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1 (i) Suppose that Mn = i.  Then the value of Mn+1 depends entirely on the outcome 
of the next spin of the roulette wheel (this being independent of Mn) and the 
value of Mn.  Hence Mn is a Markov chain.    

(ii) Let Xn be the winning number from the nth spin of the roulette wheel.  Then 
P(Xn = i) = 1/37 for all i = 0, 1, 2, .,36.    

If j > i then P(Mn+1 = j | Mn = i) = P(Xn+1 = j) = 1/37; 
If j < i then P(Mn+1 = j | Mn = i) = 0;   

If j = i then P(Mn+1 = j | Mn = i) = P(Xn+1 

 

i) = (i + 1)/37.    

i.e. pij = 

1
37

( 1)
37

if

if

0 if

i

j i

j i

j i

    

(iii) M is aperiodic, as it can stay in the same state with positive probability.  It is 
not, however, irreducible, since it is not possible to return to state j from any 
state k > j.    

(iv) State 36 is absorbing, so the only stationary distribution, which is also the 
limiting distribution, is 36 = 1, i = 0 for all other i.   

The general reasoning type answers required for parts (i), (iii) and (iv) were quite well done in 

general.  There were some difficulties with part (ii)  However candidates fared less well on part (ii), 

and in many cases candidates struggling on part (ii) then failed to attempt the later parts.    

2 (i) The Poisson process and the standard Brownian motion both possess the 
independent increments property.     

Cov(X(t), X(t + s)) = Cov(X(t), X(t)) + Cov(X(t), X(t + s) 

 

X(t)) = t + 0, by 
the independent increments property.    

(ii) Cov(B(t), B(t + s)) = Cov(B(t), B(t)) + Cov(B(t), B(t + s) 

 

B(t) = t.    

(iii) (a) A Lévy process is a continuous-time process with stationary, 
independent increments.  Alternatively, a Lévy process can be defined 
as a sum of three (indpendent) components:  a constant drift, a multiple 
of Brownian motion and a purely discontinuous random component 
such as a compound Poisson process.     

(b) The increments of Y are the weighted sum of the increments of B, X1 

and X2, so are stationary and independent.   
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(c) Cov(Y(t), Y(t + s)) = 2Cov(B(t), B(t), B(t + s)) + 2Cov(X1(t), 

X1(t + s)) + 2Cov(X2(t), X2(t + s)) = ( 2 + 2 2 )t.  All other terms 
vanish by independence.  

The question demanded straightforward manipulation of the independent increments  
property and the covariance function.   

3       (i)  (a) The condition for X to be stationary is that the roots of the equation       

2
1 21 = 0z z

     

should lie outside the unit circle.     

(b) The roots are 
2

1 1 2

2

4

2
.      

In the given instance these are 2
1 1 2 .      

If 1
2 > 2 then we require that       

2
1 1 2 1 and 2

1 1 2 1

     

which is equivalent to       

22
1 12 1

     

implying that 1 1.5.         

If, on the other hand, 1
2 < 2, then the roots are imaginary and satisfy      

2 2 2
1 1= (2 ) = 2z

      

so that the condition is automatically satisfied.     

(ii) The spectral density satisfies     

1 2( ) = ( ) ( ),X eH f H f

    

where H1 is the transfer function associated with (1 

 

1B 

 

2B2), H2 the 

transfer function associated with (1 + B), fX( ) is the spectral density of X 
and fe( ) is the spectral density of e.     
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We have     

H1( ) = |1 1ei

 
2e2i |2, H2( ) = |1 + ei |2 and fe( ) = 2/(2 ).     

Therefore     

2 2

2 2
1 2 1 1 2 2

1 2 cos( )
=

2 1 2 cos 2 cos 2
Xf

     

There was good  understanding of the ARIMA process, which meant that candidates 
successfully derived the quadratic equation in part (i), though some were let down by their 
knowledge of complex numbers.  Part (ii) was a straightforward application of the transfer 
function:  the fact that marks were on average slightly lower seems to indicate that it had not 
been learned especially well.   

4 (i) , , ,( ) ( ) ( )u u u u u d u dP t P t P t .    

(ii) Note that , ,( ) 1 ( )u d u uP t P t .  Therefore we have  

, ,( ) ( ) ( )u u d u d u uP t P t ,   

implying that   

( ) ( )
, ( )u d u dt t

u u d
d

e P t e
dt

.    

Together with the boundary condition Pu,u(0) = 1, this gives the required 
solution.    

(iii)   

0 0 0 ,0 0 0
| | | ( )

t t t
t u s u s u u u uE U Y y E I Y y ds P Y y Y y ds P s ds .        

Applying the previous part, this is equal to    

( )
2

1
( )

u d td u

u d u d

t e .    

(iv) 0|t uE X Y y  = 0( ) |d u d t uy t y y E U Y y

    

                         = ( )
2

( )
( ) (1 ).

( )
u d td u u d

d u d
d u u d

y y
y y y t e
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In general candidates were able to score well on the first two parts, although a common mistake here 

was to have the exponential parameters d and u transposed in the Kolmogorov Forward Equations.  

In such cases appropriate credit was given for valid attempts at part (ii).   

5 (i) Mn = nS cne will be a martingale if 1 ( 1)( ) = .n nS c n S cn
nE e F e

    

(ii) This will happen if ec = 1 = ,nXEe pe qe  i.e. if pe2

  

e +c + q = 0.     

Therefore     

 = 
2 4

ln .
2

c ce e pq

p

    

(iii) For the OST to hold we require that M is bounded or T1 is bounded or 
1n TM

 

is bounded.     

In this instance, if c  0 and 

 

 0 then Mn < e  for all n 

 

T1.  But if c < 0 or 

  

0 then there is no such upper bound and it is not safe to assume that the 
OST can be applied.    

(iv) When c > 0, one root for  is positive, the other negative, since    
pe2

  

e +c + q < 0 when  = 0. We need the positive root.     

Applying the OST, E(MT) = M0 = 1 as long as c  0 and 

 

 0.  This implies 
that      

1 = 11( )TS cT
E e = e 1( ).cTE e

    

Thus     

1( )cTE e  = e  = 
2

2

4c c

p

e e pq
 = 

2 4
.

2

c ce e pq

q

    

In a number of cases, candidates covered some of part (ii) under part (i)  credit was given in these 

cases.  In general candidates were able to score well on the bookwork required for part (iii) although 

candidates were less successful in tackling the final part.       
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6 (i) We have     

k = Cov(Xt, Xt k) = 
2

0 0

1
Cov ,

( 1)

m m

t r t k r
r r

e e
m

      

= 
2

0 0

1
Cov( , ).

( 1)

m m

t r t k r
r r

e e
m

     

Clearly if k > m, all terms are zero, so that k = 0.     

For 0 

 

k 

 

m, there are exactly (m 

 

k + 1) non-zero terms, and each of these 

covariance terms equals 2.e  Thus     

k = 
2

21
( 1)

0

0,1, 2,..., .m k
em

k m

k m

     

The autocorrelation function is     

k = 1
1

1 0

1,2,...,

0

m k
m

k

k m

k m

    

(ii) For the process to be invertible, we require that the roots of the characteristic 
equation should be greater than 1 in absolute value.     

We can rewrite the MA model with the aid of the backward shift operator B as 
follows:     

Xt  = 
1

3
(1 + B + B2) et.     

The roots of the characteristic equation     

1 + B + B2 = 0     

are B = ½ + ½ 3i , B = ½  ½ 3i .     

In both cases B  = 1.  Thus the process is not invertible.   

In general candidates made reasonable attempts along the right lines, although this did not always 

result in the correct autocorrelation function being calculated.  Where possible, some credit was 

given for attempts at the second part based on an incorrect part (i). 
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7 (i) The original data are clearly subject to seasonal variation, and the size of the 
seasonal fluctuations is increasing in line with the value of the underlying 
quantity.  This suggests that the seasonal variation is multiplicative rather than 
additive, in which case taking the logarithm is the sensible thing to do.  In 
addition to this, a look at the plot of yt against time confirms that the variation 
is much more regular.    

(ii) Seasonal variation is a predictable pattern of deterministic variation in the 
mean of the process which is cyclic, i.e it repeats after a fixed number of time 
periods, usually corresponding to a year of elapsed time.     

A linear trend is a deterministic pattern of variation in the mean of the process 
which is linearly dependent on the time variable, i.e. is of the form a + bt.     

There are various possible answers.  Possible methods include:    

(a) Estimate the trend by linear regression and remove it, then, for each 
month, calculate the sample mean value for that particular month over 
all five years.  From every detrended observation subtract off the 
appropriate seasonal mean to obtain seasonally adjusted data.    

(b) Remove the linear trend by differencing the data once, then remove the 
seasonal variation by seasonal differencing.  In other words, 

12= (1 )(1 )t tz B B y .    

(iii) (a) The fact that the sample ACF is not near 1 for small lags is the most 
obvious pointer to the stationarity of the adjusted data set.     

(b) The clue here is the highest lag for which the ACF or PACF is 
significantly different from 0.  Looking at the sample ACF we might 
suggest that a MA(3) might fit, as the sample ACF is roughly zero for  
k > 3.  Similarly, a look at the sample PACF seems to indicate an 
AR(3).  But it might well be possible to find an ARMA(1,1) which 
would fit adequately. In other words, d = 0 and either p = 0, q = 3 or 
p = 3, q = 0 or p = 1, q = 1.   

(iv) We have yt = mt + zt, where mt represents deterministic variation and zt is a 
purely random component.  The process of seasonal adjustment and 
detrending has produced an estimate tm  for mt which can be extrapolated into 

the future.  Thus we have 60 61 60(1) (1)y m z , which in turn leads to 

60 60(1) exp( (1)).x y

   

Neither the discussion of how to deal with seasonal variation nor the practical part to do with model 

identification was especially well tackled.     
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8 (i) Transition graph:        

(Transition probabilities are  to the right and 1 

 
 to the left.)     

The transition matrix is     

P = 

1 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

    

(ii) (a) The equations P =  read     

0(1 

 

) + 1(1 

 

)  = 0     

0  + 2(1 

 

) = 1     

1  + 3(1 

 

) = 2     

2  + 4(1 

 

) = 3     

3  + 5(1 

 

) = 4     

4  + 5

 

= 5     

(b) Discard last equation and solve first one in terms of 0:         

1(1 

 

) = 0(1  (1 

 

))     

1 = 01

     

2(1 

 

) = 
2

0 0=
1 1

     

2 = 
2

01

     

In general j = 0.
1

j

      

(c) Find 0 by normalisation:  

0

 
1

 
2

 
3

 
4

 
5
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1 = 

6

5
0 00 0

1
1

= =
1 1

1

j
n

jj j

      

0 = 
6

1
1 .

1
1

    

(iii) For a consistent profit the company requires that min0< 0.5 P( ) > 0, where 

P( ) is the expected profit when annual claim rate is .      

Expected long-term annual income from one customer is 
5

0
,j jj

P where Pj 

is the premium payable in discount level j, and expected annual claims 
= C(1 

 

), so expected profit is      

P( ) = 
5

60

1
(1 ),

1
j

jj
P C  where 

 

= .
1

   

Candidates showed a good understanding of Markov chains here, with many candidates achieving a 

high score. For the final part of the question, a large number of candidates only gave a cursory 

explanation and were unable to score the full marks.   

9 (i) Use the inverse distribution function method.        

F(t) = 1 

 

P(T > t), so that     

2 2

65
( ) = 1 exp ( ) = 1 exp 0.5 ( 65 ) ( 65) .

t
F t a bx dx b t a t

        

Rearranging,     

2 265 65 log(1 ( )) = 0,
2 2

b b
t at a F t

    

or, in other words,      

2 2
1 (65 ) 2 65 log(1 )
( ) = .

a a b b a u
F u

b
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Since the simulated variable must be positive, the positive root is required.  
The method, then, is to generate a pseudo-uniform random variable U in the 
range [0,1] and to set     

2 2(65 ) 2 65 log(1 )
= .

a a b b a U
T

b

    

(ii) (a)   Y is a Binomial random variable, with parameters n = 10 and       

75

65

exp ( ) exp( 700 10 ).p a bx dx b a

     

Let G(y) be the distribution function of Y and let U be a single uniform 
pseudo-random variable on [0,1].  Then set min : ( ) .Y y G y U

    

(b)   Although this method requires a certain amount of computing time to 
evaluate the distribution function G, this only has to be done once;  
thereafter, only one value of U is needed to generate each value of Y, 
as opposed to the ten values of U which are required in the other 
method.    

(iii) It is important to use the same sequence of pseudo-random numbers in each 
case, otherwise we are not comparing like with like.   

Many candidates correctly identified that the inverse transformation method was required, although 

in a surprisingly high proportion of cases marks were lost because of errors in the algebra / 

integration.  The later parts of this question, dealing with the comparison of two methods of 

generating discrete random variables, were in general less well done.   

10 (i) A geometric Brownian motion can be defined as a process 

0 exp( )t tS S t B , where Bt is a standard Brownian motion.    

It satisfies the SDE t t t tdS S dt S dB .    

Alternatively, use the definition 0 exp( )t tS S t B , which satisfies the SDE 

1 2
2t t t tdS S dt S dB .   

(ii) We use the Itô formula (we must have the form where F is a function of t as 
well as x):     

, tdF t X 21
2

= , , ,t t x t x t tF t X F t X dt F t X dX

     

Let = ( ) ,t
t t tY e X c F t X .  Then Y(0) = x0 and 
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= ( )t
t tdY d e X c

     
= [ ] [ ]t t t

t t te X c e X c dt e dB

     

= t
te dB

     

Hence 0
0

=
t

s
s

s

Y t x c e dB

    

and so 0
0

= ( )
t

t t s
t s

s

X c e x c e e dB .    

(iii) The required condition for the stationary density  of the diffusion Y solving 
( ) ( )t t t tdY Y dt Y dB , from the Core Reading, is     

d

dy
 [ (y) (y)] = ½ 

2

2

d

dy
 [ 2(y) (y)]    

(iv) Two ways to do this.  From (i),     

2
2 2 ( ) 2

0 00
~ ( ( ), ) = ( ), 1

2

tt t s t t
tX N c e x c e ds N c e x c e

    

The limiting distribution, as t 

 

, is N(c, 2/(2 )).  A limiting distribution is 
always stationary.     

Alternatively, in this instance we have (x) = (x c), (x) = , so the 
condition given in (ii) is that      

1 2
2

( ) ( ) ( ) ( )x x c x x .      

The solution to this DE is      

2

2

( )
( ) .exp

x c
x const ,    

which is the density function of N(c, 2/(2 )).   

(v) A function of the form Axb for all x > 0 cannot integrate to 1, no matter what 
the values of A and b.  This means that there is no stationary density function 

 for the geometric Brownian motion.  
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It would be surprising if there had been:  it is well known that Brownian 
motion is non-stationary, and therefore that geometric Brownian motion is 
also a non-stationary process, so cannot possess a stationary density.   

Marks were poor for Question 10.  Candidates should note that the reference in part (iv) of the 

question to "the equation in (i)" was incorrect and should have read "the equation in (ii)".  Whilst at 

least some candidates were still able to complete this part of the question, allowance was made in the 

marking of scripts for this error.  

It seemed that candidates had not committed to memory the formula for the equilibrium density of a 

diffusion process, presumably because it had not been asked before.   

11  (i) Model fitting: this occurs after the family of model has been decided and 
concerns the estimation of the values of parameters.  The set of parameters to 
be estimated is determined by the choice of model family.    

Model verification:  once the model has been fitted we need to check that the 
fitted process resembles what has been observed.  Generally we produce 
simulations of the process, using the estimated parameter values, and compare 
them with the observations.    

(ii)  The parameters are the rate of leaving state i, i, for each i, and also the jump-

chain transition probabilities, rij for j 

 

i, where rij is the conditional 
probability that the next transition takes the chain to state j given that it is now 
in state i.  Alternatively, one may regard the parameters as being ij, where ii 

= 

 

i and, for j 

 

i, ij = i rij.      

Assumptions of the Markov model are that the duration of holding time in 
state i has exponential distribution with parameter determined only by i and is 
independent of anything that happened before the current arrival in state i, and 
that the destination of the next jump after leaving state i is independent of the 
holding time in state i and of anything that happened before the chain arrived 
in state i.    

(iii)  1
i  is the average duration of each stay in state i.  Thus 1

1 6
 per minute, or 

10 per hour, 1
2 40

 per minute or 1.5 per hour, 1
3 30

 per minute, or 2 per 

hour.        

3
12 8
r , 5

13 8
r , 1

21 4
r , 3

23 4
r , 7

31 8
r  and 1

32 8
r .     

Thus the generator matrix, in units of hr 1, is  
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10 3.75 6.25

0.375 1.5 1.125

1.75 0.25 2

    
(iv) One test should test whether the holding times in each state are exponentially 

distributed.  If Ti,k denotes the kth holding time in state i, then the hypothesis is 
that Ti,1, Ti,2, , Ti,ni is a sample from an exponential distribution with 

parameter i : sort the observations into categories, calculate expected number 

in each category and hence find the X2 statistic by summing (O  E)2/E.  This 
should be compared with the critical value of the 2 distribution with m  2 
d.f., where m is the number of categories.    

(v) Estimate of expected duration of a visit to state 1 is 6 mins, so this is the 
estimated time until the 21st transition.     

Estimate of expected time between 21st and 22nd transitions is      

E(Time | transition is to 2) P(transition is to 2) + E(Time | to 3) P(to 3) 
= 40 

 

(3/8) + 30  (5/8) = 33.75 mins.  

Attempts to fit the model to the observed data were generally sensible and encouraging,  
although in a minority of cases the calculation of the parameter estimates betrayed evidence 
of some confusion.  There was a tendency to be less successful as the question continued, 
with the result that attempts at the final part were of a noticeably lower standard.   
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