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EXAMINERS’ COMMENTS

By its nature Survival Models is a statistical subject and the examination may contain
questions that require the use of the skills taught in Subject 101. As in previous papers, the
Examiners aim to strike a balance between questions requiring numerical solutions and those
requiring verbal and algebraic answers, as well as between those with and without a
statistical theme. The questions set will always aim to cover Survival Modelling in all its
aspects, Life Contingencies including their stochastic treatment, Graduation including its
statistical aspects and the determination of exposures.

The solutions presented to questions 1, 2, 5 and 9 were generally good. The general
standard on the remaining questions was below that expected. Comments on the individual
questions follow:

Question 3. Few candidates applied their knowledge to the circumstances of the question,
with the majority of candidates stating general reasons for graduation.

Question 4. Many candidates failed to state appropriate circumstances for the different types
of censoring, in particular failing to relate their answer to life insurance policyholders as
stated in the question.

Question 6. Few candidates showed a clear derivation of the formula in part (i).
Question 7. Some candidates failed to describe the method using the exact central exposed to
risk. Of those that described the correct method, a large number of failed to provide

sufficient clear detail.

Question 8. Many candidates struggled to express themselves clearly in this question and
answers generally lacked sufficient detail.

Question 10. A large number of candidates derived the maximum likelihood estimator under
the two-state model rather than the Poisson model. Many candidates also failed to

distinguish between u and [1.

Question 11. Parts (i) and (ii) were generally well answered. The remaining parts were not
so well answered and few candidates showed any understanding of Thiele’s equation.
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1 () K, 0 1 2 3
Value ag aj as] a ..
=0 =y =y +2 =v+v2+13 .

Whole of Life immediate annuity of 1 p.a. payable in arrear until the death of
life now aged x.

(b) K, 0 1 2... n+1
Value aﬂ—l aﬂ—l aﬂ—l am—l
=1-1 =1+v-1 =1+4v+v¥* -1 =1l+v+v' -1
=0 =vy =vy+12 =y+12 .+
K, n+?2 n+3
Value am—l am—l
=l+v+? .+ -1 =1+v+y? L+ -]
=v+vi 4LV =y+v? oV

Temporary life annuity of 1 p.a. with term of n years payable in arrear until
the death of a life now aged x or until the life attains x + » whichever event
occurs first.

Only a correct statement was required in each case for full marks.

2 Value of premiums = P&i3 030l = 14.349P (from tables)
Value of survival benefit = 50,000 x 56—5>< 1.067%
30
— 50,000x 21442081 ;) 6735
33,839.370

=50,000 x 0.1055113
=5,275.5651

Value of death benefit =10,000x 2310@
= 10,000 (1.06™) x (A3 551 — 43 531
=10,000 x (1.06”)x (0.14989—0.10551)

tables above

=456.9201
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Equation of value:
14.349P = 5,275.5651 + 456.9201

P =£399.50 per annum

There is very little difference using alternative calculations for 2310-@ :

Using 1.03 instead of 1.06” leads to value of death benefit = 457.114 and P = 399.52.

Alternative calculation of A;Oﬁ

= 4y s 1 0675 Ags
30

27,442.681
33,839.370

=0.09372 — x1.0673° x 0.46764

=0.09372 - 0.04934

=0.04438

Points to be made:

Yes, there are lots of deaths and many years of exposed to risk but these will be
spread across about 110 years of age, so numbers at any particular age will be much
smaller.

The numbers will not be divided evenly across ages. At high ages (say > 80) there
will be little exposed to risk and at younger ages (say < 30) there will be few deaths.

So there will be ages at which the standard errors are substantial, particularly when
compared to the estimated value of the rates at these ages.

The rate for each age is estimated independently of the rates at all other ages. There is
nothing in the estimation process that ensures that rates increase smoothly with age as
we would expect a priori.

If there is any irregularity in the published table that would cause difficulties when the
table is used for financial calculations, e.g. state pension liabilities.
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(1)

(i)

(1)

(i)

Random censoring occurs when the time at which the ith life is censored is a
random variable. The observation will be censored if the censoring time is
less than the (random) lifetime of the life. In an investigation into the
mortality of life insurance policyholders, a life will be censored if either the
period of investigation ends before the life dies, or the life withdraws from the
investigation while still alive (perhaps because the policy lapses). Both these
mechanisms will generate random censoring.

Type I censoring occurs if the censoring times are known in advance. In most
investigations withdrawals do occur, and if it is not known in advance whether
(let alone when) a life will withdraw, then the censoring is not Type 1.

If the period of investigation is known in advance and if there are no
withdrawals from the investigation while still alive, the censoring will be
Type 1.

Censoring is non-informative if it gives no information about lifetimes. In the
case of random censoring, the independence for all lives of the random
variables measuring the future lifetime and the time until censoring is
sufficient to ensure that the censoring is non-informative. Censoring would be
informative if, for example, censored lives were subject to lighter mortality
than other lives. Since persons who allow their life insurance policies to lapse
tend to have lighter mortality than those who keep up their payments, it is
likely that in most investigations, censoring due to withdrawals while still
alive is informative. Censored observations are likely to have longer lives
than lives which are not censored.

(a) UDD: ,q,=tq,
05Px=1.-05.49,=1.-05x(1-0.9)=0.95
Px = 05Px+0.5 - 0.5Px
= 0 5Px+0.5 = 0.9/0.95=10.9474
(b) Balducci: |, ¢,.,=(1 - 1).q,
05Px+05=1-05. ¢, =1-0.5%x(1-0.9)=0.95
Px = 05Px+0.5 - 0.5Px
=052, =0.9/0.95=0.9474
Under UDD assumption, s p,+0 5 < 0.5 P SO the force of mortality 1s

increasing between x and x + 1. Conversely, under the Balducci assumption,
the force of mortality is decreasing. So UDD assumption seems the more
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(1)

(ii)

appropriate for most ages. The Balducci assumption would be appropriate for
either very young ages or the back of the accident hump.

Since deaths are classified on an “age nearest birthday” basis, we need to
estimate the exposed to risk on the same basis.

The number of persons aged x last birthday on 1 January in calendar year ¢ is
P, ;. Let the number of persons aged x nearest birthday on 1 January in
calendar year ¢ be P*, . Then, assuming that dates of birth are evenly
distributed across each calendar year, P*,,= 0.5(P,_; , + P, ).

The central exposed to risk at age x over the two year period between 1
January 1999 and 1 January 2001 may be estimated using the formula

EL = 0.5P* 1999 T P*, 5000 T 0-5P% 5001
assuming P*, ,is linear in ¢ over the calendar years 1999 and 2000.

Thus, substituting for P*, , this becomes

Ey =0.5[0.5(P,_1 1999 T P, 1999)] + 0.5(Py_ 2000 + Px.2000)

X

+0.5[0.5(P,_1 2001 T Pr.2001)]-

. 0.(1999)+6_(2000)
Ky = EC

X

Then estimates [L,.

assuming that the force of mortality is constant between age x — 2 and age
X+ .

So, using the data given, we have

ES; = 0.25(473 +450) + 0.5(512 + 470) + 0.25(491 + 482) = 965
ES, = 0.25(450 + 490) + 0.5(470 + 460) + 0.25(482 + 480) = 940.5

The total deaths at ages 41 and 42 nearest birthday are 38 and 40 respectively,
SO

iy = % 003938 and fi,= —10_ = 0.04253.

940.5
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(1)

(ii)

Essential data is:
e date of birth (or date of x™ birthday or exact age)
e multiple policy indicator
Either
e date of purchase of term assurance policy (*)
e date of policy lapse, date of policy expiry or date of death (*)
e if occurred between 1.1.95 and 31.12.98

Date of entry into investigation
Date of exit from investigation
Reason for exit

Data for all lives that had died during the Period of Investigation (1.1.95 to
31.12.98) would be tabulated by age last birthday, x at date of death. Counts
of the number of deaths at each age x, 0, would be recorded for all x.

For each age x and for each life two dates would be calculated.
START DATE

The latest date of 1 January 1995
date of purchase of policy
date of xth birthday

END DATE

The earliest date of 31 December 1998
date of death or date of leaving (if any)
date of x + 1th birthday

Then calculate END DATE — START DATE (if this is > 0) and total these
values for all lives. Record this answer in years. This is the Central Exposed

to Risk at age, x, E .
Tabulate these values for all x.

. 0, . . . .
Then: (i, = —)Z is an estimate of the force of mortality at age x + 2, assuming

X
that the force is constant over the year of age x to x + 1.

ALTERNATIVELY
Tabulations could be produced for age nearest birthday, in which

START DATE must be amended to use “date of attaining x nearest birthday”,
and END DATE to use “date of attaining x + 1 nearest birthday”.
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(i)
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Then: [i,=

—’2 is an estimate of the force of mortality at age x, assuming that

X

the force is constant over the year of age (x — 2, x + '%).

(a)

(b)

(a)

Mathematical smoothness is usually defined in terms of differentiality
— a continuous function which is differentiable everywhere is smooth.

Empirical smoothness is about the curvature and rate of change of
curvature of a fitted function.

Smoothness implies no sharp curves.
This is usually checked by using finite differences.

Small first differences, and smaller second differences with a regular
progression with age imply low curvature and no rapid change of
curvature with age.

Observed rates are smoothed (graduated) and replaced by the
smoothed or graduated rates.

While we want the rates we use to be smooth they should not deviate
too far from the observed rates.

If the observed rates look like a set of estimates that might have been
obtained from a population in which the graduated rates are the true
rates they are said to “adhere to the data”.

Maximum smoothness would be achieved by ignoring the plotted
estimated rates and drawing a graduation curve which is very smooth,
e.g. straight line. The deviations between the rates read from such a
curve and the observed rates are likely to be very large. The graduation
curve will be very smooth but have poor “adherence to data”.

On the other hand joining up a plot of the estimated values will give
perfect adherence to data but is likely to produce a “curve” with
rapidly changing curvature which would not satisfy the smoothness
criteria.

Suitably explained graphs demonstrating the above points were given credit.

(b)

Graduation aims to resolve these conflicts by choosing a half way
house.

Graduated rates can be obtained by many methods, some ensure
smoothness, e.g. graduation by a mathematical form (the chosen
functional form will ensure smoothness), reference to a standard table
(a simple relationship with an already smooth set of standard table
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(i)

(@)

(i)

rates will ensure smoothness). In this case the graduated rates just
need to satisfy tests of adherence to data.

Graphical graduation does not ensure smoothness, so graduated rates
must be checked for smoothness and adherence to data. The
graduation process must be repeated until both criteria are satisfied.

Time t; ¢ d; n; dy/n; A, = Zdy/n;
0<t<6 3 0 50 0 0
6<t<12 2 2 47 2/47 0.04255
12<t<15 0 1 43 1/43 0.06581
15<t<20 1 1 42 1/42 0.08962
20<1<23 0 2 40 2/40 0.13962
t>23 0 1 38 1/38 0.16593

F(t) =1 - exp(-A,)

S(18) =1 — F(18) = exp(-A ;g) = exp(—0.08962) = 0.91428

The Poisson distribution is used to model the number of “rare” events
occurring during some period of time.

Since death is a rare event, the Poisson distribution can thus be used to model
the number of deaths among a group of lives, given the time spent exposed to
risk and assuming that the force of mortality for lives aged x is constant over
(x, x + 1) and over time during the period of observation/investigation.

The Poisson model is not always an “exact” model because, under some
observational plans, it allows a non-zero probability of more than N deaths
among N lives. However, observational plans can, at least in theory, be
adjusted to overcome this problem.

Let d be the total number of deaths we observe among the N individuals. This
value d is a sample value of a random variable D.

The maximum likelihood estimate of the force of mortality, [i, is the value
which maximises the probability that D = d.
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(iii)

Page 10

N
The total waiting time is equal to Z v;. The Poisson model assumes that D
i=1
N
has a Poisson distribution with parameter pz v;. The Poisson likelihood is
i=1

L=PiD=d]= i=1

The maximum likelihood estimate of p maximises this. To find it, we
differentiate In L with respect to p and set the derivative equal to zero. Thus

N N
InL=-p> v +dln{u2vl)—lnd!
i=1 i=1

and

dzvl N
S, +_
sz i=1

dlnL i
P

Setting this equal to zero produces the maximum likelihood estimate of p,

. d
H=®N
Zvi
i=1
. d*ImL 4 . . .
Since 5~ = ——5 Isnegative, we have a maximum.
dp B
E[Q] = p
Var[fi]
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(iv)  95% confidence interval for [1, estimate of constant force at age x

(1)

The forces would be estimated separately for each age classification x.

The estimates [1, would be plotted against x.

A confidence band would be plotted around each estimate.
The end points of the confidence bands would be joined to form a “tunnel”.

This “tunnel” would be used as a guide in drawing the smooth curve to
produce the graphically graduated rates. The “tunnel” would be wider at ages
where there were few deaths (say in 50s) or little exposed to risk (say in the
90s).

We would expect the graduation curve to stay within the “tunnel” for 19 out of
20 ages on average, i.e. all but 2 to 4 of the ages 50 to 98 say.

54,806

=0.31675 — (1.06)20 x
90,085

x0.61701

=0.31675-10.18970 x 0.61701

=0.19970

Ago501 =0.19970 +0.18970 = 0.38940

_ _ Dy _

a50;ﬂ = dso — a70
DSO

=11.726 - 0.18970 x 6.573

=10.47910
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0.38940

Then: 1,000P(A = 1,000 x —————
(45020 10.47910

=£37.16

0.19970

b 1,000P (A = 1,000 x ————
®) (45020 10.47910

=£19.06
ALTERNATIVE 1
(1) (a) Zslo:ﬂ =0.19970 as previously

250:ﬂ =0.38940 as previously

Then using the premium conversion relationship

aSO:ﬂ

= 1,000 {_L — 6}
1= Aso:ﬂ

1,000P (4 55) = 1,000{_ ! —8}

=1,0 M—O.OS&@
1-0.38940
=£37.16
1-4
— _ 50:201
(b) aSO:ﬂ - S
_ 1-0.38940
0.058269
=10.47899

1,000x0.19970
10.47899

- B
1,000P(Ag501) =

=£19.06
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ALTERNATIVE 2
(1) (a) Zsloﬂ =0.19970 as previously

250:m =0.38940 as previously

7 _ 1= 450501
50:201 5
=10.47899 as previously
— — 0.38940
1,000P (A4 =1,000 x —
(Aso200) 10.47899

=£37.16

- 0.19970
b 1,000P (A =1,000 x ————
®) (45020 10.47899

=£19.06

ALTERNATIVE 3

(1) (a) dg5) = 10.47910 as previously

Then using the premium conversion relationship

_ 1
1,000P(A4.. —) =1 ooo{ —5}
) 50:201 ’ —
aSO:ﬂ

= 1,000 ;—0.058269
10.47910

=£37.16

(b) ASO:W - 1_SC_ZSO:W

=1-0.058269 x 10.47910

=0.38939

Page 13



Subject 104 (Survival Models) — September 2002 — Examiners’ Report

i)  (a)

(b)

Page 14

ASO:W N ASO:W N D
50

= 0.38939 - >4,806
90,085

b

x (1.06)72°

=0.19969

1,000x0.19969

1,000P( A =
(A5020) 10.47910

=£19.06

1517(25()@) - 2655 -P (Zso;ﬂ)aﬁﬂ

-1 = D7O _
A65;ﬂ - A65 - D A7O
65

—0.54139 — (1.06)5 x ~»800
68,490

b

x0.61701

=10.54139 - 0.59796 x 0.61701

=0.17244
A65:ﬂ =0.17244 + 0.59796 = 0.77040
_ Dy
a = Qs ——ra
655l 65 Des 70

=7.871 -0.59796 x 6.573

=3.94061

Then 1,000,5 7 (Ag,55) = 1,000 x 0.77040 — 37.16 x 3.94061
= £623.97

1,00057 (A5 55) = 1,000 4, 5 —19.06a, .5

= 1,000 x 0.17244 — 19.06 x 3.94061

=£97.34
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ALTERNATIVE 1
(i) (a) 1517(250@) - Zas;ﬂ -P (Zso:ﬂ)aészﬂ

Zé s3] = 0.17244 as previously

A5z =0.77040 as previously

— _ 1= 453

a65:§ S

_ 1-0.77040
0.058269

=3.94035
Then 1,000,57 (Ag,55) = 1,000 x 0.77040 — 37.16 x 3.94035

=£623.98

(b)  1,000;5F (4555 = 1,0004, 5 —19.06xa, 5

= 1,000 x 0.17244 — 19.06 x 3.94035
=£97.34

ALTERNATIVE 2
(i) (a) 1517(250@) - 2655 -P (Zso:ﬂ)aészﬂ

sz = 3.94061 as previously

A65:ﬂ - 1_65655
=1-0.058269 x 3.94061

=0.77038

- - D
A =4.-—1
65:5] 65:5! Des

54,806

= 0.77038— x(1.06)7

b
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=0.17242

Then 1,000,57 (Ag,35) = 1,000 x 0.77038 — 37.16 x 3.94061
= £623.95
(b) 1,000,577 (AL 50) = 1,000 x 0.17242 — 19.06 x 3.94061

=£97.31

ALTERNATIVE 3

i (A _ a 5]
(i) (@) 5V (Agzg) =1- =22
50:20 aSO:ﬂ

a5 = dgs ~Lr as
65:5] Dis

=7.871 -0.59796 x 6.573

=3.94061
o 3.94061
1,000,577 (4 = 1,00091-———"—
15V (450201 { 10.47910}

=£623.96
(b) Zé s3] =0.17244 as previously

1,000y577 (AL 55) = 1,000 x 0.17244 — 19.06 x 3.94061

=£97.34
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(ii1)

Policy Value

A
1.000 T

Endowment
Term
0 . >
0 20 Term

. o - — _ S _
V) =V (Asoiq) =8V (Asoz) + Plsgzq) = (1= ¥ (Ao iy 0220

(v) At time 15 the components of change in policy value are

+ Investment Return & t17( )

+ Premium Income  P( )
— Death Strain ()T

These are expressed as equivalent annual rates of change measured at policy
duration 15.

Here 6 = log,1.06 = 0.058269

So components are

Endowment Term
+ Investment Return ~ 0.058269 x 623.97 = £36.35 0.058269 x 97.34 = £5.67
+ Premium Income £37.16 £19.06
— Death Strain (1,000-623.97)0.03553 = £13.36  (1,000-97.34)0.03553 = £32.07
Net Annual Rate
of Change +£60.15 —£7.34

So at policy duration 15 the endowment assurance is increasing in value and
the term assurance is decreasing in value.
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