underlying.  

A delta-hedged portfolio is not hedged at all, although it may take a while before 
you notice! This is an important point to bear in mind if considering delta-hedging 
a life insurance fund. 

From the result we can deduce several things: Firstly, if the implied and actual 
volatilities are close most of the time , the hedging error will be small. Secondly 
if the gamma of the option (or the overall gamma of a book of options) is small, 
then again, the hedging error will be small. 

The result shows how it is possible for a derivatives market to exist, even in the 
absence of an exact model for price dynamics. It also explicitly demonstrates the 
effect of volatility risk, a subject we return to later.  

Despite its importance, this result is not found in many text books on option 
pricing. [10] is a good source for proof and further discussion.   
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5. Stochastic Volatility models in action  

In this section we implement one of the models described above, and use it to 
demonstrate how stochastic volatility models may be of use in actuarial work. Finally 
we discuss some concerns related to performance of the class of models. 

The Heston model is undoubtedly the best known stochastic volatility models, and 
was one of the earliest. It could be described as the classic model, and is the one 
which has come closest to emulating the success of the Black-Scholes model. Indeed, 
Bloomberg and other information providers/ brokers offer automated Heston 
valuation of options to traders. 

We have relegated the actual formulas for the Heston model to appendix A, for 
reasons which will be evident to the reader who ventures that far. Readers interested 
in the guts of the model are directed there, or to the original paper [21], or the more 
accessible material in [19].  

5.1. The Heston model  results 

Before applying the Heston model to actuarial problems, we present some graphs 
which demonstrate the distribution of asset returns following a Heston process. 

A Heston process with vanishing volatility of volatility (vol-vol in the jargon) should 
reduce to a Black-Scholes style model. The parameters of the mean-reversion term in 
the volatility process may lead to a volatility which changes over time: 

 

Figure 5.1 

 

The probability distribution function of the returns from Black 
Scholes model 
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Figure 5.2 - The probability distribution of the returns from the Heston model 
with volatility of volatility assumed zero.  

The vol-vol term determines the fatness of the tails of the distribution (the kurtosis):  

 

Figure 5.3 - The probability distribution of the returns from the Heston model 
with no skewness  
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Finally, the correlation term determines the skewness of the distribution: 

 

Figure 5.4- The probability distribution of the returns from the Heston model   

For comparison we show the daily empirical return distribution, derived from the total 
return index on the S&P500 over the period 01-June 1988 to 31-December 2004: 

 

Figure 5.5. The empirical distribution of the data  

All distributions were generated by simulation (the S&P returns were observed), and 
normalised to have zero mean and unit variance. We have made no attempt to 
optimise the PDF shown in Figure 5.4 to match that in Figure 5.5. See [13] for a study 
where precisely this was done 

 

they find that the empirical return on the S&P500 is 
indeed consistent with a correctly parameterised Heston model.   
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5.2. Valuation 

We consider a simplified model of a life insurance fund. This fund contains a pool 
of assets. The liabilities of the fund are the assets deemed to be owned by the 
policy-holders (asset shares or value of unit funds), and some promise to pay a 
minimum guaranteed level of benefits at certain dates in the future. We assume all 
policies have a single maturity date, so as to avoid the influence of factors which 
are not of interest to us in this demonstration. 

Modern actuarial orthodoxy (now enshrined in the UK by new FSA regulations) 
holds that this fund should be viewed as a long pool of funds, short the assets 
shares, and short a put option on those asset shares. Put-call parity tells us that the 
liability side is equivalent to a short bond (face value to guarantee) and a call on 
some proportion of the value of the assets. 

Now in most funds there will be a mix of business written at different times in the 
past, and subjected to different levels of declared bonus. Hence there will be a 
range of different levels of guarantee in the fund. In the parlance of traded options, 
we would say that there are a range of strikes.  

As discussed above, a portfolio of call options with a range of strikes will show a 
range of different implied volatilities. A Black-Scholes implementation, either 
analytic or Monte-Carlo, used to value the liabilities of the fund will not give 
market consistent answers, in that the values obtained will not be consistent with 
the market prices of traded options. 

However, we could instead use the Heston model. The Heston model has a (semi-) 
closed formula for the prices of plain-vanilla options, which we use here. The 
results are shown below. 

Note that we can replicate these values by assuming that the assets of the fund 
follow a Heston process 

 

something we cannot do with a Black-Scholes model 
where we have changed the volatility for each strike level.  

5.2.1. LifeCo ltd 

LifeCo is our mock life insurance company. We will consider one of the 
company s funds, holding five blocks of business, divided by levels of guarantee, 
in turn based on past declared bonuses. The fund is assumed to be invested 100% 
in the FTSE100, and currently has £500m in assets. All business under 
consideration will mature in 2 years time. 

We assume that asset shares and guarantees have been aggregated in a meaningful 
way: 

Business 
block 

Aggregate Asset 
shares 

Aggregate 
Guarantee 

Guarantee 
Present Value 

1 £90,000,000 £86,968,848 £80,057,008 

2 £90,000,000 £92,734,738 £85,364,655 

3 £90,000,000 £96,578,665 £88,903,086 

4 £90,000,000 £102,344,556 £94,210,733 

5 £90,000,000 £108,110,446 £99,518,380 

 

Table 5.1  LifeCo Asset shares and guarantees by business block 



 

24

 
Guaranteed amounts have been discounted at a risk free rate of 4.615%. At 
maturity in 2 years time the fund will pay out the greater of asset shares and the 
guaranteed level. The liabilities of the fund are therefore the guaranteed amount, 
plus a call option on the asset shares, struck at the level of the guarantee. 

We assume no further bonuses will be paid. Our task now is to value the call 
options.  

5.2.2. Black-Scholes valuation 

The assets of the fund are invested in the FTSE100, so we must look to options 
written on the FTSE100 to determine what constitutes a market consistent 
valuation. 

We have used data on Euronext FTSE100 options, dated 28/02/2005. We will 
assume this is our valuation date. 

Below we show the implied volatilities for 2 year options. 

Implied volatilities
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Figure 5.6 Implied volatilities of 2 year FTSE100 options  

Note that the options show a distinct skew, but no smile, i.e., the surface does not 
turn up at higher strikes. This is a common feature of long dated options (in 
banking parlance, 2 years is a long time. Only options with less than 9 months to 
maturity trade in a truly deep and liquid market). 

We now have several options. We can value each of our 5 blocks of business 
separately, using different implied volatilities for each as appropriate. This will 
give a market consistent valuation. However, frequently in a real-world insurance 
implementation, we would be using a Monte Carlo model of the whole fund. In 
this case this option would not be available to us. 

We could instead use a single implied volatility value. The at-the-money-forward 
implied volatility (the value for options whose strike is equal to the underlying 
forward price) is given as 11.34%. 

Alternatively we could use an average implied volatility, possibly weighted by 
asset share or level of guarantee. In a Monte Carlo implementation using the 
Black-Scholes (or similar) model this is certainly what we would have to do. 
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Auditors and other interested parties are likely to question this method. Primarily 
they will want to know if a valuation method which is market consistent on 
average, but not at a detailed level, can be said to be market consistent at all. 

In the table below we show the Black-Scholes value of call options under each of 
the possible methods.  

Business 
block 

Strike 
volatility 

ATM 
volatility 

 

11.34% 

Asset share 
weighted 

volatility 

 

11.5% 
1 £12,339,077 £11,558,625 £11,627,379 

2 £8,341,349 £7,926,537 £8,016,234 

3 £6,054,191 £5,962,919 £6,059,798 

4 £3,325,006 £3,702,605 £3,798,270 

5 £1,576,051 £2,170,670 £2,253,473 

Total £31,635,674 £31,321,356 £31,755,154 

Error  0.4% -1.0% 

 

Table 5.2 Value of call component of liabilities using Black-Scholes and several possible 
choices for volatility parameters  

The strike volatility values in Table 5.2 are the true market consistent values in 
that they are consistent with the values of traded options with the same 
characteristics. The alternative methods will produce answers which are wrong 

 

0.4% too large and 1% too small respectively. The business block level errors 
are in many cases greater.  

5.2.3. Heston valuation  

We now consider valuing the same block of business using a Heston model 
instead. Again, given the complicated nature of real insurance business, in practise 
this would probably involve a Monte Carlo model of the fund. We will simply use 
the analytical formula. 

We calibrated the Heston model to the prices of options with strikes at 
(approximately) 95%, 100% and 105% of forward, as we believe is customary on 
derivatives desks. Our calibration involved minimising the square distance of 
market from model prices, and used the Levenberg-Marquardt algorithm. The 
resulting parameters are:       

Table 5.3 Heston parameters 

0 0.129296 
mean 

 

0.123964 

 

0.756694 

 

-0.63314 

 

0.227985 
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Below we show the values place on the business by the Heston model. We have 
shown the true market consistent values as before.  

Business 
block 

Strike 
volatility 

Heston 
value 

1 £12,339,077 £12,300,595 
2 £8,341,349 £8,341,322 
3 £6,054,191 £6,054,185 
4 £3,325,006 £3,324,997 
5 £1,576,051 £1,570,263 

Total £31,635,674 £31,591,361 
Error  -0.1% 

   

Table 5.4 Heston valuation results 

As can be seen, the Heston model provides a good fit to market values across a 
range of strikes. 

Note that for LifeCo we had the freedom to choose our levels of guarantee. In 
fact, we selected them such that we could mark the business blocks to market 
using our data. Of course, we then calibrated to that data, so it is unsurprising that 
we obtain a close fit. Note however, that blocks 1 and 5 were not calibrated to, 
and yet a close fit is still obtained. When using such a model in the real world it is 
unlikely that the guarantees in your book of life contracts will align so well with 
the strikes of market traded options! However, despite this, the ability of the 
Heston model to fit a range of strikes is an advantage over the alternatives of 
using different implied volatilities for each level of guarantee, or using an implied 
volatility which is correct in aggregate, but incorrect at each level of guarantee. 
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5.3. Risk Control 

We continue to consider the same fund in LifeCo, but we now consider risk control. 
To be precise, we consider how the realistic valuation (i.e. the market-consistent 
valuation) of the fund might vary over a single year. 

We use Value at Risk (V@R) methodology to compare the level of risk calculated 
assuming the assets in the fund follow: 

a) A Black-Scholes process 

b) A Heston process 

The fund is solvent at time zero, with £500million in assets.   

5.3.1. Simulations 

We generated 10,000 simulations from a Black-Scholes process, assuming a flat risk-
free rate of 4.615%, and a 2% equity risk premium. For volatility we used the ATM 
forward volatility of 11.34%. 

For the Heston process we use the same parameters as above. However, we must 
move from the estimated pricing or risk-neutral parameters to real world parameters. 
This can be done in an analogous fashion to the way it is done in the Black-Scholes 
model  by adding back a risk premium. 

First we increase the asset price drift parameter, as in the Black-Scholes model. We 
use a 2% risk premium again to be consistent. 

We now need to include a premium for volatility risk. As investors are risk-averse and 
dislike volatility, when pricing they assume that the long-run average volatility will be 
higher than it is, and that it will return to this value at a faster rate. As discussed 
briefly above, we could attempt to derive an exact value for the adjustment by 
considering the prices of volatility related assets (e.g. delta-hedged options) or by 
considering the average return on options as compared to their prices. However, we 
use an ad-hoc adjustment of  = -0.04, applied in the following formulae:  

2
2

RN

RNRN

 

Where the subscript RN denotes risk-neutral values and variables with no subscript 
are real-world parameters.  

We considered the realistic balance sheet at the end of one year, with liabilities valued 
using a Black-Scholes volatility of 11.34%, and the same Heston parameters as in 
section 5.2.3. We calculated the 0.5th percentile of realistic net assets.  
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5.3.2. Results 

The results are as follows:  

Model V@R0.005 

Black-Scholes £76,967,075 
Heston £159,227,058 

Table 5.5: A comparison of the outputs from the Black-Scholes model and the Heston 
Model 

Clearly the greater value given by the Heston model indicates that the Black-Scholes 
model is severely understating the risk of the fund. 

A priori one would expect this, the short comings of Black-Scholes as a risk 
measurement tool are well known. We would expect a greater level of risk from the 
Heston model to arise from two factors:  the fat-tailed and skewed asset returns 
affecting the asset side of the balance sheet, and the shift in volatility affecting the 
liability side of the balance sheet. However, we present separate asset and liability 
results below:  

Model Assets 0.5th 

percentile 
Option liabilities 
99.5th percentile 

Black-Scholes £392,427,162 £179,777,263 
Heston £310,322,042 £146,895,098 

Table 5.6: A comparison of the results from the Black-Scholes model and the Heston 
Model 

As can be seen, the Heston model shows a significant asset-side risk. However, on the 
liability side, the risk is greater from the Black-Scholes model. This seems to be 
because the options are most valuable when asset prices have risen at the same time as 
spot volatilities. However, our calibration of the model returned a large negative 
correlation in volatilities and asset prices, so the perfect storm scenario seems to 
happen with negligible probability. 

This issue illustrates a problem with the Heston model 

 

the parameters which 
replicate option prices do not seem to generate realistic projections. In particular, 
some alternative mechanism to generate an appropriate match to the observed skew of 
implied volatilities is suggested.  

An alternative parameterisation may be used which will result in simulations which 
more closely match historical observation. [13] perform such an exercise, with good 
results. However, this type of calibration is unlikely to give a good match to market 
prices at time zero. This is a situation which will be familiar to actuaries who have 
been involved in similar risk measurement projects.  
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5.4. Performance 

Recall from our earlier introduction that many models for volatility are derived from 
previously existing models for interest rates. Those who are familiar with such models 
will be aware of the drawbacks of those models. Stochastic volatility models may fail 
to accurately describe price movements in other ways as well. 

We summarise some of the common failings below: 

 

Negative values. Processes following an Ornstein-Uhlenbeck dynamic can go 
negative  an undesirable situation for both volatility and interest rates.  

 

Values near zero. Many processes are constrained by their form to be positive 

 

both the Hull-White and Heston models fit into this category. However, 
generally this is achieved by reducing the volatility of the process as it reaches 
zero  with the result that the process eventually becomes stuck near zero. 

Models which achieve positivity through other mechanisms generally pay by 
losing something in tractability. 

On the trading floor the advantages of these models are thought to outweigh 
these disadvantages 

 

especially as most trading floor pricing is done by 
analytical techniques, not Monte Carlo methods, and the time horizon is short. 
However, in the actuarial world the opposite is true 

 

time horizons are long 
and Monte Carlo techniques are prevalent. Having a model which can 
plausibly project asset prices (and volatilities) over many years is a must. We 
believe that none of the models discussed in this paper can fulfil these criteria. 

Actuarial models built for long term projection of interest rates (see for 
example, [6]), may be pressed into service to project volatility instead. 

 

However, all is not well on the short end of option pricing either. The 
parameters required to reproduce observed implied volatility smiles are clearly 
unreasonable 

 

correlations of close to -1, and vol-vol of 70% are common for 
the Heston model for example. Clearly observed volatilities do not follow such 
and extremely calibrated Heston dynamic. Instead this points to an alternative 
dynamic for prices 

 

short dated options are mostly priced on jump risk 

 

that 
is, the possibility of a large jump in asset prices shortly before the option 
matures. There is large amount of resources currently being put into 
implementing jump models on trading floors. In this respect actuarial 
techniques have run slightly ahead of market techniques 

 

we are aware of at 
least one model used for actuarial work which is based on exactly this type of 
process.  
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5.5. The State of the Art  Unified Volatility Models 

As described above, stochastic volatility models do not seem to provide a complete 
solution to option pricing and asset value projection problems. In section 4.4 we 
briefly mentioned SABR, a recent model which combines local volatility models (as 
discussed in section 4.1) with stochastic volatility. A lot of current research focuses 
on combining local volatility, stochastic volatility, and jump models. [1] is a recent 
paper describing one promising method of doing this.  

The danger with building such more advanced models is that as the models become 
more complex, the number of parameters increases. One may end up with a situation 
where the number of degrees of freedom to calibrate a model is so great, that one 
simply ends up wrapping a model around the data. In this situation one may have a 
model which closely describes, for example, the implied volatility surface on a 
particular day, but which is unable to project a situation very far from the one to 
which it is calibrated  an undesirable situation in a risk-control project. 
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6. Conclusion  

In this paper we considered evidence from asset price processes and option prices 
which indicates that a constant volatility parameter, as suggested by Black-Scholes 
and other models, is not an appropriate modelling choice. In particular, the empirical 
distribution of asset price changes shows fat tails, and the Black-Scholes implied 
volatility shows a term and strike dependent structure. This is of interest to actuaries 
involved in the valuation and risk control functions of life companies. 

We considered a class of models which may describe these factors  stochastic 
volatility models. We implemented the Heston model, and put it to use to value life 
insurance liabilities and to estimate value at risk in a life insurance fund. We find that 
the model may be useful  both in calculating market consistent liabilities across a 
range of guarantees, and in revealing an extra element of risk. 

However, we find that the model is not without problems; in particular the parameters 
obtained in a calibration exercise seem unrealistic. Models combining jumps and 
stochastic volatility may be the way forward. 
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A. Appendix  Formula for a Call option in the Heston model  

The price of a plain vanilla call option on a share following the dynamics of the 
Heston model is given by the following formula:  

0 1
r

tC SP Ke P

 

We have written  for time to maturity, and below x for the log forward-strike 
ratio. The pseudo probabilities are:  
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Re() indicates the real part of the argument. The imaginary functions arise as a 
result of solving the PDE 

 

done using Fourier transforms. The functions C and D 
are given by   
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And that s it! The fact that the formula involves an integral means that it is not 
truly a closed-form solution, but numerical integration is much faster than 
Monte Carlo methods. 
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