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Abstract: In this paper, we define the concept of strong stop-loss domination 
and we use it for the obtention of bounds on the hedging price of random variables 
These hedging prices depend on the charscteristics of the agent and in particular 
on her utility function, which in hard to estimate in practice. Our bounds have the 
advantage that they only depend on the characteristics of the financial market and 
of the random variable to hedge. Moroover, our interval is proved to be coherent 
with the equilibrium and it is tighter than the one obtained by the classical super 
replication approach. At last, apecifying the distribution of the financial assets’ 
prices and the random variable to hedge, we compute the upper bound given by 
the strong stoploss approach and we compare it with the superreplication bound. 

1 Introduction
Over the last years, the hedging of random variables with on incomplete. 
financial framework is a crucial framework is a crucial topic in financial and Insurance. In Financo, 
there are some famous papers devoted to the hedging of a risky position (see 
c.g. the references). More recently in Insurance, a debate has been started 
in France about the possible creating of pension funds and about the ways 
to use the financial market to hedge the risk associated with the retirement 
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problem. In this paper, we provide a theoretical contribution by showing 
how to obtain bounds on the private values of risks to be hedged. 

There are several ways to associate prices to random variables which are 
not priced by the financial market.; the more popular ones are quadratic 
hedging and super-replication. 

Quadratic hedging is introduced by Föllmer and Sondermann (1986) end 
extended by Föllmer and Schweizer (1991). Schweizer (1991.1992) and Duflie 
and Richnrdson (1991). Under the quadratic hedging approach, the price of 
any random variable is put equal to the -projection on the space of the 
random veriables priced by the financial market. This approach is very prac- 
tical since it provides a unique price which can be easily computed by using 
the theory of squarointegrable random variables. Nevertheless, this method 
has an important weakness since the part of the random variable which is 
orthogonal to the space of the random variables. priced by the financial mar- 
ket, is valorized by zero and this part (also called tracking error in literature) 
is preciacly the risk that cannot be replicated by the financial markets. 

Super-replication (see e.g. EI Karoui and Quenez (1995)) proposes an in- 
torval of prices which contains the price of the random variable to be hedged. 
This interval is determined by an upper and lower bound which are defined 
as the infimum (resp. supremum) of the prices of the random variables priced 
by the financial market that dominate (resp are dominated by) the random 
variable to hedge almost curely. Unfortunately, this approach leads to very 
large intervals (see e.g. Soner, Shreve and Cvitanic (1995)). 

Another method to determine prices in an incomplete framework is in- 
troduced by by Hodges and Ncuberger (1989), continued by Davis, Panas and 
Zariphopoulou (1993) and discussed by Karatzas and Kou (1996). Under 
this approach, the price of the random variable to be hedged, is valorized 
as the private value of the agent. Therefore, the proposed price depends on 
the characteristics of the agent and especially on its utility function, which 
is very hard to model in practice. 

In this paper, we show how to determine bounds on the private value of 
any random variable which do not depend on the characteristics of the agents. 
The bounds only are depending on the characteristics of the financial market 
on one hand, and on the random variable to be hedged Oh the other hand. 
We prove that our bounds are strictly improving the bounds provided by 
super-replication. 

We obtain those bounds by using a stochastic dominance approach. Sto 
chastic dominance has been used by Levy (1985) in order to find bounds on 
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the prices of European options, but he needed a strong restriction on the 
financial portfolios of the agents. In our paper, we do not need such quite 
unrealistic hypotheses, but our approach uses a slightly stronger criterion 
in comparison with the second stochastic dominance criterion used by Levy 
(1985). 

The paper in organized as follows: in section 2, we introduce the frame- 
work and the general notion of hedging that we use. Section 3 is devoted 
to the study of upper and lower bounds on the private values of any ran- 
dom variable, and this by using strong stop-loss dominance. We prove that 
the interval that we obtain, is included In the interval given by the super- 
replication approach. As an example, we compute the upper bound for the 
case of log-normal random variables in section 4. These bounds are com- 
pared with the ones determined by super-replication. Section 5 condudes 
the paper. 

2 Framework and Notations

Throughout the paper, we work on a probability space ( ). We assume 
a financial market with two assets: a riskless asset and a risky asset with 
a price St at time t. In this papcr, we consider only two dates: the initial 
date denoted by 0 end a time-horizon T, which we assume to be equal to 
1. Only at the initial date 0, transactions arc allowed and we dcnote the 
number of units of the risky asset chosen at date 0 by 00. The rate of return 
on the riskless asset is supposed to be constant and is denoted by r. In the 
following, we assume that the financial market is able to supply any quantity 
of the two assets, and that the price of any portfolio is obtained linearly from 
the unitary prices. 

Let L be the space of the integrable random variables. Then, a contingent 
claim attainable at date is a random variable  such that: 

(1) 

We denote by AJ C L the subset of the contingent c1aims attainable at date 
T. The value of X is then by definition equal to x and is denoted by V(X). 
From the no-arbitrage condition, V(X) is well-defined and maps AT on R. 

In this paper, we study the use of the financial market in order to hedge 
the value of a non-attainable contingent claim st date T. We define our notion 
of hedging in a general setup. We assume that each agent a is characterized 

622 



by an initial wealth a risk a von Neumann-Morgernstern 
utility function which is strictly concave and strictly increasing. Then, 
the optimization program of agent is given by 

under the constraint that We denote by the optimal 
amount of units of risks assets associated to the initial wealth x and the 

risk Y ; and by J the optimal value of associated to the 
optimal amount 

Definition 1 The hedging price of the random variable for the agent a 
is the real number such that 

the meaning of this definition is that is the amount of money 
that the a agent is willing to pay in order to remove the risk this definition 
is not easy to manage, because it depends on the charactcristics of the agent 

and especially on the utility function which is hard to estimate in practice 
However if then it is well-known that see c.g 
Karatzas (1989) and Davis, Panas and Zariphopoulou (1993). In this way, 
the hedging price is an extension (depending on the agent) of V to the set 
L 

3 Strong stop-loss criterion: definition and 
use for hedging 

In this section, we define strong-loss dominance and link this concept 
to first and second stochastic dominance and to P-a.e dominance. These 
four binary relation on L lead to different ways to study the hedging price 
of a (non attainable) random variable we first show that by using 
strong stop loss dominance, we obtain in a natural way a quantity which is 
smaller than the P-a.e. upper in super-replication. we further
prove that our proposed quantity has an important advantage over first 
and second stochastic dominance analogues as it turns out to be an upper 
bound for the hedging price which is coherent with the equilibrium, whereas 
the first and second stochastics dominance approaches are not 

Afterwards, we concentrste on a lower bound of the hedging price of a
(non-attainable) random variable Herefore, we introduce a definition 
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using the strong stop-loss criterion, which is less natural than in and in the case of 
the upper bound, but which leads to analoguous promising result. 

We begin with introducing the definition of strong stop-loss f dominance 
and we recall the notions of first and second stochastic dominance. 

(i) 

Definition 2 Let We say that 
X dominates Y in the sense of the strong stop-loss dominance, and we 

denote if and only if there exists a random variable c such that 
and 

X dominates Y in the sense of the First Stochastic Dominance, and we 
denote if and only if there exists such that X and X’ are 
identically distributed and 

X dominates Y in the sense of the Second Stochastic Dominance, and we 
denote if and only if there exists such that Y and Y' are 
identically distributed and 

First and Second stochastic Dominance are defined and discussed for in- 
stance in Huang-Litzenberher (1988) or Levy (1992). Their use in insurance 
is explained In for example Goovacrts et al. (1990). In fact, we found the 
inspiration for the name of our critcrium in insurance, whcrc Sacond Sto- 
chastic Dominance ordering is also called stop-loas ordering. The following 
Lemma is obvious and the proof is omitted. 

Lemma S 
a.e. implies 

(ii) a.e. implies 

(iii) implies 
(iv) implies 
(v) does not imply 
(vi) does not imply 

The next Lemma providcs an equivslent characterization of the SSL 
Dominance: 

Lemma 4 Let Then if and only if 
— a.c. 
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we know to deermine upper bounds for the price of the ramdam vari- 
able and this by using respectively are dominanace,first and 
second stochastic doninance and strong top-loss doninance we therefore 
define the following quantities:

Defination Let we define

with the convertion 

The quantiry is know in the literture as the super-replication
cost of y thank to lermia 3 the follwing relation hold 

we conculte that by using the strong stop-loss dominance we obtain quan-
tity smaller than the smaller the relation upper-lound anexample of under 
of importance will be give in section 

we now prove that and are upper bound five the bording 
price which are coherent with the equilibrium. This means tha t for any 
equilbrium the price of Y must be power than (y), and thus a fortiori
Lower than (y). This is in contract with the quqntities (y) and
(y), wich are no upper bounds coherent with the equilibrium as is

possible to find an equilibrium where the price of y is larger of y is larger than (y)
(and consequently larger than (y))

We consider this to be the malu justification of our strong stop-loss

dominance criterium, especially in comparison with the stochastic dominance
once.

Proposition 0 Let X AT such that
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Proof. Suppose V(X) Let X’ be the optimal contingent claim 
choosen by the agent a In the presence of the risk and X the optimal 
contingent claim choosen by the agent when the risk is not present By 
the definition of We must have 

(where the notation means that both portfolios are equivalent for the 
agent ). Since We get But 

This contradicts the opti- 

mallty of 
As an immediate consequence of this Proposition we obtain that 

We stress that this result is very interesting since it yields an upper bound 
to the private value which depends only on Ya and not on the other 
Characteristics of the agent a. 

We now turn our attention to the study of lower bounds. Following the 
literature on the pricing functionals, it would be natural to define the lower 
bound as minus the intimurn of the contingent claims values which domi- 
nate -Y according to the strong atop-loss dominance criterion. However, 
this approach has to be rejected. Indeed, in order to prove the .analogue of 
Proposition 6, the following property is necessary: 

for any agent a and for all and 

and it. turns out to be false In general. Only in special cases like for example 
when (.) is sublinear, the property is satisfied. 

Another “natural” candidate would be the supreimun of the contingent 
claims values dominated by Alsothis notion is not suited for obtaining 
the coherency with the equilibrium, because X does not imply 

Therefore, we choose the following definition of the lower bound for the heading period of 
hedging price 

Definition 7 for any Y L, let us define: 
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This application is quite ad hoc in the scnoc that it has been constructed in 
order to obtain the equilibrium compatibility with the hedging price. How 
ever,it yields an improvement in comparison with the super replication on 
terion.Indeed,if we define: 

we obviously have so also the lower bound is better 
than the bounds proposed by super-replication. Moreover, we can now state 

the analogue of proposition 6 for the lower bound 

Proposition 8 for all agents 

Proof. this is s along the same lines as proposition 6. 

4 Hedging in a static framework

In this section we consider the case in which S1 and R1 are two correlated 
log-normal random variables such that 

with all parameters assumed to be 
constant 

This reflects the following idea in a continuous time framework random- 
ness is described by a probability space equipped with the filtration 

This filtration is assumed to be generated by two dimensional 
standard brownian motion . The processes and 
are assumed to evolve stochastically according Lo the following stochastic
differential equations: 

with and where is a standard brownian motion 
with 
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Suppose that the prices only are observable at date 0 and T = 1 and
assume from now on that the riskless interest rate r is equal to zero. We 
recall that a contingent claim is attainable at date 1 if it is a random variable 
X L such that: 

We study the problem of using the financial market in order to hedge , 
the value at date 1 of the adapted process . Of course, If p = 1. 
A, and the problem is trivial.

Remark 1 For an economic interpretation, let us consider a model with two 
agents: the employer and the and the employee. The employee works between dates 
0 and T for the employer and receives a wage process which is 
adapted w.r.t with the filtration F, but in general it cannot be expressed as a 
linear combination of the financial assets. At his retirement date T = 1, he 
also receives a fixed amount BT which is in fact a defined pension paid out at 
once at the date T. As the pension (usually) depends on the wage history at 
a fixed percentage, the problem of the employer, who has the charge of paying 
the contributions, is to hedge (such percentage of) RT by using the financial 
market. 

The aim here is to find the upper bound given by the SSL criterion for 
the price of R1, and to compare it to the super-replication bound. 

As the SSL criterion involves a conditional expectation of two lognormal 
distributions, in order to proceed we first need the following well-known 
result: 

Lemma 9 Let X, Y be two random variables with lognormal distribution; 
Then 
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We recall the definition of the upper bound for the price of 

such that 

From Lemma 4 we have that 
which can be rewritten as 

where 
We conclude that 

(4) 

Our purpose is now to study this last inequality, in order to find that 
minimizes (3). 

if the inequality (4) is not defined, but in this case 
and as we look for the minimum such that

the upper bound is given by 

(5) 

Let us now consider the case that then 
and the inequality (4) becomes 
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In this case 
If then 

so that there are no solutions. 

Suppose now 

and therefore from which we obtain that 

(6) 

If 
If 

there no solution as 

We now have to distinguish some cases according to the sign of p. 
If p > 0, lot us denote and that 

and 

that is iff so the infimum of x in obtained at 

with (7) 

Finally, if 
In order to find when it is enough to study its behaviour at 

the extrernal points: 
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then if 
and 

We remark that 

Therefore, and if 
By rewriting as 

with 

for some 

we can think about as a 
function of and apply to same argument: 

There exists such that only if there exists 
such that 

then 

We easily see that the minimal x such that remains positive is the 
upper bound given by 

(8) 

with 
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Suppose now p<0. 
Since 

there are no solutions in this case. 

Finally,lets us consider p—0. 
Here 

such that the upper bound is given by 

Text (9) 

Remark 2 The result in (1) be straight forward the two brownian mo- 
tions are not correlated, the conditional expectation can be computed directly: 

we summarize these results in the next proposition: 

Proposition 10 The upper brand for the price of R1 consistent with the 
SSL criterion is given by 

otherwise. 
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It is clear that these form a significant improvement with respect to the 
super replication upper bound 

(10) 

for p 1, which follows immediately from the support of log-normal 
random variables. 

5 Conclusion 

In an incomplete market setting, the pricing and hedging of risky positions 
is a difficult problem. Using super-replication, one obtains intervals for the 
hedging price of a risk, but these interval turn out to be too large in general 
to be used in practice. 

In order to determine tighter intervals, we have defined strong stop-loss 
dominance, which can be related with first and second order stochastic dom- 
inance. We have proved that we indeed obtain upper and lower bounds for 
the hedging price which are compatible with the equilibrium. 

In some cases the use of strong stop-loss dominance improves the super- 
replication approach in a significant way. For example, in the case of log- 
normal random variables (which is an Interesting case For pension funds), 
the super-replication yields on upper bound, whereas our calculations 
provide explicit finite results. 

In this paper we have concentrated on a static situation with only two 
dates of interest: an initial date and a time horizon. Further research has to 
be done in order to generalize this approach to a dynamic model by backward 
optimization. Another way would be to study the dynamic model only in 
the case of diserete finite-state case like in Kitchken and Kuo (1988, 1989), 

As mentioned above, we have started this study as we were looking at the 
retirement problem. A future line of research will be to translate our results 
back to a pension fund framework. We therefore intend to use estimated 
salary process and Index diffusions like the CAC 40, in order to study some 
scenarios of pension funding. 
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