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1 An actuary is simulating claim sizes, X, for a particular insurance policy.  X follows 
an exponential distribution with varying parameter λ, where λ can take one of three 
possible values.

 The table shows the distribution function of this external factor, and its impact on λ.

Probability 0.3 0.3 0.4

λ 1 2 3

 Set out an algorithm to generate samples from X, using the inverse transform method.
  [5]

2 (i) State the three main components of a generalised linear model. [3]

 Consider the discrete random variable Y, with the following probability density 
function
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 (ii) Show that Y belongs to the exponential family of distributions, specifying each 
component. [4]

 (iii) State the canonical link function in this case. [1]
   [Total 8]

3 (i) State the fundamental difference between Bayesian estimation and Classical 
estimation. [2]

 (ii) State three different loss functions which may be used under Bayesian 
estimation, indicating for each its link to the posterior distribution. [3]

 The proportion, θ, of the population of a particular country who use online banking is 
being estimated.  Of a sample of 500 people, 326 do use online banking.

 An actuary is estimating θ using a suitable uniform distribution as a prior.

 (iii) (a) Determine the posterior distribution of θ.

  (b) Calculate an estimate of θ using the loss function that minimises the 
mean of the posterior distribution. [4]

  [Total 9]
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4 An insurance company has a portfolio of policies, where claim amounts follow a 
Pareto distribution with parameters α = 3 and λ = 100.  The insurance company has 
entered into an excess of loss reinsurance agreement with a retention of M, such that 
90% of claims are still paid in full by the insurer.

 (i) Calculate M. [4]

 (ii) Calculate the average claim amount paid by the reinsurer, on claims which 
involve the reinsurer. [6]

  [Total 10]

5 The cumulative claim amounts incurred on a portfolio of motor insurance policies are 
as follows:

Accident Year Development Year

0 1 2 3

2014 3,907 5,606 6,061 6,145

2015 4,831 7,319 7,470

2016 6,042 8,282

2017 7,061

 The cumulative number of reported claims are as follows

Accident Year Development Year

0 1 2 3

2014 435 469 528 534

2015 485 525 541

2016 509 558

2017 544

 (i) Estimate the ultimate number of claims, for each accident year, using the 
chain-ladder technique. [4]

 (ii) Estimate the ultimate average incurred cost per claim, for each accident year, 
using the grossing-up method. [5]

 (iii) Calculate the total reserve required, using the results from (i) and (ii), 
assuming that claims paid to date are 19,544. [2]

  [Total 11]
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6 In a two-player zero sum game, the matrix below shows the value to Player 1.  Player 
1’s strategies are labelled I to VI, where Player 2’s strategies are labelled A to F.

A B C D E F

I 13 29 8 12 16 23

II 18 22 21 22 29 31

III 18 22 31 31 27 37

IV 11 22 12 21 21 26

V 18 16 19 14 19 28

VI 23 22 19 23 30 34

 (i) Show, by eliminating dominated strategies, that the game can be reduced to the 
following 3 x 3 matrix. [3]

a b c

α 13 29 8

β 18 22 31

γ 23 22 19

 (ii) Explain whether or not this new 3 x 3 matrix has any saddle points. [2]

 Now consider a randomised strategy for Player 2, denoted X, whereby strategy ‘a’ is 
chosen with probability p and strategy ‘c’ is chosen with probability 1 – p, 0 < p < 1.

 
 (iii) Find the range of values for p such that X dominates strategy ‘b’. [3]

 (iv) Solve the game and determine the value to Player 1 given that ‘b’ is 
dominated. [3]

  [Total 11]
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7 Claims on a portfolio of insurance policies arise as a Poisson process with parameter 
λ.  Individual claim amounts are taken from a distribution X and we define  
mi = E(X i) for i = 1, 2, ….  The insurance company calculates premiums using a 
premium loading of θ.

 (i) Define the adjustment coefficient R. [1]

 (ii) Show that R can be approximated as 2θm1

m2

, by truncating the series expansion 
of MX (t). [3]

 Now suppose that X follows an exponential distribution with parameter γ.
  
 (iii) Show that R = 

θγ
1 + θ( )

. [3]

 The insurance company uses a premium loading of 12%, and the mean claim amount 
is 200.  

 (iv)  Calculate R, commenting on the difference with the approximation to R shown 
in part (ii). [3]

 The initial surplus is 5,000.

 (v) Calculate an upper bound for the ultimate probability of ruin. [1]

 (vi) Suggest two methods by which the insurance company can reduce the 
probability of ruin. [2]

  [Total 13]

8 For a portfolio of insurance policies, claims Xi are independent and follow a gamma 
distribution, with parameters α = 6 and β, which is unknown.

 A random sample of n claims, X1,…, Xn is selected, with mean X .

 (i) Derive an expression for the estimator of β using the method of moments. [2]

 (ii) Explain what the Maximum Likelihood Estimator (MLE) of β represents. [2]

 (iii) Derive an expression for the MLE of β, commenting on the result. [5]

 (iv) State the Moment Generating Function (MGF) of X. [1]

 Let Y  = 2nβ X .

 (v) Derive the MGF of Y, and hence its distribution, including statement of 
parameters. [5]

  [Total 15]
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9 An actuary is modelling a set of data which consists of 100 consecutive observations, 
y1, y2, … , y100 .  The data has the following statistics:
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 (i) Calculate the values of the sample auto-correlations r1 and r2. [3]

 (ii) Calculate the first two sample partial auto-correlation values 
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9  
An actuary is modelling a set of data which consists of 100 consecutive observations, 
y1, y2, … , y100. The data has the following statistics: 
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(i) Calculate the values of the sample auto-correlations r1 and r2. [3] 

 
(ii) Calculate the first two sample partial auto- 𝜙̂𝜙  𝜙̂𝜙  [2] 
 
The actuary is considering two different models for this data: 
 
Model X: 0 1 1t t ty a a y      
 
Model Y: 0 1 1 2 2t t t ty b b y b y       
 
where t  is a standard white-noise process, with variance σ2. 
 
(iii) Estimate the parameters (including σ2) for both Models X and Y, using the 

method of moments. [10] 
 

(iv) Explain whether each of Models X and Y satisfy the Markov property. [3] 
   [Total 18] 
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An actuary is modelling a set of data which consists of 100 consecutive observations, 
y1, y2, … , y100. The data has the following statistics: 
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(i) Calculate the values of the sample auto-correlations r1 and r2. [3] 

 
(ii) Calculate the first two sample partial auto- 𝜙̂𝜙  𝜙̂𝜙  [2] 
 
The actuary is considering two different models for this data: 
 
Model X: 0 1 1t t ty a a y      
 
Model Y: 0 1 1 2 2t t t ty b b y b y       
 
where t  is a standard white-noise process, with variance σ2. 
 
(iii) Estimate the parameters (including σ2) for both Models X and Y, using the 

method of moments. [10] 
 

(iv) Explain whether each of Models X and Y satisfy the Markov property. [3] 
   [Total 18] 
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2.  [2]

 The actuary is considering two different models for this data:

 Model X:  

 Model Y: 

 where et is a standard white-noise process, with variance σ2.

 (iii) Estimate the parameters (including σ2) for both Models X and Y, using the 
method of moments. [10]

 (iv) Explain whether each of Models X and Y satisfy the Markov property. [3]
  [Total 18]
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yt  = a0  + a1yt –1 + εt

yt  = b0  + b1yt –1 + b 2 yt –2  + εt


