
 

 

INSTITUTE AND FACULTY OF ACTUARIES 
 
 
 
 
 
 
 
 
 
 

EXAMINERS’ REPORT  
 

April 2018 
 

Subject CT4 – Models 
Core Technical 

 
 
 
 

Introduction 
 
The Examiners’ Report is written by the Principal Examiner with the aim of helping 
candidates, both those who are sitting the examination for the first time and using past papers 
as a revision aid and also those who have previously failed the subject. 
 
The Examiners are charged by Council with examining the published syllabus.  The 
Examiners have access to the Core Reading, which is designed to interpret the syllabus, and 
will generally base questions around it but are not required to examine the content of Core 
Reading specifically or exclusively. 
 
For numerical questions the Examiners’ preferred approach to the solution is reproduced in 
this report; other valid approaches are given appropriate credit.  For essay-style questions, 
particularly the open-ended questions in the later subjects, the report may contain more points 
than the Examiners will expect from a solution that scores full marks. 
 
The report is written based on the legislative and regulatory context pertaining to the date that 
the examination was set.  Candidates should take into account the possibility that 
circumstances may have changed if using these reports for revision. 
 
Luke Hatter 
Chair of the Board of Examiners 
June 2018 
 

    
 
 
 
 

   Institute and Faculty of Actuaries



Subject CT4 (Models Core Technical) – April 2018 – Examiners’ Report 

Page 2 

A. General comments on the aims of this subject and how it is marked 
 

1. The aim of the Models subject is to provide a grounding in stochastic processes 
and survival models and their application. 

 
2. Subject CT4 comprises five main sections:   
 

(1)  a study of the properties of models in general, and their uses for actuaries, 
including advantages and disadvantages (and a comparison of alternative 
models of the same processes); 

 
(2)  stochastic processes, especially Markov chains and Markov jump processes; 
 
(3)  models of a random variable measuring future lifetime; 
 
(4) the calculation of exposed to risk and the application of the principle of 

correspondence; 
 
(5)  the reasons why mortality (or other decremental) rates are graduated, and a 

range of statistical tests used both to compare a set of rates with a previous 
experience and to test the adherence of a graduated set of rates to the original 
data. 

 
Throughout the subject the emphasis is on estimation and the practical application 
of models.  Theory is kept to the minimum required in order usefully to apply the 
models to real problems. 

 
3. Different numerical answers may be obtained to those shown in these solutions 

depending on whether figures obtained from tables or from calculators are used in 
the calculations but candidates are still awarded points for this.  However, 
candidates may lose marks where excessive rounding has been used or where 
insufficient working is shown.  Credit is given for valid solutions different from 
those shown below.  Partial credit is also given to candidates submitting 
incomplete solutions with valid intermediate workings. 

 
B. General comments on student performance in this diet of the 

examination 
 

1.  One or two questions in the April 2018 examination were on areas of the 
syllabus that have not been examined for some time.  Performance on these 
questions was poor. This suggests that, in preparing for the examination, 
candidates are concentrating too much on making sure they can do previous 
examination questions, rather than learning the syllabus in general.   
 
2. There was still a large number of candidates who did not read the wording of 
the questions closely enough, and so lost marks on straightforward sections of the 
paper because they did not answer the question asked. 
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C. Pass Mark 
 

The Pass Mark for this examination was 60. 
 
 
Solutions   
 
Q1  (i)  

 
      
   [Total for part (i): 2] 
  
 (ii)         The chain is irreducible   [½] 
 
             because every state can eventually be reached from every other state.  [½] 
 
                        The chain is aperiodic    [½] 
 
              because it can return to each state in multiples of 2 or 3, giving no overall 
              
period. [½]  
      [Total for part (ii): 2]  
      [Total 4]   
  
   

This straightforward question was well answered.  In part (ii), a 
minority of candidates thought that the Markov chain was periodic 
with period 2.  Some candidates wrote that the Markov chain was 
aperiodic but gave vague or incorrect explanations. 

 
 
Q2 (i)  Team A goes first, so at i = 1 the process can have the values 1 (if Team A  
 scores) or 0 (if Team A misses).                [½]   

  

A   B   

C   

0.6   

0.5   

0.4   

0.75   

0.5   

0.25   



Subject CT4 (Models Core Technical) – April 2018 – Examiners’ Report 

Page 4 

  
Team B then has a go.  If Team B scores, then X2 = X1 – 1.    

    If Team B misses, then X2 = X1.     [½]   
  

Team A then has another go.  If Team A scores, then X3 = X2 + 1.    
    If Team A misses, then X3 = X2.        [½]    
  
    Hence possible sample paths for Xi (i = 1, 2, 3, 4) are:    
  
    0, 0, 0, 0  
    0, 0, 0, –1  
    0, 0, 1, 0  
    0, 0, 1, 1  
    0, –1, 0, 0  
    0, –1, 0, –1  
    0, –1, –1, –1  
    0, –1, –1, –2  
    1, 0, 0, –1  
    1, 0, 0, 0  
    1, 0, 1, 0  
    1, 0, 1, 1  
    1, 1, 1, 0  
    1, 1, 1, 1  
    1, 1, 2, process ends at i = 3  [2] 
   [Total for part (i): max. 3] 
  
  (ii)  Taking the paths in (i) and considering only the first three penalties we can 

  compute the probabilities as follows:    
  
  0, 0, 0      0.5 x 0.6 x 0.5 = 0.15  
  0, 0, 1  0.5 x 0.6 x 0.5 = 0.15  
                        0, -1, 0  0.5 x 0.4 x 0.5 = 0.10  
                        0, -1, -1  0.5 x 0.4 x 0.5 = 0.10  
  1, 0, 0  0.5 x 0.4 x 0.5 = 0.10  
   1, 0, 1         0.5 x 0.4 x 0.5 = 0.10  
   1, 1, 1         0.5 x 0.6 x 0.5 = 0.15  
  1, 1, 2  0.5 x 0.6 x 0.5 = 0.15                    
          [2] 
  so the distributions are as follows  
  



Subject CT4 (Models Core Technical) – April 2018 – Examiners’ Report 

Page 5 

    

   
    

   

   

   
  

  [1] 

[Total for part (ii): 3] 

[Total 6] 

 

This question was on a part of the syllabus which had not been 
tested for several sessions, but which is an important part of the 
Core Reading.    Performance was poor, with only a minority of 
candidates managing to list the possible sample paths in part (i), 
and fewer being able to compute the probabilities in part (ii). A 
common error was to fail to read the question closely and to 
consider pairs of penalties.  Some credit was given for answers 
which were correct on the basis of pairs of penalties. 

 
 

Q3  (i)  Parametric formula  
    

The resultant graduation will be sufficiently smooth           
provided few parameters are used.        [1]  

  
It is a suitable method to produce standard tables.     [½]  

      
It can be useful to fit the same formula to several experiences to give insight 
into the differences between experiences.      [½]  

    Reference to a standard table  
  

It can be used to fit relatively small data sets in cases where a suitable standard 
table exists.           [1]  

  
The graduated rates should be smooth provided that a simple function is used. 
            [1]  

  
The standard table can provide information at extreme ages where data may be 
scanty  
OR  
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The shape of the table can be used to “fill in gaps” in the data                      [½]
     
It can be useful to fit the same table to several experiences with the same link 
function to give insight into how the experience differs over time.    [½] 

    Graphical graduation  
  

It can be used for scanty data sets where no suitable standard table exists   
                        OR  
                        no more sophisticated method is justifiable.        [1]  
  

It enables an experienced analyst to allow for known (or likely) features of the 
data.           [½] 

  
It can give a quick initial feel for the rates.      [½]  

          [Total for part (i): max. 4]  
 

(ii)  Select a suitable standard table.        [½] 
 
  In making this selection, consider the nature of lives of involved, and compare 

  their characteristics with the description of data used in a range of standard 
  tables; and         [½] 

  
the date range for information used in preparation of the standard tables, with 
a general preference for using data closer in date to the period for the crude 
rates if possible.            [½] 

 
    Select one or more link functions to try.       [½] 
    

Exploratory graphical or regression analysis may help with the selection of the 
link function.           [½] 

    
Estimate the parameters        [½] 

  
using a method such as maximum likelihood or least squares.    [½]  

  
Compute the graduated rates.        [½]  

  
Perform statistical tests on the graduation to check adherence to the data. [½]
   
If necessary, repeat some or all steps until satisfied with graduation.   [½]  

      [Total for part (ii): max. 3]  
        [Total 7]  
  

 
 



Subject CT4 (Models Core Technical) – April 2018 – Examiners’ Report 

Page 7 

This question was generally well answered.  In both parts, full 
credit could be gained for rather less than is written in this 
Examiners’ Report. 

 
  

Q4  (i)  (a) The set of possible states that the process can take in a case where the  
           process can only take a countable number of different values,  
                        OR  
  the set of states that the process can take where it can take only distinct  
           states.      [1]  
  

 (b) A model in which at least one of the components is random in nature,  
 OR  
 a collection of random variables, one for each time point.    [1]
     
(c) A model in which changes in state may take place at any point in time 
(between the start and end times).        [1]  
  
(d) Processes which operate in continuous time but which can also change 
value at predetermined discrete instants.       [1] 

        [Total for part (i): 4] 
  

(ii)  Whether outputs from the model are only required at discrete points in time.                
            [½] 

 
The objectives of the modelling  
OR  
the accuracy required.                          [½]  

  
The nature of the input data (which may override the nature of the  
process).         [½]   

    
The expertise of the analyst.        [½]  

  
Time, cost, IT resources.        [½] 

  
The nature of previous models.       [½]  

  
If simulation is required it may be easier to make the time step discrete.  [½]  

  
Continuous time models are ultimately more flexible than discrete time 
models.          [½]  

  
Some results for continuous time models cannot be obtained by discrete 
simulation at all.         [½]  

  
Regulatory requirements.        [½]  
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The need to explain the model to a non-technical audience.    [½]   

      [Total for part (ii): max. 3] 
      [Total 7]   
 
  

Answers to this question were generally poor.  In part (i)(a) and 
(c), a substantial minority of candidates provided unnecessary 
answers rather than offering descriptions of what the terms mean: 
thus “a continuous time model is a model in which time is 
continuous”.  No credit was awarded for such answers.  In part 
(i)(d) many candidates incorrectly wrote that a stochastic process 
of mixed type is one in which the state space is discrete and the time 
domain is continuous, or vice versa.  In part (ii), full credit could be 
obtained for less than is written in this Examiners’ Report, though 
candidates generally did not offer factors beyond the first three 
points listed in the solution above. 

 
 
Q5  (i) Writing the state space in the order {Bid (B), Offer (O)},   [½]  
 

      the generator matrix is:  
  

   
B
O

−λ λ 
 µ −µ 

. 

  
   [½] 

     [Total for part (i): 1]  
  
 (ii) The holding times are exponentially distributed with      [1] 
 
  parameter λ in state B,        [½]  
 
           and μ in state O.                     [½] 
                 [Total for part (ii): 2] 
 

 (iii)  . .BB BB BO
t s t s t sP P P

t
∂

= −λ +µ
∂

 . [1] 

 

  . .BO BB BO
t s t s t sP P P

t
∂

= λ −µ
∂

. [1]

 [Total for part (iii): 3] 
 
 (iv)  We have a two-state model so:  
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  1BB BO
t s t sP P+ = .  [½] 

 
  Substituting: 
 

  . .(1 )BB BB BB
t s t s t sP P P

t
∂

= −λ +µ −
∂

; [½] 

 

  exp(( ) ). .exp(( ) )BB
t st P t

t
∂  λ +µ = µ λ +µ ∂

; [1] 

 
  and hence 
 

  exp(( ) ). .exp(( ) )BB
t st P tµ

λ +µ = λ +µ
λ +µ

+ constant. [1] 

 
  Since the process is in state Bid at time s (i.e. t = 0),  

  the constant is λ
µ + λ

 , [½] 

 

  and thus .exp( ( ) )BB
t sP tµ λ

= + − λ +µ
λ +µ λ +µ

. [½] 

 
   [Total for part (iv): 4] 
   [Total 9] 
 

 

This question was well answered, with many candidates scoring full 
marks, or close to full marks.  In part (iv) a common error was to 

determine  exp(( ) ). BB
t st Pλ +µ  to be 0 for t = 0, which led to the 

constant being evaluated as 

−µ
λ +µ .  Where candidates wrote down 

incorrect Kolmogorov forward equations in part (iii), credit was 
given in part (iv) for sensible attempts to solve the equations that 
had been written.   

 
 
Q6  (i) To ensure that they follow the principle of correspondence,    [1] 
 
  which states that a life alive time t should be included in the exposure  
  at age x at time t if and only if, were that life to die immediately, he  
  or she would be counted in the death data at age x. [½] 
 
  The deaths data “carry most information” when mortality rates are small,  
  so we adjust the census data not the deaths data. [1]

 [Total for part (i): max. 2] 
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 (ii) Let *
,x tP  be the population in the census aged x nearest birthday at  

  time t. [½] 
 
  Then 
 

  *
, , 1,

1 ( )
2x t x t x tP P P −= + . [½] 

 
  The required exposed-to-risk is then given by 
 

  exposed-to-risk = 
2

1

*
,

t

x u
t

P du∫  OR
10

*
,

0
x uP du∫  [½] 

 
  Where t1 and t2 are the start and end times. 
 
  We require the exposed to risk for a period in which t1 = 2005 and 
   t2 = 2015.  [½] 
 
  Using the trapezium rule  [½] 
 
  we can approximate these exposed-to-risks as 
 

  * *
,2005 ,2015

10 ( )
2 x xP P+  . [½] 

 
  Applying the same rule for the inter-censal period 2002–2015 we have 
  

  * * *
,2005 ,2002 ,2015

10 3
13 13x x xP P P= + .   [½] 

 
  Hence the exposed-to-risk for x last birthday or the period 2005-2014 is: 
 

  * * * * *
,2002 ,2015 ,2015 ,2002 ,2015

10 10 3 10 10 16
2 13 13 2 13 13x x x x xP P P P P   + + = +   
   

. [1] 

 
  So the required exposed-to-risk for x nearest birthday for the period  
  2005–2014 is: 
 

  ( ) ( ),2002 1,2002 ,2015 1,2015
5 10 16
2 13 13x x x xP P P P− −
 + + + 
 

. [½]

 [Total for part (ii): 5] 
 
 (iii) When adjusting the age data  [½] 
 
  we need to assume that births are uniformly distributed across the  
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  calendar year. [½] 
 
  To use the trapezium rule  [½] 
 
  we must assume that the population varies linearly between census  
  dates. [½] 
 
  We assume that the population enumerated in the census of 1 January  
  2015 can be taken to be the population at the end of the calendar year  
  2014. [½] 
   [Total for part (iii): max. 2] 
 
 (iv) The deaths data are available for the years 2015 and 2016 and will  
  not need adjusting. [½] 
 
  The exposed-to-risk will still need adjusting from an age last  
  birthday basis to an age nearest birthday basis. [½] 
 
  To compute the population aged x last birthday in each of the  
  calendar years 2015 and 2016 some kind of forecasting/modelling 
  will be required. [½] 
 
  Extrapolation of the linear change at each age x between  
  1 January 2002 and 1 January 2015 is one option. [½] 
 
  Better might be to use the deaths in 2015 to estimate an adjusted  
  population aged x last birthday for 1 January 2016 and to use this  
  to estimate the exposed-to-risk at age nearest birthday for the  
  calendar year 2015. [½] 
 
  The procedure could then be iterated to produce an exposed-to-risk  
  for the calendar year 2016. [½] 
 
  This should be fairly accurate for the first two years immediately  
  following a census. [½] 
 
  Data could be gathered on births or migration in and out to improve the 

estimate of the exposed to risk. [½] 
   [Total for part (iv): max. 3] 
   [Total 12] 
 
 

Answers to part (i) of this question were generally satisfactory, 
though only a minority of candidates pointed out that the deaths 
data “carry most information” when mortality rates are small.  
Most candidates had a general idea of how to approach part (ii) 
but only a minority had the details of the estimation of the 
population in 2005 correct.  Credit was given for part (iii) where 
candidates had included the assumptions in their answers to part 
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(ii) at the appropriate point in their argument.  Few candidates 
offered extensive answers to part (iv).  Most were content to say 
that some kind of modelling or extrapolation of the population 
would be required.  In parts (iii) and (iv) full credit could be 
obtained for somewhat less than is written in this Examiners; 
Report. 

 
 
Q7  (i)  A Markov Chain is a stochastic process  [½] 
 
  with discrete states operating in discrete time  [½] 
 
  in which the probabilities of moving from one state to another are  
  dependent only on the present state of the process.  [1] 
 
  OR 
 
   A Markov chain is a sequence of random variables 0 1, , ... , , ...nX X X   [½] 
 
   with the following property: 
 
   0 0 1 1 1 1, ,..., ,n m m m n mP X j X i X i X i X i P X j X i− −

   =  = = = = = =  =     [1] 
 
  for all integer times >n m  and states 0 1 1, ,..., , ,−mi i i i j in S. [½] 
   [Total for part (i): 2] 
 
 (ii) This needs the second order transition matrix: 

 

  
0.4 0.3 0.3 0.4 0.3 0.3 0.31 0.36 0.33
0.3 0.5 0.2 . 0.3 0.5 0.2 0.31 0.4 0.29
0.2 0.3 0.5 0.2 0.3 0.5 0.27 0.36 0.37

     
     =     
     
     

.    [1] 

 
  So the required probabilities are: 

 
 Andy  0.31 
 Brenda  0.40 
 Carol  0.29.         [1] 
 

  OR  
 
  Calculate directly, for example:  
  
  Carol 0.2*0.5 + 0.3*0.3 + 0.5*0.2 = 0.29  +2

  [Total for part (ii): 2] 
 
 (iii)  The long term probabilities satisfy πP = π  [½] 
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  0.4πA + 0.3πB + 0.2πC = πA         (1) 
 
  0.3πA + 0.5πB + 0.3πC  = πB  (2) 
 
  0.3πA + 0.2πB + 0.5πC  = πC   (3) [1] 
 
  and πA + πB + πC = 1                    (4) [½] 
 
  (2) minus (3) gives 
 
  0.3πB – 0.2πC  = πB  – πC  
 
  so 
 
  πB  = 8/7 πC = 1.1429 πC     [½] 
 
  substitute in (1) 
 
  0.6πA  = 0.5429πC   
 
  πA  = 0.9048πC  
 
  (0.9048 + 1.1429 [1]) πC =1  [½] 
 
  πC  = 0.3281 = 21/64 
  πB = 0.375 = 3/8 
  πA = 0.2969 = 19/64   
 
  So the required probabilities are: 

 
 Andy  19/64 or 0.2969 
 Brenda  3/8 or 0.375 

  Carol         21/64 or 0.3281.  [1] 
    [Total for part (iii): 4] 
 
 (iv)  In this case, to know who will be “Employee of the week”, we need to  
  know who was “Employee of the week” last week as well as who 
  made most sales this week. [½] 
 
  Suppose Andy made most sales this week.  If he was “Employee of the week” 

last week his probability of being “Employee of the week”  
  this week is 0, but if Brenda was “Employee of the week” last week, Andy 
  will be “Employee of the week” this week. [1] 
 
  So additional states are needed to model “Employee of the week” 
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  as a Markov Chain. [½]
 [Total for part (iv): 2] 

   
 (v)  This needs nine states i.e. 3 by 3, [1] 
 
  defined by  
 
  Most Sales : “Employee of the Week” last week 
 
  Andy : Andy 
  Andy : Brenda 
  Andy : Carol 
  Brenda : Andy 
  Brenda : Brenda 
  Brenda : Carol 
  Carol : Andy 
  Carol : Brenda 
  Carol : Carol. [1]

 [Total for part (v): 2]
 [Total 12] 

 
 
 
 

Part (i) was well answered.  In part (ii), common errors were to use 
the third order transition matrix, or to select the wrong elements 
from the second order transition matrix.  Part (iii) was well 
answered, though a substantial number of candidates lost a small 
amount of credit by failing to identify which probability applied to 
which member of staff.  In parts (iv) and (v), most candidates 
understood why the “Employee of the week” could not be modelled 
as a Markov Chain with three states; however, only a small number 
of candidates realised than nine states were required to model the 
process as a Markov Chain.  The most common answer was “six 
states”.  These were then typically defined as follows on the basis 
of Most Sales: “Employee of the week” last week {Andy: Andy, 
Andy: not Andy; Brenda: Brenda, Brenda: not Brenda, Carol: 
Carol, Carol: not Carol}.  This can be shown to be insufficient to 
model the process as a Markov Chain by writing down the nine-
state transition matrix. 

 
 
Q8 (i) The Gompertz model has been shown to approximate human  
  mortality closely in the middle and/or older ages in human populations. [1] 
 
  The Gompertz model is simple to understand, [½] 
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  and is easy to fit. [½]
 [Total for part (i): 2] 

 
 (ii) EITHER 
 
  The Gompertz model is  
 
  x

x Bcµ = . 
 
  Hence 
 

  
x

x yx
y

y

Bc c
Bc

−µ
= =

µ
 . [½] 

 

  1070

60
cµ

=
µ

 [½] 

 
  Using the values for ages 60 and 70 years we have 
 

  10 0.04749
0.02029

c =  

 
  So c = 1.08876. [1] 
 
  Hence  
 
  log log 0.02029 60(0.08504)e eB = −   
 
  and B = 0.0001234.  [1] 
 
  OR 
 
  The Gompertz model is 
 
  0 1exp( )x xµ = α +α  
 
  Hence 
 
  0 1loge x xµ = α +α  [½] 
  
  Using the values for ages 60 and 70 years we have 
 
  0 1log 0.02029 60e = α + α  
 
  0 1log 0.04749 70e = α + α  [½] 
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  Hence 
 
  1log 0.04749 log 0.02029 10e e= + α  
   

  1
log (0.04749 / 0.02029) 0.085039

10
eα = = .  [1] 

 
  So that 
 
  0 log 0.02029 60(0.08504) 9.0000eα = − = −   [1] 
   [Total for part (ii): 3] 
 
 (iii) We compute the actual and expected deaths in the table below. 
  
  EITHER using μx 
   
 Age x Actual  Gompertz Expected zx 2

xz   

  deaths μx deaths 
 
 61 51 0.02209 50.52 0.0673 0.0045 
 62 55 0.02405 53.64 0.1863 0.0347 
 63 68 0.02619 65.44 0.3164 0.1001 
 64 70 0.02851 67.94 0.2498 0.0624 
 65 67 0.03104 67.05 –0.0061  0.0000 
 66 69 0.03380 73.00 –0.4683  0.2193 
 67 66 0.03680 79.48 –1.5121  2.2864 
 68 84 0.04006 78.32 0.6416 0.4116 
 69 88 0.04362 87.15 0.0911 0.0083 
 
 
  OR using 1/2xµ +   
 
 Age x Actual  Gompertz Expected zx 2

xz   

  deaths 1/2xµ +  deaths 
 
 61 51 0.02305 52.72 -0.2364 0.0559 
 62 55 0.02510 55.97 -0.1290 0.0166 
 63 68 0.02732 68.28 -0.0342 0.0012 
 64 70 0.02975 70.89 -0.1060 0.0112 
 65 67 0.03239 69.96 –0.3541  0.1254 
 66 69 0.03526 76.17 –0.8217  0.6752 
 67 66 0.03839 82.93 –1.8594  3.4572 
 68 84 0.04180 81.72 0.2517 0.0634 
 69 88 0.04551 90.94 -0.3078 0.0947 
        
   [+2] 
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  The test is the chi-squared test, and the test statistic is 2
x

x
z∑   [½] 

   
  The null hypothesis is that the observed deaths come from a population  
  in which the underlying mortality is described by the fitted model in (ii). [½] 
 
  The calculated value of the test statistic is 3.1267. 
  OR,  
  using 1/2xµ + it is 4.5009 [½] 
 
  We compare this with the critical value of the chi-squared distribution  
  with 9 degrees of freedom at the 95% level, [½] 
 
  because we have not used the data involved in the test 
  to estimate the expected deaths. [½] 
 
  The critical value is 16.92. [½] 
 
  Since 3.1267(4.5009) < 16.92, [½] 
 
  we have no reason to reject the null hypothesis. [½] 
   [Total for part (iii): 6] 
 
 (iv) The Gompertz model seems to fit the data well.    [½] 
   
  However there is a relatively large negative deviations at age 67 years  [½] 
 
  The exposed-to-risk is exactly the same at ages 65 to 67 years.   
  Could there be a transcription error in the data? [½] 
 
  The model might be a better fit if MLE or weighted least squares had  
  been used to fit the parameters. [½] 
   [Total for part (iv): max. 1]

 [Total 12] 
 
 

Parts (i) and (ii) of this question were well answered, with the majority 
of candidates correctly determining the parameters of the Gompertz 
model.  Answers to part (iii) varied.  Common errors included using the 
data given in the question, rather than the fitted model, to estimate the 
expected deaths, and hence effectively carrying out a chi-squared test 
on the rounding errors (unsurprisingly, the fit was found to be 
extremely good).  Few candidates realised that, as the data for ages 61-
69 years had not been used to estimate the parameters of the Gompertz 
distribution, and we can suppose the estimated µxs for each age to have 
been obtained independently, it was not necessary to deduct two 
degrees of freedom when carrying out the chi-squared test (it would 
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have been necessary had data for all ages been used to estimate the 
parameters). 

 
 
Q9 (i) Using the Markov assumption or  from the Chapman-Kolmogorov  
  equations we can write [½] 
 
  13 11 13 12 23 13 33

dt t x t x dt x t t x dt x t t x dt x tp p p p p p p+ + + += + + . [½] 
 
  But 33 1dt x tp + = . [½] 
 
  Assuming that, for small dt, 
 
  ( )ij ij

dt x t x tp dt o dt+ += µ + , [½] 
 

  where 
0

( )lim 0
dt

o dt
dt→

= ;  
 
  then substituting, we have  
 
  13 11 13 12 23 13 ( )dt t x t x x t t x x t t xp p dt p dt p o dt+ + += µ + µ + +  , [½] 
 
  so that 13 13 11 13 12 23 ( )dt t x t x t x x t t x x tp p p dt p dt o dt+ + +− = µ + µ +  , [½] 
  

  and hence 
13 13

13 11 13 12 23
0

( ) lim .t dt x t x
t x t x x t t x x tdt

p pd p p p
dt dt

+
+ +

→

−
= = µ + µ  [1]

 [Total for part (i): 4] 
 
 (ii) 
  
      

 µNDO 

 
            
 
                                                                µSDO 

 
  µNS 

 
             
                                                            
            µSDW                                              µIDO 

 
                                                                              
 

Dead from 
other causes 

(DO) 

 
Never had 

Wadles 
(N) 

Dead from 
Wadles (DW) Suffering from 

Wadles 
(S) 

Recovered 
and immune 

(I) 
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                                                      µSI 

 
 
  [+2] 
 
 OR 
 
  
   [Total for part (ii): 2] 
 
 (iii)  The likelihood is 
 
  ( ){ } ( ){ } { }exp exp expNS NDO N SDW SI SDO S IDO IL ∝ −µ −µ ν −µ −µ −µ ν −µ ν  

  ( ) ( ) ( ) ( ) ( ) ( )
NS NDO SDW SDO SI IDOd d d d d dNS NDO SDW SDO SI IDOµ µ µ µ µ µ . 

 [+2] 
   
  Here 
 
  Iν  is the waiting time in state I, [½] 
 
  IJd is the number of transitions from state I to state J, and [½] 
 
  and IJµ is the intensity of the transition from state I to state J  . [½] 
   [Total for part (iii): max. 3] 
  
 (iv)   Taking logarithms of the likelihood we have: 
 
  ( ) ( )ln lnSDW S SDW SDWL d= −µ ν + µ   plus terms not dependent on SDWµ .  

   [½] 
 
  Differentiating with respect to  SDWµ  gives: 
 

  
( )ln SDW

S
SDW SDW

d L d
d

= −ν +
µ µ

, [½] 

 
  and setting this to zero gives a maximum likelihood estimate of SDWµ  [½] 
 

  ˆ
SDW

SDW
S

d
µ =

ν
. [½] 

 

  This is a maximum as the second derivative  ( )

( ) ( )
2

2 2
ln SDW

SDW SDW

d L d

d
= −

µ µ
  [½] 
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  must be negative. [½]
 [Total for part (iv): 3]
 [Total 12] 

 
 

Part (i) was reasonably well answered by most candidates.  Identifying 
the state space in part (ii) proved challenging for many candidates.  
Credit was given for an alternative four-state solution {Never had 
Wadles, Sick with Wadles, Recovered and Immune, Dead}.  This is not 
ideal for estimating the death rate from Wadles, as a person who has 
Wadles may die from a cause other than Wadles, but is a reasonable 
answer to part (ii) as asked in the Examination Paper.  A common 
error was to label the first state “Healthy” rather than “Never had 
Wadles”.  This is ambiguous, as a person who has recovered from 
Wadles is also “Healthy”.  In part (iii) most candidates successfully 
wrote down a likelihood consistent with the state space and transitions 
they had sketched in part (ii); they also managed to derive the 
maximum likelihood estimator of the death rate from Wadles in part 
(iv).  Where the diagram in part (ii) did not include the death rate from 
Wadles (for example, it might include the death rate of any sick person, 
regardless of whether that person had Wadles or not), credit was given 
in part (iv) for a derivation of the maximum likelihood estimator of the 
transition rate which was closest to the death rate from Wadles.  

 
Q10 (i) Random censoring when the time at which the life is censored is a random 

variable  [½] 
 
  of the lawns damaged by sheep. [½] 
   
  Right censoring when the censoring mechanism cuts short the  
  observations in progress [½] 
 
  such as when the sheep damage the lawns or any lawns still mossy when 
   the study ends after 16 days. [½] 
   
  Type 1 censoring when the censoring times are known in advance [½] 
 
  of the lawns still mossy after 16 days.  [½] 
 
  Interval censoring, [½] 
 
  because lawns are only checked once per day, so we do not know 
  when in the day the moss disappeared. [½]  
 
  Non-informative censoring, 
 
  if the destruction of lawns by sheep gives no information about when they 
  might have been free of moss. 
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  Informative censoring, 
 
  if sheep are attracted to lawns where the moss has started to die. 
   [Total for part (i): max. 3] 
 
 (ii) tj Nj dj cj λj (1 – λj)  
 
  ForLawn 
 
 5 7 1 0 1/7 6/7 
 6 6 1 0 1/6 5/6 
 8 5 1 2 1/5 4/5 
 11 2 1 1 1/2 1/2  
 
 [½] [½] [½]  [½]  [+2] 
 
  Alternative treatment 
 
 3 7 1 0 1/7 6/7 
 4 6 1 0 1/6 5/6 
 5 5 1 3 1/5 4/5 
 10 1 1 0 1 0  
 
 [½] [½] [½]  [½]  [+2] 
 
  From which we obtain the survival functions as follows: 
 
  ForLawn 
 
 t S(t) 
 
 0 ≤ t < 5 1 
 5 ≤ t < 6 6/7 
 6 ≤ t < 8 5/7  
 8 ≤ t < 11 4/7 
 11 ≤ t < 16 2/7  
 
 [½] [½] [1] 
 
  Alternative treatment 
 
 t S(t) 
 
 0 ≤ t < 3 1 
 3 ≤ t < 4 6/7  
 4 ≤ t < 5 5/7 
 5 ≤ t < 10 4/7 
 10 ≤ t < 16 0  
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 [½] [½] [1]
   [Total for part (ii): 6] 
 
 (iii) 

   
   [+2] 
   [Total for part (iii): 2] 
 
 (iv) ForLawn does not seem to be better than the alternative treatment. [½] 
 
  Indeed, the survival function for the alternative treatment is below  
  that of ForLawn at most durations, indicating that moss lasts less  
  long under the alternative treatment than it does when treated  
  with For Lawn. [1] 
 
  However the study is small, so the difference may not be statistically 

significant at conventional levels. [½]
 [Total for part (iv): 2] 

  
 (v) For ForLawn we have 
 
  0( | 1) ( ) exp .h t X h t= = β   [½] 
 
  For the alternative treatment we have 
 
  0( | 0) ( ).h t X h t= =  [½] 
 
  Where h(t) is the hazard, h0(t) is the baseline hazard, β is the  
  coefficient measuring the impact of the different treatments and X is a  
  dummy variable taking the value 1 for ForLawn and 0 for the alternative 

treatment. [1] 
   [Total for part (v): 2] 
   
 (vi) The contributions to the partial likelihood, L, at durations where events occur 

are: 

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20

S(
t)

t (days) 

For Lawn

Alternative
treatment
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  t = 3 1
7 7eβ+

  [½] 

 

  t = 4 1
6 7eβ+

 [½] 

 

  t = 5 2(5 7 )
e

e

β

β+
 (using Breslow correction for ties) [½] 

 

  t = 6 
1 6

e
e

β

β+
 [½] 

 

  t = 8 
1 5

e
e

β

β+
 [½] 

 

  t = 10 1
1 2eβ+

 [½] 

 

  t = 11 1
22

e
e

β

β =  [½]

  
   
 
  Multiplying these elements together gives 
 

  L = 1
7 7eβ+

. 1
6 7eβ+

. 2(5 7 )
e

e

β

β+
.
1 6

e
e

β

β+
.
1 5

e
e

β

β+
. 1
1 2eβ+

. 1 .
2

 [1] 

   [Total for part (vi): max. 4]
 [Total 19] 

 
 

This question was generally well answered, with many candidates 
scoring 12 marks or more.  Answers to parts (i) – (iii) were especially 
good: many candidates scored full credit for these parts.  In part (ii), 
some candidates did not realise that we have no information after t = 
16, so the ranges for the last interval of the survival function for 
ForLawn should be 11 ≤ t < 16, not just 11 ≤ t.  In part (v) many 
candidates simply wrote down the general form of the Cox model, 
rather than determining the equations of the model for the two groups 
in this specific study.  Answers to part (vi) fell into two groups: 
candidates who made little or no attempt, and candidates whose 
derivations were largely correct. Some of those who had the correct 
terms did not state to which time interval each term applied, and a 
small number of marks were lost for this. 
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END OF EXAMINERS’ REPORT 
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