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Comments 
 
Comments on solutions presented to individual questions for this April 2007 paper are given 
below and further comments, where appropriate, are given in the solutions that follow. 
 
Question 1 This was poorly answered by most candidates. 

 
Question 2 This was reasonably well answered. 

In part (iii), many candidates did not take into account that the question 
related to annuities. 

 
Question 3 This was reasonably well answered, although many candidates took no 

account of the particular circumstances referred to in the question. 
 
Question 4 Again, this was reasonably well answered overall. 

Many candidates failed to state the correct assumptions. 
 
Question 5 Overall this was poorly answered, 

Many candidates did not provide a correct definition for the hazard function.  
In part (ii), marks were lost by candidates who evaluated the survival function 
at t = 5, rather than providing the expression for 0 5t≤ ≤ , and by those who 
provided graphs which were incorrectly or incompletely labelled.  

 
Question 6 This was well answered by most candidates.   

 
Question 7 Overall this was reasonably well answered, with the stronger candidates 

scoring highly. 
 
Question 8 This was well answered overall.  

In part (ii), a relatively common error was to ignore the date of surgery, 
effectively assuming that all lives entered into the study on 1 January 2001. 

 
Question 9 This was reasonably well answered overall. 

As for similar questions in previous years, the main areas where candidates 
lost marks were: failing to provide sufficient and sufficiently clear working; 
failing to identify the correct degrees of freedom to be used in the chi-squared 
test; and failing to state relevant and clear conclusions to the tests. 

 Many candidates who carried out the test for individual standardised 
deviations failed to address the issue of outliers.   

 Many candidates carried out the Grouping of Signs test, which was not 
appropriate with so few age groups. 

 
Question 10 Parts (i) and (ii) were fairly well answered overall, but few candidates scored 

well in part (iii). 
 
Question 11 This was very poorly answered by most candidates. 

The most common error in part (iii) was to give the state space as  
{0, 1, 2, …., N - 1, N}.  Few candidates attempted part (vi).  



Subject CT4 — Models Core Technical — April 2007 — Examiners’ Report 
 

Page 3 

1 Mixed process 
 
 (a)  Is a stochastic process that operates in continuous time, which can also change 

value at predetermined discrete instants. 
 
 (b) The number of contributors to a pension scheme can be modelled as a mixed 

process with state space { }1, 2,3,...S =  and time interval [ ]0,J = ∞ . 
 
 Counting process 

 
(a) Is a process, X, in discrete or continuous time, whose state space is the natural 

numbers {0, 1, 2, …}.   
 
X(t) is a non-decreasing function of t. 
 

(b) Number of claims reported to an insurer by time t. 
 
 
2 (i) (a) Graduation by reference to a standard table would be appropriate.   

 
   There are likely to be existing standard tables which are suitable and 

this method is suitable for relatively small data sets. 
 

Alternatively, graduation by parametric formula would be suitable if 
the volume of data was large enough.  But that is unlikely to be the 
case here. 
 
Graphical graduation would not be appropriate for rates for premium 
calculations. 

 
(b) Assuming graduation by reference to a standard table: 
 

• Select a suitable table, based on a similar group of lives. 
 
• Plot the crude rates against s

xq  from the standard table to identify a 
simple relationship. 

 
• Find the best-fit parameters, using maximum likelihood or least 

squares estimates. 
 
• Test the graduation for goodness of fit.  If the fit is not adequate, 

the process should be repeated. 
 
 (ii) Considerations include: 

 
• As the premiums are for annuity policies, it is important not to 

overestimate the mortality rates, as the premiums would be too low. 
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• The rates will be based on current mortality; the company should also take 
into account expected future changes, especially any reductions in 
mortality rates. 

 
• Premiums charged by other insurer: if rates are too high the company will 

fail to attract business; if too low, it may attract too much, unprofitable 
business. 

 
 
3 Clarify the purpose of the exercise.  Why does the government want forecasts of 

mortality?  What is the period for which the forecast is wanted?  Is it short (e.g. 5–10 
years) or long (e.g. 50–70 years).    
 
Consult the existing literature on models for forecasting mortality, and speak to 
experts in this field of application.  Consider using or adapting existing models which 
are employed in other countries. 
 
Establish what data are available (e.g. on past mortality trends in the country, 
preferably with deaths classified by age and cause of death). 
 
On the basis of what data are available, define the model you propose to use. If the 
data are simple and not detailed, then a complex model is not justified.  Will a 
deterministic or a stochastic model be appropriate in this case?  
 
Identify suitable computer software to implement the model, or, if none exists, write a 
bespoke program. 
 
Debug the program or, if existing software is used, check that it performs the 
operations you intend it to do. 
 
Run the model and test the reasonableness of the output.  Consider, for example, the 
forecast values of quantities such as the expectation of life at birth. 
 
Test the sensitivity of the results to changes in the input parameters. 
 
Analyse the output. 
 
Write a report documenting the results and the model and communicate the results 
and the output to the government of the small country. 
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4 (i) For each pensioner in the investigation, the actuary would need: 
 
Date of entry into the investigation  
(the latest of date of retirement, date of xth birthday and 1 January 2005) 
 
Date of exit from the investigation  
(the earliest of date of death, date of (x+1)th birthday and 1 January 2007) 

 
 (ii) (a) The central exposed to risk of pensioners aged x nearest birthday is 

given by 
 

   
2

,0
c
x x tE P= ∫  

 

   ( )
1

1 1 1
, , 1 ,0 ,1 ,22 2 2

0
x t x t x x xP P P P P+≈ + = + +∑  

 
   Where ,x tP  is the number of pensioners aged x nearest birthday at time 

t, measured from 1 January 2005. 
 
   This assumes that ,x tP  is linear over the calendar year. 
 
 
  (b) This is a life year rate interval, from age x-½ to x+½.  The age in the 

middle of the rate interval is x, so μ̂  estimates xμ , assuming a constant 
force of mortality over the life year. 

 
   The estimate of xμ  is therefore given by: 
 

   65,2005 65,2006
65

65
ˆ

c
d d

E

+
μ =   

 

   
( )1 1

2 2

16 23 39
33701678 1720 1622

+
= =

× + + ×
 

 
   0.01157=  
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5 (i) The hazard function is defined as 
 

( )
0

1( ) lim Pr[ | ]
dt

h t T t dt T t
dt+→

= ≤ + > . 

 
 (ii) (a) Since the survival function S(t) is given by 
 

   
0

( ) exp ( )
t

S t h s ds
⎛ ⎞
⎜ ⎟= −
⎜ ⎟
⎝ ⎠
∫ , 

 
   then 
 

   ( )
2 2

0 0

( ) exp exp exp
2 2

tt s tS t s ds s t
⎛ ⎞ ⎡ ⎤ ⎡ ⎤β β⎜ ⎟= − α +β = −α − = −α −⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠
∫  

 
   where 0 5t≤ ≤ . 
 
  (b) A suitable plot is shown below. 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 1 2 3 4 5

Duration since age 50 years

S(
t)

 
Both concave and convex plots were acceptable as this depends on 
parameters, α and β. 
 

  (c) If both α and β are positive, then the formula implies a force of 
mortality which increases with age, which is sensible for this age 
range. 

 
   The parameter α measures the ‘level’ of mortality and the parameter β 

measures the rate of increase with age.  Varying these permits quite a 
wide range of forms for S(t). 

 
   So the formula seems appropriate. 
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6 Based on the given transition diagram, the one-step transition matrix must be of the 
form: 

 
0

0

a c
d e f

h i

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 
The two-step transition matrix is given by: 

 
2

2

2

( )0 0
* ( )

0 0 ( )

a ch c a ia c a c
d e f d e f d a e e fh cd ef fi

h i h i dh h e i fh i

⎛ ⎞+⎛ ⎞ ⎛ ⎞ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟= + + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

 
2 0.5625AAP = 2 0.5625 0.75a a⇒ = ⇒ =  

 
Rows of transition matrix must sum to 1. 
 
So, a + c = 1 
and  c = 0.25 

 
2 0.125 0.125 0.5ABP ch h= ⇒ = ⇒ =  

 
h + i = 1 

so i=0.5 
 

2 20.4 0.5 0.5 0.4 0.3CCP f f= ⇒ × + = ⇒ =  
 

2 0.475 (0.75 ) 0.475BAP d e= ⇒ + =  
 

Rows sum to 1 so, d + e =0.7 
 

Substitute for e: 
 

2(1.45 ) 0.475 1.45 0.475 0d d d d− = ⇒ − + =  
Solving using standard quadratic formula: 

 
21.45 1.45 4 0.475 1.45 0.45 0.95 or 0.5
2 2

d ± − × ±
= = =  

 
0.95 is not possible because e would need to be negative 

 
So  d = 0.5 and e = 0.2 
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Transition matrix is: 
 

0.75 0 0.25
0.5 0.2 0.3
0 0.5 0.5

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 
 
7 (i) Consider the sequence of the status of the first born child in each generation. 
 

The state space consists of the four possible combinations of chromosomes: 
 
Female non-carrier (FN) or XX 
Female carrier (FC) or X*X 
Male non-sufferer (MN) or XY 
Male haemophiliac (MH) or X*Y 

 
Using the assumption that there is an equal chance of either chromosome 
being inherited: 
 
• A female non-carrier will lead to a female non-carrier or male non-carrier.  

 
• A female carrier may produce: 

 
X*X, XX, X*Y, XY all with equal probability. 
 

• A male non-sufferer will lead to female non-carrier or male non-carrier. 
 

• A male haemophiliac may produce: 
 
X*X or XY (because his partner must provide an X) with equal 
probability. 
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The transition diagram is therefore: 
 

 
  Each of the transition probabilities depends only on state currently occupied, 

so the process possesses the Markov property. 
 
 (ii) (a) The chain is reducible because once it enters states FN or MN it cannot 

access FC or MH. 
 
  (b) The chain is aperiodic. 
   As it is reducible we need to consider each group of states.  FN/MN 

clearly have no period, and MH/FC do not either because a loop is 
possible in state FC. 

 
 (iii) The transition matrix is 

 

 
(0) 0.5 0 0.5 0
(1) 0.25 0.25 0.25 0.25
(2) 0.5 0 0.5 0
(3) 0 0.5 0.5 0

FN FC MN MH
FN

A FC
MN
MH

=  

 

FN FC 

MN MH 

0.5 

0.5 

0.5 

0.5 

0.5 
0.25 

0.25 
0.25 

0.25 

0.5 
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The stationary distribution πmust satisfy: 
 

0 0 1 20.5 0.25 0.5π = π + π + π  

1 1 30.25 0.5π = π + π  

2 0 1 2 30.5 0.25 0.5 0.5π = π + π + π + π  

3 10.25π = π  
 

So, 
 

1 1 10.25 0.5 0.25π = π + × π  

1 3 0⇒ π = π =  

0 2 0.5⇒ π = π =  
 

An alternative solution combines the states FN and MN to give a 3-state model.  This 
was given credit. 

 
 
8 (i) (a) Type I censoring is present for those lives still under observation at 31 

December 2005 as the censoring times are known in advance. 
 

  (b) Interval censoring would be present if we only knew death occurred 
between check-ups.  However, actual dates of death are known, so 
interval censoring is not present. 
 
Right censoring can be seen as a special case of interval censoring (for 
those censored before death, we know death occurs in the interval (ci, 
∞) where ci is the censoring time for person i).   
 

  (c) Informative censoring is not likely to be present.  The censoring of 
lives gives us no information about future lifetimes. 
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 (ii) The durations at which lives died or were censored are shown below. Duration 
is measured in years and months from the date of surgery. 

 
Patient Death or censored Duration 
A death 4 years 4 months 
B death 6 months 
C death 10 months 
D death 1 year 11 months 
E death 10 months 
F censored 4 years 11 months 
G censored 4 years 10 months 
H censored 4 years 9 months 
I censored 4 years 7 months 
J censored 4 years 4 months 
K censored 4 years 4 months 
L censored 4 years 2 months 
M censored 2 years 6 months 
N censored 9 months 
O censored 4 years 

 
The calculation of the survival function is shown in the table below.  We 
assume that at duration 4 years 4 months, the death occurred before lives were 
censored.   
 

jt  jn  jd  jc  ˆ /j j jd nλ =  
0 15 0 0 0 
0.5 15 1 1 1/15 
0.833 13 2 0 2/13 
1.917 11 1 3 1/11 
4.333 7 1 6 1/7 

 
The estimated survival function is given by, ( ) ( )ˆ 1

j

j
t t

S t
≤

= −λ∏ .  So,  

 
t ( )Ŝ t  
0.000 0.500t≤ <  1.0000 
0.500 0.833t≤ <  0.9333 
0.833 1.917t≤ <  0.7897 
1.917 4.333t≤ <  0.7179 
4.333 5.0t≤ <  0.6154 

 
Solutions using different assumptions (for example assuming the death at 4 
years 4 months occurred after lives were censored, or assuming lives M, N 
and O were censored sometime within 3 months of their last check-up) were 
acceptable and received credit. 
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 (iii) The probability that a patient will die within 4 years of surgery is estimated 
by: 

 
 ( )ˆ1 4S− = 1 – 0.7179  
   = 0.2821  

  
 
9 (i) The chi-squared test is a suitable overall test. 
 

The test statistic is 2
x

x
z∑ , where  

 

1/ 2 1/ 2

1/ 2

ˆ f fc c
x xx x

x fc
x x

E E
z

E
+ +

+

μ − μ
=

μ
. 

 
2

x
x

z∑  has the 2
8χ  distribution. 

 
The calculations are shown in the table below 

 
  Age Actual  Expected    
   deaths deaths 
  x 1/ 2ˆ fc

x xE +μ  1/ 2
fc

x xE +μ   zx 
2

xz  
 
  65 30 28.4 0.3002 0.0901 
  66 20 30.1 -1.8409 3.3890  
  67 25 31.2 -1.1100 1.2321 
  68 40 33.5 1.1230 1.2612  
  69 45 34.1 1.8666 3.4842 
  70 50 41.8 1.2683 1.6086 
  71 50 46.5 0.5133 0.2634 
  72 45 44.5 0.0750 0.0056 
 

2
x

x
z∑  = 11.3343. 

 
The critical value of the 2

8χ  distribution at the 5% level of statistical 
significance is 15.51. 
 
Since 11.3343 < 15.51, we have no reason to reject the null hypothesis that the 
sex ratios of death rates among the company’s pensioners are the same as 
those prevailing in the PMA92 and PFA92 tables. 
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(ii) Standardised deviations test 
 

Using the individual standardised deviations test, we note that none of the zxs 
exceeds 1.96 in absolute value, so there is no evidence that the sex ratios 
among the company’s pensioners are unusual at any specific ages  
 
Signs test 
 
Under the null hypothesis of no difference between the company’s pensioners 
and insured pensioners in general, the number of positive signs should have a 
Binomial (8, 0.5) distribution. 
 
There are 2 negative and 6 positive signs. 
 
The probability of obtaining 6 positive signs if the null hypothesis is true is  

88
0.5 0.1094

6
⎛ ⎞

=⎜ ⎟
⎝ ⎠

 

 
Since this is greater than 0.025 (two-tailed test), the sex ratios of death rates 
among the company’s pensioners are not systematically higher or lower than 
those derived from the PMA92 and PFA92 tables. 
 
Cumulative deviations test 
 
The cumulative deviation  
 

1/ 2 1/ 2ˆ( ) ~f fc c
x xx x

x
E E+ +μ − μ∑ Normal 1/ 2(0, )fc

x xE +μ , 

 
so that under the null hypothesis  
 

1/ 2 1/ 2

1/ 2

ˆ( )
~

f fc c
x xx x

x
fc

x x
x

E E

E

+ +

+

μ − μ

μ

∑

∑
Normal (0,1).  

 
Using the figures in the table above we have 
 

1/ 2 1/ 2

1/ 2

ˆ( )
14.9 0.875
290

f fc c
x xx x

x
fc

x x
x

E E

E

+ +

+

μ − μ

= =
μ

∑

∑
 

 
and since |0.875| < 1.96 using a two-tailed test, the sex ratios of death rates 
among the company’s pensioners are not systematically higher or lower than 
those derived from the PMA92 and PFA92 tables. 
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Credit was only given for one of the Signs test and the Cumulative Deviations 
test as they both test for bias. 
 
Serial correlations test (lag 1)  
 
The calculations are shown in the tables below 
 

7
(1)

1

1 0.3029
7 xz z= =∑ , and 

8
(2)

2

1 0.2707
7 xz z= =∑  

 
  Age x (1)

xz z−   (2)
1xz z+ −  (1) (2)

1( )( )x xz z z z+− −  
   
  65 -0.0027 -2.1117 0.0057 
  66 -2.1439 -1.3807 2.9601 
  67 -1.4129 0.8523 -1.2042 
  68 0.8201 1.5958 1.3087 
  69 1.5637 0.9976 1.5598 
  70 0.9654 0.2425 0.2341 
  71 0.2103 -0.1958 -0.0412 
 
  Sum   4.8231  
 

  Age 
2(1)

xz z⎡ ⎤−⎣ ⎦  
2(2)

1xz z+⎡ ⎤−⎣ ⎦  

 
  65 0.0000 4.4592 
  66 4.5962 1.9064 
  67 1.9963 0.7264 
  68 0.6726 2.5467 
  69 2.4450 0.9951 
  70 0.9320 0.0588 
  71 0.0442 0.0383 
 
  Sum 10.6863 10.7310 
 

The correlation coefficient is therefore 
 

1
4.8231 0.4503

(10.6863)(10.7310)
r = =  

 
We test 1 8r  = 1.27 against the Normal (0,1) distribution using a one-tailed 
test. 
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Since 1.27 < 1.645, we conclude that there is no evidence that the sex ratios of 
death rates among the company’s pensioners vary with age in a way different 
from the ratios derived from PMA92 and PFA92. 

 
Note that the Grouping of Signs test is not appropriate with 8 ages, 6 positive 
and 2 negative signs. 

 
 
10 (i) (a) A suitable diagram is shown below.  

 
  (b) The chosen model ignores death among persons in the relevant age 

groups.  Since mortality in this age group among professional people is 
likely to be low, this seems reasonable. 
 
This diagram assumes that demotion is possible, i.e. some-one who has 
become a partner can return to non-partnership status without leaving 
the company. 
 
The assumption is also made that a new employee joining from another 
company can do so as a partner. 

 
Credit was given for models based on alternative assumptions, provided these 
were reasonable. 

 
 (ii) (a) Assume we have data on N individuals (i = 1, ..., N). 

 
We should need to know for each individual: 
 
• the total waiting time during the calendar years 1997–2006 in state 

(1) when aged 30 last birthday  
 
• whether or not the individual was made a partner between exact 

ages 30 and 31 years during the calendar years 1997–2006 while 
remaining in the company.  

 

2 Fully qualified  
and a partner 

3 Working for  
another company 

21
x t+μ  

12
x t+μ  

13
x t+μ  

1 Fully qualified but 
not yet a partner 

31
x t+μ  32

x t+μ  23
x t+μ  
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(b) The likelihood of the data is: 
 

13 12 12

1
exp[ ( ) ]( ) i

N
d

i
i

L K v
=

= − μ +μ μ∏  

 
where  
 
vi is the waiting time at age 30 last birthday in state (1) for  
individual i.  
 
di is an indicator variable such that di = 1 if individual i was made a 
partner while aged 30 last birthday during the period of the 
investigation and di = 0 otherwise. 

 
K is a constant denoting terms that do not depend on μ12

. 
 

  (c) The logarithm of the likelihood is 
 

12 13 12

1
log log ( ) log

N

e e i i e
i

L K v d
=

= − μ +μ + μ∑  

 
Differentiating this with respect to μ12

 we obtain  
 

1
12 12

1

log

N

iN
e i

i
i

d
L v =

=

∂
= − +

∂μ μ

∑
∑ , 

 
 
and setting this equal to zero and solving for μ12

 gives 

12 1

1

ˆ

N

i
i
N

i
i

d

v

=

=

μ =
∑

∑
. 

 
This is the maximum likelihood estimate, as can be seen by noting that 

2
1

12 2 12 2
log

( ) ( )

N

i
e i

d
L =∂
= −

∂μ μ

∑
 which must be negative. 
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(iii) The data on becoming a partner are classified by age last birthday, which is 
the same classification as used in the company’s own investigation, therefore 
the relevant intensities will relate to the same age range. 

 
For the correct exposed to risk we only consider those who are members of the 
institute but not yet partners.   
 
Let the number of such members in the census in year t who were born in year 
s be ,t sP . 
 
All persons born in year s would be aged x last birthday on 1 January in year 
s+x+1. 
 
Therefore, assuming that the ,t sP  change linearly during each calendar year 
the correct exposed to risk for the year 1997 is 
 

1997,1956 1998,1957
1 ( )
2

P P+  

 
and the exposed to risk for the entire 10-year period of the investigation is  
 

2006

, 31 1, 30
1997

1 ( )
2

t

t t t t
t

P P
=

− + −
=

+∑ . 

 
If the number of persons becoming partners aged 30 last birthday in year t is 

tθ , then an estimate of the relevant transition intensity is 
 

2006

1997
2006

, 31 1, 30
1997

1 ( )
2

t

t
t

t

t t t t
t

P P

=

=
=

− + −
=

θ

+

∑

∑
. 

 
 
11 (i) Consider a small time interval dt 

 
The probability of an arrival from the first process in time dt is 

. ( )dt o dtλ + and the probability of a arrival from the second process in time dt 
is . ( )dt o dtμ + .  
 
The arrival probability for the sum of the processes in dt is therefore 
( ). ( )dt o dtλ +μ +   
 
This is by definition a Poisson process with rate (λ +μ ). 

 
Alternative solutions, based on the Moment Generating Function or the 
Probability Generating Function of a Poisson distribution were acceptable. 



Subject CT4 — Models Core Technical — April 2007 — Examiners’ Report 
 

Page 18 

 (ii) (a) A jump chain is formed by recording the state of a Markov jump 
process only at the instant when a transition has just been made. 

 
The jump chain is in itself a Markov chain. 

 
(b) The outcome of the jump chain can only differ from that of the 

standard Markov chain if the jump process enters an absorbing state. 
 

As the jump process will make no further transitions once it enters an 
absorbing state, the jump chain “stops”. 
 
It is possible to model the jump chain as though transitions continue to 
occur but the chain continues to occupy the same state. 

 
 (iii) The possible states are 0 to N desks in use with no passengers queuing, and N 

desks in use with 0, 1, 2, ….. passengers in the queue. 
 

When all desks are occupied and there are M passengers in the queue denote 
the state as N:M. 
 
State space is: 
 
{0, 1, 2, …., N - 1, N : 0, N : 1, N : 2, …..} 
 

 Transition diagram: 
 

 
 (iv) Kolmogorov forward equations in component form are: 
 

0 1 0( ) ( ) ( )d P t aP t qP t
dt

= −  

 

1 1( ) ( 1) ( ) ( ) ( ) ( )r r r r
d P t a r P t qP t ar q P t
dt + −= + + − +                r + 1 ≤  N 

 

:0 :1 1 :0( ) ( ) ( ) ( ) ( )N N N N
d P t aNP t qP t aN q P t
dt −= + − +  

 

: : 1 : 1 :( ) ( ) ( ) ( ) ( )N m N m N m N m
d P t aNP t qP t aN q P t
dt + −= + − +      m ≥  1 

 

0 1 2 N-1 N:0 N:1 N:2 

q q q q q 

a 2a Na Na Na 
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 (v) Poisson process is usually suitable for arrivals at a service point. 
 
Rate may be time inhomogeneous because passengers may aim to arrive a 
couple of hours before the flight — so a time-inhomogeneous Poisson process 
may be better. 
 
However if the airline operates many flights this may not be an issue. 
 
Passengers may be checked-in in family groups rather than individually. 
 
There is likely to be a minimum time for processing a check-in due to standard 
security questions etc, so exponential distribution may not hold. 

 
(vi) (a) The transition matrix is: 
 

0 1

0

2 0
2 2

0

0

a q
a q a q

a q
a q a q

Na q
Na q Na q

Na q
Na q Na q

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟+ +
⎜ ⎟
⎜ ⎟
⎜ ⎟+ +
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟+ +⎜ ⎟
⎜ ⎟
⎜ ⎟+ +⎜ ⎟
⎜ ⎟
⎝ ⎠

  

 
  (b) This is the probability that all the first N transitions are to the right in 

the transition diagram.  
 

The probability of each transition is given by the elements in the upper 
half of the jump chain transition matrix in (vi)(a). 

 

Required probability is therefore 
1

1

1

1.
N

N

i
q

ia q

−
−

= +∏  
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