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Comments 
 
Comments on solutions presented to individual questions for this September 2006 paper are 
given below. 
 
103 Part 
 
Question A1 This was reasonably well answered, even by the weaker candidates. 

In part (ii), very few candidates used the information in the question and 

calculated 
1
( )

n

i i
i

t s
=

−∑ . 

 
Question A2 This was reasonably well answered. 

In part (iv), many candidates wrote down a suitable estimate, but failed to 
provide an explanation as required. 

 
Question A3 This was reasonably well answered. 

In part (i), many candidates attempted to describe the simple random walk 
rather than the general case. 
In part (ii), very few candidates identified the correct state space for the 
compound Poisson process or general random walk. 
In part (iii), credit was not given if the examples cited were not likely to be 
encountered by an actuary working in a professional capacity. 

 
Question A4 This was not well answered overall, but many of the stronger candidates did 

score highly. 
In part (i), some candidates incorrectly attempted to calculate the long-run 
probability of being in state B. 
Part (ii) was generally well answered. 
In part (iv), the stronger candidates provided good answers, but overall 
candidates did not score well here. 

 
Question A5 Overall this was poorly answered, although the stronger candidates did well. 

Many candidates failed to split the two states labelled B and C in the solution, 
giving instead a 3-state chain.  Some marks were still awarded for the long-
run probability calculations in part (iv), but such candidates were not able to 
calculate the required final answer. 

 
Question A6 This was poorly answered by most candidates, even though some parts of the 

question had been asked in previous (103) exams. 
Marks were lost in all parts of the question.  Many candidates did not make a 
serious attempt at part (iii)(c).   
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104 Part 
 
Question B1 This was well answered. 

Some candidates assumed a constant force of mortality, for which credit was 
not given.  Some candidates struggled with the second calculation. 

 
Question B2 This was poorly answered overall, although some of the stronger candidates 

did manage to score highly.  
In part (ii), the question asked candidates to “derive an expression” and 
therefore we were looking for clearly set out steps here.  Many candidates lost 
marks by not providing sufficient explanation of their working. 

 
Question B3 This was well answered overall. 

In parts (i) and (ii), candidates were asked to “estimate” and some indication 
was required of how the numerical estimate was reached. 

 
Question B4 This was not well answered overall.   

In part (i), many candidates did not calculate the correct exposed to risk.  
Marks were frequently lost because of insufficient working combined with an 
incorrect final answer.  Candidates who wrote down the formulae they were 
using were given credit even if arithmetic slips were made. 

 
Question B5 This was very well answered by most candidates. 

The most common errors were: inconsistency in the assumed order of death 
and censoring at ages 51 and 54 3/12; and continuation of the estimated 
survival function after age 55. 

 
Question B6 This was reasonably well answered overall. 

Parts (i) and (ii) were poorly answered. 
In part (iii), the main areas where candidates lost marks were: not correctly 
stating the null hypothesis; failure to identify the correct degrees of freedom to 
be used in the chi-squared test; and a failure to state relevant and clear 
conclusions to the tests. 
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103 Solutions 
 
A1 (i) If the ith component is still working at the end of the test period its 

contribution to the likelihood is: 
  
   exp( ( ))

i i it s s i ip t s− = −μ −  
   

  under the assumption of a constant force of failure. 
 
  If the ith component fails at time ti its contribution to the likelihood is: 
 
   . exp( ( )).

i i i it s s t i ip t s− μ = −μ − μ  
   

  under the assumption of a constant force of failure. 
 
  In both cases the contribution equals: 
 
   exp( ( )). if

i it s−μ − μ  
  
 (ii) Denote the total number of components used in the test by n. The likelihood 

for n independent components is: 
 

   
1

exp( ( )). i
n

f
i i

i
L t s

=

= −μ − μ∏  

 

   1
1

exp( ( )).
n

i
i

n
f

i i
i

L t s
=

=

∑= −μ − μ∑  

 
  Now the rig contains 100 components at all times because it is fully loaded 

and failed components are immediately replaced, so 
1

( ) 200(years)
n

i i
i

t s
=

− =∑ .  

  So  ( ) 1exp 200

n
i

i
f

L =
∑

= − μ ⋅μ  
 

   
1

ln 200 ln .
n

i
i

L f
=

= − μ + μ∑  

   1ln 200

n

i
i

f
L =∂
= − +

∂μ μ

∑
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  Setting this to zero the MLE is: 
 

   1ˆ
200

n

i
i

f
=μ =
∑

 

 
  To verify this is a maximum we see that: 
 

   
2

1
2 2

ln 0

n

i
i

f
L =∂
= − <

∂μ μ

∑
 

 
 
A2 (i) The generator matrix is  
 
   A

−σ σ⎛ ⎞
= ⎜ ⎟ρ −ρ⎝ ⎠

 

 
 (ii) The distribution is exponential in both cases; with parameter σ in state A, ρ in 

state B. 
 
 (iii) The probability that the process stays in A throughout [0, t] is  
 

   s t

t

e ds e
∞

−σ −σσ =∫ . 

 
  For 3,σ =  we get 3 0.2te− =  
  which gives t = -ln (0.2)/3 = 0.54 weeks.  
 
 (iv) The time spent in state A before the next visit to B has mean 1/σ.  
 
  Therefore a reasonable estimate for σ is the reciprocal of the mean length of 

each visit: 
 
  σ̂  = (Number of transitions from A to B) / (Total time spent in state A up until 

the last transition from A to B).  
 
  [An alternative is to use the maximum likelihood estimator for σ, which is 

(Number of transitions from A to B)/Total time spent in state A).] 
 
  Similarly we can estimate  ρ̂ .  
 
 (v) Testing whether the successive holding times are exponential variables and 

independent would be best. Any procedure which does this test is acceptable.  
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A3 (i) (a) A Poisson process with rate λ is an integer-valued process Nt, t 
0≥ with the following properties:  

 
   N0 = 0;  
   Nt has independent increments;  
   Nt has stationary increments, each having a Poisson distribution, i.e.  
 

    [ ] [ ] ( )( )
, , 0,1, 2,...

!

n t s

t s
t s e

P N N n s t n
n

−λ −λ −
− = = < =    

  
  (b) Let Nt be a Poisson process, t ≥ 0 and let Y1, Y2, …, Yj, …, be a  

sequence of i.i.d. random variables. Then a compound Poisson process 
is defined by 

  

    
1

, 0.
tN

t j
j

X Y t
=

= ≥∑   

 
  (c)  Let Y1, Y2, …, Yj, …, be a  sequence of independent and identically 

distributed random variables and define  
 

    
1

n

n j
j

X Y
=

=∑  

 
   with initial condition X0 = 0. Then { } 0n nX ∞

=  constitutes a general 
random walk.  

 
 (ii)  (a) A Poisson process operates in continuous time and has a discrete state 

space, the set of nonnegative integers.   
 
  (b) A compound Poisson process operates in continuous time.   
 

  It has a discrete or continuous state space depending on whether the 
variables Yj are discrete or continuous respectively.  

 
  (c) A general random walk operates in discrete time.  Again, this has a 

discrete or continuous state space according to whether the variables Yj 
have a discrete or continuous distribution.  

 
 (iii)  (a) Examples of a Poisson process:  
 

• claims arriving to an insurance company through time  
• car accidents reported over time 
• arrival of customers at a service point over time 

 



Subject CT4 — Models Core Technical — September 2006 — Examiners’ Report 
 

Page 7 

  (b) A standard example of a compound Poisson process used by actuaries 
is for modelling the total amount of claims to an insurance company 
over time.  

 
(c) Examples of a general random walk: 
  

• modelling share prices daily  
• inflation index, measured on say a monthly basis  

 
  Other reasonable examples received credit. 
 
 
A4 (i) Probability that a company is never in state B is: 
 
   Pr( ) Pr( ) Pr( )A D A A D A A A D→ + → → + → → → +……  
 
   = 20.03+0.92 0.03+ 0.92 0.03+......× ×  
 

   
0

0.030.03 0.92 0.375
1 0.92

i

i

∞

=

= × = =
−∑  

 
 

 (ii) (a) 2
0.92 0.05 0.03 0.92 0.05 0.03
0.05 0.85 0.1 0.05 0.85 0.1

0 0 1 0 0 1

0.8489 0.0885 0.0626
0.0885 0.725 0.1865

0 0 1

A
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 
  (b) Probability of default within 2 years for an A rated company 6.26%, so 

6.26 defaults expected. 
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 (iii) Either 
 
  Calculate revised transition probabilities based on the rating of bonds held by 

the investment manager after rebalancing: 
 

   
0.97 0 0.03

0 0 0
0 0 1

A
⎛ ⎞
⎜ ⎟′ = ⎜ ⎟
⎜ ⎟
⎝ ⎠

  

 
  (state B is unnecessary so this can be shown as 2 × 2 or 3 × 3) 
 

   2
0.9409 0 0.0591

0 0 0
0 0 1

A
⎛ ⎞
⎜ ⎟′ = ⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 
  So the expected number of defaults is 0.0591 ×  100 = 5.91. 
 
  Or 
 
  Required probability is 
 
   Pr( ) Pr( ) Pr( ) Pr( ) Pr( )A D A A A D A B A D→ + → × → + → × →  
 
   = 0.03 + 0.92 ×  0.03 + 0.05 ×  0.03 = 0.0591 
 
  So expected defaults 5.91. 
 
 (iv) The expected number of defaults has been reduced by this strategy. (The 

variance of the number of defaults would also reduce.) 
 
  However it is not possible to tell whether the overall return is improved as this 

depends on the price at which bonds were bought and sold at the end of year 1.  
 
  The price of the debt sold may have been depressed by the companies having 

been downgraded to rating B, and the manager loses out on any increase in 
price if they recover. 

 
  The “downgrade trigger” strategy will incur dealing costs, which should be 

considered when comparing the returns. 
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A5 (i) Consider the following four states that the policyholder might be at the end of 
a year:  

 
• the policyholder has made at least one claim both in the year just ended 

and the previous one (state A)  
 
• the policyholder has made no claims in the year just ended but s/he made 

at least one claim during the previous year (state B) 
 

• the policyholder has made at least one claim in the year just ended but not 
in the previous one (state C) 

 
• the policyholder has made no claim during either the year ended or the 

previous one (state D)  
 
  If the year ended is year n, and Xn denotes the current state of the policyholder, 

then Xn constitutes a Markov chain.   
 
 (ii) The transition matrix is   
 

   

0.25 0.75 0 0
0 0 0.15 0.85
0.15 0.85 0 0
0 0 0.10 0.90

P

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

  

 
 (iii) The chain has a finite number of states (A,B,C,D). In order to show that it has 

a stationary distribution, it suffices to show that it is irreducible and aperiodic.  
 
  It is apparent from the transition matrix above that any state can be reached 

from any other; hence the chain is irreducible. 
 
  The chain is also aperiodic since for states A, D the state can remain at the 

same state after one step, while for states B, C the state may return to its 
current state after 2 or 3 steps.  

 
  Hence the chain has a stationary distribution (which is unique).  
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 (iv) The set of equations is given (in matrix from) by πP=π,  
  where π = (πA, πB,  πC,  πD) denotes the stationary distribution. 
 
  Using the transition matrix from (ii) above we obtain the equations  
 
   0.25 πA +  +0.15 πC           = πA (1)  
   0.75 πA +  +0.85 πC           = πB (2) 
    0.15 πB       +0.10 πD   = πC (3) 
    0.85 πB       +0.90 πD   = πD  
 
  Discard the last of these equations and use also that the stationary probabilities 

must also satisfy  
 
   πA + πB + πC + πD = 1        (4) 
 
  Equation (1) gives  
 
   0.75 πA = 0.15 πC  (5)  
 
  Or 5 πA = πC   
 
  Substituting (5) into (2) yields immediately 
 
   πB = πC 
 
  and inserting this into (3) we get  
 

   πD = 17
2
πB. 

 
  In view of the above, we obtain now from (4) that  
 

   1 17 101 1 1 .
5 2 107B B

⎛ ⎞π + + + = ⇒ π =⎜ ⎟
⎝ ⎠

  

 
  Hence the other probabilities are  
 

   2 10 85, , .
107 107 107A C Dπ = π = π =  

 
  The proportion of policyholders who, in the long run, make at least one claim 

in a given year is  
 

   12 .
107A Bπ + π =   
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A6 (i) The probability that an event occurs during the short time interval between t 
and t + h is approximately equal to λ(t) h for small h where λ(t) is called the 
rate of the process.  For a time-inhomogeneous process, λ(t) depends on the 
current time t; for a time-homogeneous process it is independent of time. 

 
 (ii) (a)  Divide the time period into intervals of a suitable size, say one month.  

Estimate the arrival rate separately for each time period.  
 

See if the observed data match the pattern which would be expected if 
the model were accurate and if the parameters had their values given 
by their estimates.  

 
If not, the model should be revised.   

 
  (b) A goodness of fit test, such as the chi-squared test, should be carried 

out for each time period chosen.  
 
   Tests for serial correlation [e.g. portmanteau test] should use the whole 

data set at once.  
 
 (iii) (a)  This implies that claims are seasonal with period 12 months, and that 

claims in the peak (presumably winter) are double those at the low 
point of the year.  
 

   This would be reasonable if in a climate where driving conditions are 
worse in winter. 

 
  (b)  Kolmogorov forward equations: 
 

    )().,(),( tAtsPtsP
t

=
∂
∂  st ≥  

 
   Where: 
 

    

( ) ( )
( ) ( )

( )
( )

t t
t t

A t
t

−λ λ⎛ ⎞
⎜ ⎟−λ λ⎜ ⎟=
⎜ ⎟−λ
⎜ ⎟
⎝ ⎠

  

 
  (c) Consider the case j > 0, 
 

    0 0, 1 0( , ) ( ). ( , ) ( ). ( , )j j jP s t t P s t t P s t
t −
∂

= λ −λ
∂

  (I)    

 
with 0 ( , ) 0jP s s =    
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   If solution is of the form 
 

    0
( ( , )) .exp( ( , ))( , )

!

j

j
f s t f s tP s t

j
−

=  

  
   LHS of I 
 

    ),(.
!

)),(exp().),()),(.(( 1 tsf
dt
d

j
tsftsftsfj jj −

−−  

 
   RHS of I 
 

    
1( , ) ( , ) .exp( ( , ))( ). .exp( ( , )) ( ).

( 1)! !

j jf s t f s t f s tt f s t t
j j

− −
λ − −λ

−
  

 
   These are equal if 
   

    ( , ) ( )f s t t
t
∂

= λ
∂

  

  
   Now 
 

    

[ ]

( ) (3 cos(2 ))

13 sin(2 )
2

13( ) sin(2 ) sin(2 ) ( , )
2

t t

s s

t

s

v dv v dv

v v

t s t s f s t

λ = + π

⎡ ⎤= + π⎢ ⎥π⎣ ⎦

= − + π − π ≡
π

∫ ∫

 

 
   this satisfies the boundary condition. 
 
   Consider the case j = 0 
 

    00 00( , ) ( ). ( , )P s t t P s t
t
∂

= −λ
∂

  (II)  

 
   with boundary condition 00( , ) 1P s s =   
 
   Need to verify that 00 ( , ) exp( ( , ))P s t f s t= −  satisfies II 
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   LHS of II 
 

    00exp( ( , )). ( ( , )) ( , ). ( )f s t f s t P s t t
t
∂

− − = − λ
∂

 

 
   and 00( , ) 1P s s =  
 
  (d) Solution is of the same form, except that for the homogeneous case 

f(s,t) = λ(t-s).  
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104 Solutions 
 
B1 0.25 80 0.25 801p q= −  801 0.25 q= − ×   
 under the assumption of a uniform distribution of deaths (UDD)  
 between ages 80 and 81. 
 
 From ELT 15, q80 = 0.05961, so 
 
  0.25 80 1 0.25 0.05961p = − × = 0.98510 
 
 ALTERNATIVE 1 
 
 Under UDD we have, for 0  s < t  1,  

 

  ( )
1

x
t s x s

x

t s qq
sq− +

−
=

−
. 

 
 Putting t = 0.75, s = 0.5 and x = 80, therefore,  
 

  80
0.75 0.5 80 0.5

80

0.25
1 0.5

qq
q− + =

−
, and so 

  

  80
0.25 80.5

80

0.251
1 0.5

qp
q

= −
−

. 

 
 Using ELT15, this is evaluated as  
 

  ( )
( )

0.25 0.05961 0.014901 1 1 0.01536 0.98464
1 0.5 0.05961 0.97020

− = − = − =
−

 

 
 ALTERNATIVE 2 
 
 Using t xp  = ,s x t s x sp p− +⋅  
 
  0.75 80p = 0.5 80 0.25 80.5p p⋅  
 
 Using an assumption of UDD between ages 80 and 81, we have 
 
  0.5 80p  = 1 – 0.5 × 0.05961 = 0.97020 
 
  0.75 80p = 1 – 0.75 × 0.05961 = 0.95529 
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 So, 0.25 80.5p = 0.75 80

0.5 80

0.95529 0.98463
0.97020

p
p

= =   

 
 
B2 (i) (a) The age definition changes 6 months before/after each birthday, so this 

is a life year rate interval.  
 
  (b) Lives are aged x - ½ at the start of the rate interval. 
 
 (ii) Under the principle of correspondence the age definition of deaths and census 

should correspond, which they do here.  So we do not need to adjust the 
census information.  

 

  The exposed to risk is given by ( )
3

0

c
x xE P t dt= ∫ . 

 
  Assuming Px(t) is linear over calendar years, we can approximate this to  
 

  ( ) ( )( )
2

0

1 1
2

c
x x xE P t P t= + +∑ , where t is measured from 1 January 2002 

  ( ) ( ) ( ) ( )1 10 1 2 3
2 2x x x xP P P P⎛ ⎞= + + +⎜ ⎟

⎝ ⎠
 

 
 (iii) The age definitions for deaths and census no longer correspond.  So, we need 

to adjust the census information for those companies who supply details of 
( )*

xP t . 
 
  Assuming birthdays are uniformly distributed over the calendar year,  

  we can approximate ( ) ( ) ( )( )* *
1

1
2x x xP t P t P t−≈ + . 

 
  And the exposed to risk is then: 
 

( ) ( )( )
2

0

1 1
2

c
x x xE P t P t= + +∑  

( ) ( )( ) ( ) ( )( )
2

* * * *
1 1

0

1 1 1 1 1
2 2 2x x x xP t P t P t P t− −
⎛ ⎞= + + + + +⎜ ⎟
⎝ ⎠

∑  

( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )* * * * * * * *
1 1 1 1

1 1 10 0 1 1 2 2 3 3
4 2 4x x x x x x x xP P P P P P P P− − − −= + + + + + + +
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B3 (i) The hazard for a female patient is: 
 
   ( ) ( ) ( )0 2 2exp 0fh t h t z= × +β   
 
  and the hazard for a male patient is: 
 
   ( ) ( ) ( )0 1 2 2exp 1mh t h t z= × β × +β  
 
  Using ˆ

iβ  to denote our estimate of iβ , we know from A that, if the model is 
correct,  

 
   ( ) ( )1.02m fh t h t= × , so that: 
 
   ( ) ( ) ( ) ( )0 1 2 2 0 2 2

ˆ ˆ ˆexp 1.02 exph t z h t z× β +β = × × β  

 
   1

ˆexp( ) 1.02⇒ β =  
 
   ( )1

ˆ ln 1.02 0.0198⇒β = =  
 
  And similarly, from B, we know that: 
 
   ( ) ( ) ( ) ( )0 1 1 0 1 1 2 2

ˆ ˆ ˆexp 0 1.05 exph t z h t z z× β + = × × β +β  

 
   ( )2

ˆ1 1.05 exp⇒ = × β  

 
   ( )2

ˆ 1ln 0.04881.05⇒β = =−  

 
 (ii) The hazard for a male patient who has been given the new treatment is: 
 
   ( ) ( ) ( ), 0 1 2exp 1 1m nh t h t= × β × +β ×  
 
   ( ) ( )0 exp 0.0198 0.0488h t= × −  
 
   ( ) ( )0 exp 0.029h t= × −  
 
   ( )00.9714 h t= ×  
 
  The hazard for a female patient given the existing treatment is the baseline 

hazard.  
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  Hence, the ratio of the hazard for a male patient who has been given the new 
treatment to that for a female patient given the existing treatment is: 

 

   
( )
( )

,

0
0.9714m nh t

h t
=  

 
  ALTERNATIVELY 
 
  Candidates may recognise that the proportions given in A and B can be 

combined to give: 
 

    
( )
( )

( )
( )

( )
( )

, , ,

, , ,

11.02 0.9714
1.05

m n m x x n

f e f x x e

h t h t h t
h t h t h t

⎡ ⎤ ⎡ ⎤
= × = × =⎢ ⎥ ⎢ ⎥

⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦
 

 
 (iii) The probability of death is given by: 
 

   ( ) ( ){ }3
, ,0

1 3 1 expm n m nS h s ds− = − −∫  

    ( ){ }3
00

1 exp 0.9714 h s ds= − − ×∫  

 

    ( )
3

00
1 exp 0.9714 h s ds⎧ ⎫⎛ ⎞= − × −⎨ ⎬⎜ ⎟

⎝ ⎠⎩ ⎭∫  

 

    ( )3
00

0.9714

1 e h s ds−⎛ ⎞∫= −⎜ ⎟
⎝ ⎠

 

 
 
B4 (i)  Let the age individual i enters observation be ai and the age that individual i 

leaves observation be bi.  Define an indicator variable di such that di = 0 if 
individual i is not observed to die and di = 1 if individual i dies.   

 
  Measure all ages in years since exact age 60.   
 
  The estimate of q60 using the Binomial model is: 
 

   
( )( )( )

10

1
60 10

1

ˆ
1 1 1

i
i

i i i
i

d
q

a d b

=

=

=
⎡ ⎤− − − −⎣ ⎦

∑

∑
. 
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  The denominator in this formula shows that for persons who do not die 
(di = 0) the exposed to risk is bi – ai and for persons who die (di = 1) the 
exposed to risk is 1 – ai.  

 
  Thus the relevant calculations are shown in the table below (all durations are 

in years). 
 

Person  ai   bi  di      1 - ai        1 – bi 1 - ai  - (1 - di)(- bi) 
 
1          0          6/12 0         1               6/12          6/12 
2            1/12     1                0         11/12        0               11/12  
3              1/12     3/12          1         11/12        9/12         11/12 
4              2/12     1                0         10/12        0              10/12 
5              3/12     9/12          1         9/12          3/12          9/12  
6              4/12     1                0         8/12          0               8/12  
7              5/12     11/12        1         7/12          1/12          7/12 
8              7/12     1                0         5/12          0               5/12   
9              8/12     10/12        1         4/12          2/12          4/12  
10            9/12     1               0         3/12          0               3/12 
 
Totals                                 4                                         74/12 

 

Therefore 60
4ˆ 0.6486

74 /12
q = = .  

 
ALTERNATIVELY 

 

  Take the central exposed to risk, 
10

1
( )i ib a−∑  (in years) and add 

  ½d60 to give the initial exposed to risk.   
 

This involves estimating q60 using the formula 
 

   60
60

60 60

4 4ˆ 0.5783.
(59 /12) 2 83/120.5c

dq
E d

= = = =
++

 

 
  [This approach is inferior to the first, as it does not use all the information 

available in the data, and involves the assumption that the deaths take place, 
on average, half way through the year.] 

 
 (ii) Strengths of Binomial model 
 

• avoids numerical solution of equations  
 
• can be generalised to give the Kaplan-Meier estimate  
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  Weaknesses of Binomial model 
 

• need to compute an initial exposed-to-risk is a pointless complication if 
census-type data are available 

 
• not so easily generalised as two-state or Poisson models to processes with 

more than one decrement, and not so easily generalised as two-state model 
to increments 
 

• estimate of qx has a higher variance than that of the two-state Poisson 
models (though the difference is very small unless mortality is very high) 

 
 
B5 (i) There will be Type I censoring of lives that survive to age 55 years. 
 
  There will be random censoring of lives that withdraw before age 55 years.  
 
 
 (ii) The calculations are shown in the table below, where durations are measured 

in years since the 50th birthday. 
 
Using the convention that, when deaths and withdrawals are observed at the 
same duration, deaths occur first: 

 
 tj Nj dj cj /j jd N  ˆ ( / )

j

t j j
t t

d N
≤

Λ = ∑  

 
 0 12 
 0.25 12 1 1 0.0833 0.0833 
 1.00 10 1 2 0.1000 0.1833 
 2.75   7 1 2 0.1429 0.3262 
 4.25   4 1 3  0.25 0.5762 

 
  Since ˆ ˆ( ) exp( )tS t = −Λ  
 
  the estimated survival function is 
 

 t ˆ( )S t  
 
 0 0.25t≤ <  1.0000 
 0.25 1.00t≤ <  0.9201 
 1.00 2.75t≤ <  0.8325 
 2.75 4.25t≤ <  0.7217 
 4.25 5.00t≤ <  0.5620 
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 (iii)   

 
B6 (i) (a) The general form is 
 
    (polynomial(1)) + exp(polynomial(2))xμ = , 
 
   where polynomial (1) takes the form 
 
    2

0 1 2 ...x xα +α +α +  
 
   and polynomial (2) takes the form 
 
    2

0 1 2 ....x xβ +β +β +  
 
 
  (b) In the case of the Gompertz formula x

x Bcμ = , then putting  
 
    0exp( )B = β  and 1exp( )c = β ,  
 
   we can re-write the formula as 
 
    0 1 0 1exp( )exp( ) exp( )x x xμ = β β = β +β , 
 
   which is of the required form if  
 

  iα = 0 for all i  
 

   and  
  

    iβ = 0 for i = 2, 3, …. 
 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Duration since 50th birthday

S(
t)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 1 2 3 4 5

Duration since 50th birthday

S(
t)
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   Similarly the Makeham formula x
x A Bcμ = +  

   can be expressed in the required form by putting  
 
    0A = α , 0exp( )B = β  and 1exp( )c = β . 
 
 (ii) (a) The Gompertz formula written 
 
    0 1exp( )x xμ = β +β  
 
   is an exponential function which implies that the rate of increase of 

mortality with age is constant. 
 
   This is often a reasonable assumption for ordinary lives at middle ages 

and older ages. 
 
   In the special case of the impaired lives known to be suffering from a 

degenerative disease, it is plausible to suppose that the rate of increase 
of mortality might increase with age. 

 

   The term 
2

2
1
2

b x⎛ ⎞+⎜ ⎟
⎝ ⎠

 in the formula can allow for this possibility. 

 
  (b) The graduation can be achieved by 
 
   maximum likelihood estimation of the parameters 
 
   or by ordinary least squares regression  
  

   of 1
2

ˆlog
x+

⎡ ⎤
⎢ ⎥μ
⎢ ⎥⎣ ⎦

on 1
2

x + and 
21 .

2
x⎛ ⎞+⎜ ⎟

⎝ ⎠
 

 
 (iii) (a) The null hypothesis is that there is no difference between the graduated 

rates and the underlying rates in the population from which the crude 
rates are derived. 

 
   To test overall goodness-of-fit we use the chi-squared test. 
 
    2 2

x m
x

z χ∑ ∼ , 

 
   where m is the number of degrees of freedom. 
 
   In this case, we have 8 ages, but 3 parameters were estimated when 

performing the graduation, so m = 5. 
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   The calculations are shown in the table below. 
 

 Age x zx 
2

xz   
 last 

 birthday 
   
 50 -0.12031 0.01447 
 51 -0.20055 0.04022 
 52 -0.24749 0.06125 
 53 0.11341 0.01286 
 54 -0.79336 0.62942 
 55 -0.66436 0.44137 
 56 -0.44369 0.19686 
 57 -0.35225 0.12408 
    
 Sum  1.52053 
 
   The critical value of the chi-squared distribution with 5 degrees of 

freedom at the 5 per cent level is 11.07.   
 
   Since 1.52052 11.07, we do not reject the null hypothesis and 

conclude that the graduation adheres satisfactorily to the data. 
 
  (b) To test for bias we use EITHER the Signs Test or the Cumulative 

Deviations test. 
 
   Signs Test 
 
   The test statistic, P, is the number of signs that is positive. 
 
   Under the null hypothesis, ~ Binomial(8,0.5)P  
 
   In this case P = 1, and Prob[ 1P ≤ ] = 0.0352. 
 
   Since this probability > 0.025 (two-tailed test) we do not reject the null 

hypothesis. 
 
   We conclude that the graduated rates are not biased above or below the 

crude rates. 
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   Cumulative deviations test 
 
   The test statistic 
 

    

o
11
22

o
1
2

ˆ( )

~ Normal(0,1)
x xxxx

xx
x

E E

E

++

+

μ −μ

μ

∑

∑
. 

 
   The calculations are shown in the table below. 
 

 Age x 
o

11
22

ˆ x xxx
E E++

μ −μ  
o

1
2

xx E+μ   

 last 
 birthday 
   
 50 -0.63 27.63 
 51 -1.06 28.06 
 52 -1.32 28.32 
 53  0.61 29.39 
 54 -4.13 27.13 
 55 -3.20 23.20 
 56 -2.03 21.03 
 57 -1.72 23.72 
   
 Sum -13.48 208.48   

 
   The value of the test statistic is therefore  
 
    (-13.48/√208.48) = -0.9335. 
 
   using a two-tailed test, the absolute value of the test statistics is less 

than 1.96, so we do not reject the null hypothesis. 
 
   We conclude that the graduated rates are not biased above or below the 

crude rates. 
 
  (c) To test for the existence of individual ages at which the graduated rates 

depart greatly from the observed rates we can use the Individual 
Standardised Deviations Test. 

 
   There are no ages at which the absolute value of zx exceeds 1.96.  
 
   Therefore we do not reject the null hypothesis and conclude that there 

are no outliers. 

END OF EXAMINERS’ REPORT 


