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General comments on Subject CT4 
 
Subject CT4 comprises five main sections:  (1) a study of the properties of models in general, 
and their uses for actuaries, including advantages and disadvantages (and a comparison of 
alternative models of the same processes); (2) stochastic processes, especially Markov chains 
and Markov jump processes; (3) models of a random variable measuring future lifetime; (4) 
the calculation of exposed to risk and the application of the principle of correspondence; (5) 
the reasons why mortality (or other decremental) rates are graduated, and a range of statistical 
tests used both to compare a set of rates with a previous experience and to test the adherence 
of a graduated set of rates to the original data.  Throughout the subject the emphasis is on 
estimation and the practical application of models.  Theory is kept to the minimum required 
in order usefully to apply the models to real problems. 
 
Different numerical answers may be obtained to those shown in these solutions depending on 
whether figures obtained from tables or from calculators are used in the calculations but 
candidates are not penalised for this.  However, candidates may be penalised where excessive 
rounding has been used or where insufficient working is shown.  
 
Comments on the April 2015 paper 
 
The average performance was similar to that of recent April sessions.  Well-prepared 
candidates scored highly across most of the paper, with one in ten candidates scoring 70% or 
more, and a highest mark of 86%.  There were one or two sections of the paper where very 
few candidates scored full credit, even though these dealt with bookwork which was in the 
Core Reading. 
 
In general, there was a tendency for candidates to fail to score marks by missing out the more 
“wordy” sections of questions even when these were straightforward bookwork. 
 
The comments that follow the questions concentrate on areas where candidates could have 
improved their performance.  Candidates approaching the subject for the first time are 
advised to include these areas in their revision.  
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1 (i)  This is defined as Xn= Y1 + Y2 +... Yn        
 
  where the random variables Yj (the steps of the walk) are mutually 

independent with the common probability distribution:  
 
  Pr[Yj = 1] = p,          
 
  Pr[Yj = 1] = 1  p.         
           
 (ii)  It operates in discrete time with a discrete state space.   
            
 (iii)  Any reasonable practical application  
  e.g. cumulative results of the Oxford vs Cambridge boat race (net lead 
  of Cambridge over Oxford) measured annually. 
  OR how much a gambler has won or lost if he wins or loses  
  £1 on every bet.      
  OR number of cars in a car park controlled by a single entry/exit 
  barrier measured after each time the barrier goes up.     
 
Most candidates answered parts (i) and (ii) well, though many missed the point about the Yt 

being independent.  Some of the examples in part (iii) were rather contrived. 
 
 

2 (a) A beetle in the wild has a force of mortality equal to 3µ/2. 

 
  So for a beetle in the wild  
 
  we have (8) exp[ 8(3 / 2)] exp( 12 ) 0.58S             
 
  Hence  
 
  12µ = 0.5447 
 
  µ = 0.0454.          
 
  Therefore a beetle reared in the protected environment will have an 8 day 

 survival probability of  
 
  exp(8*0.0454) = 0.6955.        
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 (b) A beetle in the protected environment has a probability of surviving 6 days 
  equal to 
 
  exp(6*0.0454) =  0.7616,         
 
  and a probability of surviving 2 days in the wild of  
 
  exp (2*1.5*0.0454) = 0.8727       
  Therefore this beetle’s probability of surviving 8 days is 
 
  0.7615 × 0.8727 = 0.6646.        
 
This was the best answered question on the entire paper, with many candidates scoring full 
marks.  The most common error was to assume the rate in the wild was twice, rather than 1.5 
times, the rate in the protected environment in part (a).  If this was carried through correctly 
into the rest of the answer then credit was given for subsequent calculations. 
 
 

3 (i) In a proportional hazards model the hazard of experiencing an event  
  may be factorised into two components:      
 

one depending only on duration since some start event, which is known as the 
baseline hazard, and the other depending only on a set of covariates and 
associated parameters.  

 
  Thus the ratio between the hazards for any two individuals with different 

values of the covariates is constant across all durations.  
 
  The baseline hazard applies to an individual with the value zero on all 

covariates.  
 
 (ii) The proportionality of the hazards makes estimating the impact of  
  covariates on the hazard straightforward (through partial likelihood).    
 
  Widely available statistical software packages have built-in routines for the 

Cox model.  
 
  The Cox model is semi-parametric so the baseline hazard does not 
   need to be specified, and can be determined by the data (as with a Kaplan-

Meier hazard). 
  

  It ensures that the hazard is always positive. 
  

  It is easy to communicate.  
           
There were some good attempts at this question.  However, many candidates seemed to think 
that the Cox model and the proportional hazards (PH) model were the same thing.  In fact, 
the Cox model is just one of a class of PH models.  In part (i) we looked for knowledge of the 
attractive characteristics of PH models in general, whereas in part (ii) we gave credit for 
advantages of the Cox model in particular, as well as for general attributes of PH models 
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which are useful in practice.  In part (i) some candidates simply wrote down a formula for a 
PH model.  If all the terms were defined, partial credit was given for this.  
 
 

4 (i) Develop a well-defined set of objectives which need to be met by the 
modelling process.  

 
  Plan the modelling process and how the model will be validated.  
  
  Collect and analyse the necessary data. 

  
  Define the parameters for the model and consider appropriate parameter 

values.  
 
  Define the model initially by capturing the essence of the real world  
  system (refining the level of detail in the model can come at a later stage). 

  
  Involve experts on the real world system you are trying to imitate so as to get 

feedback on the validity of the conceptual model. 
 
  Decide on whether a simulation package or a general purpose language is 

appropriate for the implementation of the model.   
   
  Choose a statistically reliable random number generator that will perform 

adequately in the context of the complexity of the model.  
 
  Write the computer program for the model.  
    
  Debug the program to make sure it performs the intended operations in the 

model definition.  
 
  Test the reasonableness of the output of the model.  
    
  Review and carefully consider the appropriateness of the model in the light of 

small changes in input parameters.  
 
  Analyse the output from the model. 

  
  Ensure that any relevant professional guidance has been complied with.  
 
  Communicate and document the results of the model. 

      
 (ii)  Objectives.   
  Is a single pricing table needed for a defined set of cover/deferred   
  period/definition of sickness? 
  Is a range of prices needed for different cover levels?   
  Is a simple price needed, or a confidence interval around profitability etc.? 
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  Data. 
 Look at national industry data and possibly international data on sickness and 

recovery rates.   
  Take care as to the definitions of sickness.   
  Look at trends.   
  Is recovery rate affected by reduction in benefits? 
  Might future trends change due to economic influences, medical 

developments, change in government policy to state benefits? 
  What might the likely level of expenses be? This will depend on expected 

sales volumes (and commission levels).   
  It is a new product so perhaps the company has no experience of claim 

monitoring.  Look at industry data and in house data for new product launches.
  

  Modelling process. 
  Start with a simple model reflecting sickness and recovery rates.   
  Build in expenses and reserving later.        
 
  Define the model. 
  Type of model will be determined by the objectives, deterministic  for a simple 

set of premium rates, stochastic if confidence intervals required.  
 
  Reasonableness of output. 
  Look at the premium rates generated and compare them with competitors in 

the market.   
  Are they roughly where you would expect them to be?  
 
  Sensitivity to changes in input parameters. 
  Change each important parameter slightly; sickness rates, recovery rates, 

expenses and ensure that the impact on the premium rates is not huge.   
  If it is, review the product design.  
  Can risk be reduced by introducing, say, annually reviewable premium rates. 
 
  Compliance with professional guidance and regulatory environment. 
  Look at professional guidance and legislative requirements, might  
  Solvency II impact the cost of capital to make the product uncompetitive or 

uneconomic?  
 
Part (i) was well answered by most candidates.  In part (ii) other suggestions scored credit 
provided they related to one of the stages identified in the answer to part (i) and dealt with a 
model to price a new sickness benefit.  No credit was given for comments which were not 
specifically related to the pricing of a new sickness benefit product (many candidates made 
general points which were applicable to any model).  Note that the level of detail given above 
is well in excess of that the Examiners required for full credit.  Nevertheless, many 
candidates gave responses which were too brief and vague to gain much credit for this part.   
 
 

  



Subject CT4 (Models Core Technical) – April 2015 – Examiners’ Report 

Page 7 

5 (i) A life alive at age x at time t should be included in the  
  exposed-to-risk if and only if, were that life to die immediately,  
  his or her death would be included in the deaths at age x, dx.  
  
 (ii) Those aged 22 last birthday on 30 June 2013 were born between 1 July 1990 

and 30 June 1991, so half of them were born in 1990 and half in 1991.    
 
  Assuming that birthdays are evenly distributed across calendar years,   
 
  The number of persons aged 22 last birthday entering during each period is 
 
  10.00 – 11.30 p.m.      0.5(200 + 150) = 175 
  11.30 p.m. – 12.00 midnight    0.5(400 + 400) = 400 
  12.00 midnight – 1.00 a.m.        0.5(350 + 300) = 325    
 
  THEN EITHER 
   
  The number of persons aged 22 last birthday in the nightclub at 10.00 p.m., 
  11.30 p.m., 12.00 midnight, 1.00 a.m. and 2.00 a.m. is therefore 
 
 10.00 p.m.   0 
 11.30 p.m.   175 
 12 midnight    575 
 1.00 a.m.       900 
 2.00 a.m.       900          
 
  Using the census approximation and assuming that arrivals are evenly 

distributed across time,   
 
  the exposed to risk in person-hours is 
 

  
0 175 175 575 575 900

1.5 0.5 1 900
2 2 2

131.25 187.5 737.5 900

              
     

   

    

 
  = 1,956.25  
 
  OR 
 

Using the census approximation and assuming that arrivals are evenly 
distributed across time,  
 
the exposed-to-risk in person-hours is     
  
175(3.25) + 400(2.25) + 325(1.5) = 1,956.25. 
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  AND HENCE 
 
  the rate of requiring medical attention is 
 

  
40

0.02045
1,956.25

 per person hour.       

 
Common errors were to use the wrong year or years of birth, to fail to cumulate the arrivals 
(i.e. to realise that once inside the building, customers remained until 2.00 a.m.), and to 
forget the final hour, during which the club was full and no more customers entered.  In 
general, answers to this question were rather better than answers to similar questions on 
other recent examination papers.  In part (ii) candidates were expected to relate the 
assumptions to the specific stage of the derivation to which they applied.  Candidates who 
wrote down lists of assumptions – some relevant to the answer, others not – scored little 
credit. 
 
 

6 (i) Signs Test 
 
  Under the null hypothesis, the number of positive deviations (2013 higher than 

2012) is distributed Binomial (25, 0.5).  
 
  We have 17 positive deviations         
 
  ALTERNATIVE 1: NORMAL APPROXIMATION 
   
  As the number of ages is large enough, we can use the normal approximation, 

in which the number of positive deviations is distributed Normal
25 25

,
2 4

 
 
 

.  

   
  THEN EITHER 

A z-score for 17 positive deviations is 
17 12.5

1.8
6.25

   
 

    

 
  OR 
 
  with a continuity correction a z-score for 17 positive deviations is   

  
16.5 12.5

1.6.
6.25

   
 

         

 
  AND HENCE 
 
  Since 1.8 (or 1.6) < 1.96 (2-tailed test)      
 
  we do not have sufficient evidence to reject the null hypothesis. 
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  ALTERNATIVE 2: EXACT TEST 
 

  Pr[exactly 17 positive signs] = 2525
0.5 0.0322

17

 
 

 
.     

 
  Since 0.0322 > 0.025 (2-tailed test)       
 
  we do not have sufficient evidence to reject the null hypothesis.   
     
  Grouping of Signs Test 
 
  We have 25 age groups, 17 positive signs, and 2 positive groups  
  
  ALTERNATIVE 1: NORMAL APPROXIMATION 
  
  Using the Normal approximation (as we have more than 20 ages),   

  the number of positive groups is distributed Normal 
2

3

17(8 1) (17*8)
,

25 (25)

 
 
 

,  

 
  which is Normal(6.12, 1.18).        
 

  We therefore compute a z-score for 2 runs as 
2 6.12

3.79
1.18

    
 

.   

 
  Since Pr (z < 3.79) << 0.05 (one-tailed test) (or -3.79 < -1.645),    
 
  we reject the null hypothesis.        
 
  ALTERNATIVE 2: EXACT CALCULATION 
 
  Probability of getting 2 or fewer positive groups is  
 

16 9 16 9

0 1 1 2 9 576
0.000541

25 25 1,081,575 1,081,575

17 17

     
     
        
   
   
   

 

 
  Since this is less than 0.05        
 
  we reject the null hypothesis.        
 
  ALTERNATIVE 3: USING THE TABLE IN THE  “GOLD BOOK” 
 
  Using the table on p. 189 of the “Gold Book”, with  n1 = 17, n2 = 8  
        

the table shows that we reject the null hypothesis with 3 or fewer runs of 
positive signs.         
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  Since we only have 2 positive runs and 2 < 3 we reject the null hypothesis.  
 
 (ii) The results of the Signs Test suggest that the underlying rates in 2013 are not 

systematically higher or lower than those in 2012.    
 
  The null hypothesis was rejected by the Grouping of Signs Test implying 
  that the shape of the distribution of sickness rates in 2013 is different from  
  that in 2012.  

However this is only one year’s data and the company might wait to see if a 
trend develops, or investigate whether there was a specific factor operating in 
2012 or 2013 which caused the change.    

   
If the shape of sickness rates makes them markedly different in 2013 from 
2012 at ages where much business is sold, this will have implications for 
profitability and pricing.   

 
In part (i) most candidates used the Normal approximation for the Signs Test.  If the exact 
version was used, it is not necessary to compute Pr[17 or more positive signs] as Pr[exactly 
17 positive signs] > 0.025.  The correct value for Pr[17 or more positive signs] is 0.0538. 
Answers to part (ii) were poor.  Full credit was given for summarising the immediate 
implications of the results obtained in part (i) for the comparison of the rates in 2013 and 
2012 and for making some comment about the potential financial implications for the 
company.  Thus full credit could be obtained for less than is given in the model solution 
above.  Comments in part (ii) that were consistent with the actual results obtained by the 
candidate in part (i) were given credit, even if the tests in part (i) were performed incorrectly 
and reached conclusions different from those above. 
 
 

7 (i)  A Markov chain is a stochastic process with discrete states operating in 
discrete time in which  

 
  EITHER 
 
  P[Xt  A  

1s
X  = x1 , 2sX  = x2 , ..., nsX  = xn , Xs = x] = P[Xt  A  Xs = x] 

 
  for all times s1 < s2 < ... < sn < s < t, all states x1 , x2 , ..., xn , x in S and all 

subsets A of S  
 
  OR  
 
  the probabilities of moving from one state to another depend only on the 

present state of the process: the history of the process before the current state 
is irrelevant.  
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 (ii)  This is based on the number of links to the site and where they go. 
 

  P =

\

1 1
0 0

2 2
1 1

0 0
2 2
1 1 1

0
3 3 3
0 0 1 0

From To N B C H

N

B

C

H

         

             
 (iii)  Stationary distribution satisfies P         

 

 
1 1

2 3B C N      (1) 

    

 
1 1

2 3N C B        (2) 

 

 
1 1

2 2N B H C         (3) 

   

 
1

3 C H    (4)        

 
  Also 1N B H C             

 
  From (1) and (2) 
 
  N B    

 
  From (3) and (4) 
 

  
2

3N B C              

 

  So 
2 2 1

1 1
3 3 3 C

      
 
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  Hence 
 

  
1 1 3 1

, , ,
4 4 8 8N B C H               

 
Both parts of this question were well answered by most candidates. In the final answer to 
part (ii), it was important for candidates to indicate which probability applied to which 
state, rather than just listing four numbers. 
 
 

8 (i) All our models and analyses are based on the assumption that we can  
   observe groups of identical lives (or at least, lives whose mortality 

  characteristics are the same).         
 
   Although in practice, this is never possible.        
 

 We can at least subdivide our data according to characteristics known, from 
experience, to have a significant effect on mortality.    

 
   This ought to reduce the heterogeneity of each class so formed.   

 
 (ii) Sex 

Age  
  Type of policy  
  Level of underwriting   
  Duration in force  
  Sales channel  
  Policy size  
  Occupation or socio-economic group  
  Known impairments/medical history 
  Postcode/geographic location 
  Marital status                
 
 (iii) EITHER 
 
  If the company changing its policy charges both smokers and non-smokers a 

premium equal to the rate typically charged to smokers, then, relative to other 
companies, it will become poor value for non-smokers.  

 
  The company changing its policy will therefore lose business from non-

smokers (whom it will charge more than an actuarially fair premium).  
 
  The portfolio will (eventually) be made up mostly of smokers (whom it will 

charge an actuarially fair premium).  
 
  The volume of business sold is likely to decrease, possibly to the extent that it 

does not cover the expenses estimated in the pricing basis.  
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  OR 
 
  If the company changing its policy charges both smokers and non-smokers a 

premium equal to the rate typically charged to non-smokers, then relative to 
other companies, it will become good value for smokers (and acceptable value 
for non-smokers).  

 
  The company changing its policy will therefore attract more business  
  from smokers (whom it will charge less than an actuarially fair premium). 

This is a form of anti-selection.  
 
  The smoker business is likely to be unprofitable, although the increase in 

business will reduce the overheads per policy  
 
  This is likely to lead to losses for the company changing its policy.  
 
  OR 
 
  If the company changing its policy charges both smokers and non-smokers a 

premium somewhere between the rate typically charged to smokers and the 
rate typically charged to non-smokers, then relative to other companies, it 
becomes good value for smokers and poor value for non-smokers.  

 
  The company changing its policy will therefore attract business from smokers 

and lose business from non-smokers (whom it will charge more than an 
actuarially fair premium). This is a form of anti-selection.  

 
  The smoker business is likely to be unprofitable, but any remaining non-

smoker business will be profitable.  
 
  This may eventually lead to losses of the company changing its policy.  
             
This question was generally well answered, and part (iii) was very well answered.  In part (i) 
the question asked about the reasons why data are subdivided when undertaking 
investigations, so the answers were expected to reflect the assumptions underlying our 
models, rather than the convenience of users (e.g. pricing issues).  In part (iii) most 
candidates implicitly supposed that the new single premium was between the previous smoker 
and non-smoker premiums, though few explicitly stated this. For full credit the Examiners 
were looking for consideration of at what level the single premium might be set and the 
consequences of this: hence the range of alternative approaches given above.  
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9  (i) When using a large experience        
 
  EITHER to produce a standard table. 
  OR where a suitable formula can be found to fit at all ages.     
 
 (ii) Advantages 
 

It is straightforward to extend the statistical theory of estimation from one 
parameter to several.          

 
  Provided a reasonably small number of parameters is used, the resulting 

graduation will be acceptably smooth.   
 
  When comparing several experiences, the same parametric formula can be 

fitted to all of them.  Differences between the parameters, given their standard 
errors, give insight into the differences between the experiences.    

 
  Disadvantages 
 
  It can be difficult to find a single formula to fit at all ages.      
 
  Care is required when extrapolating.  The fit of the curve will probably be  

best where there is most data, but results where data are scanty (e.g. at extreme 
ages) may be poor and require adjustment.  

 
 (iii) (a) The χ2 test compares an “observed” experience with an “expected” 

 experience.   
 
   It is essential when making this comparison that the two sets of 

experiences be independent.    
 
  This is normally the case when considering the  similarity of two sets of 

data.  
 
  However when comparing the difference between an “observed” 

experience and that “expected”from graduated data, there is a problem 
because the graduated data have been derived from the observed 
experience.  

 
   Because of this, we need to make it easier to reject the null hypothesis, 

and we achieve this by reducing the number of degrees of freedom 
used in the chi-squared test.  

 
  (b) When the graduation has been carried out by parametric  
   formula, we reduce the degrees of freedom by one for each  
   parameter estimated from the observed data.  
             
This was a bookwork question, to which answers were very disappointing.  In part (ii) many 
candidates were unable to reproduce the points made in Unit 12, page 7 of the Core Reading.  
In part (iii) most candidates knew that the number of degrees of freedom should be reduced, 
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and many wrote that the reduction was equal to the number of parameters in the formula 
used for the graduation. But very few candidates explained why the reduction was needed 
(para. 5.4 in Unit 12, page 9 of the Core Reading). 
 
 

10 (i) {0,1,2,3,4….}          
            
 (ii) 
 

 
  

 (iii)  Generator matrix 
 
    Lives                  0          1              2                3              4          ...  
   

    

0 0 0 0 0 .

( ) 0 0

0 ( ) 0

0 0 ( )

0 0 0 ( )

. .

 
      
    
 

    
    
  
 

  

            
 (iv)   EITHER 
 
  If a Markov jump process Xt is examined only at the times of transition, the 

resulting process is called the jump chain associated with Xt. 
 
  OR 
 
  A jump chain is each distinct state visited in the order visited where the time 

set is the times when states are moved between.   
 

(v) Lives                   0                  1                 2                 3                  4          ... 
 

   

1 0 0 0 0 etc.

/ ( ) 0 / ( ) 0 0

0 / ( ) 0 / ( ) 0

0 0 / ( ) 0 / ( )

0 0 0 / ( ) 0

etc.

 
      
     
 

      
   
  
 

  

0 1 2 3 4 

    

   
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 (vi)  
3

 
  

          

 
Many candidates scored respectably on this question. The most common error was to define 
the state space as {0, 1, 2, 3}, ignoring the possibility that the player could, at any time, have 
found more extra lives than (s)he has lost.  Candidates who used this state space were 
penalised in parts (i) and (ii) but could score full credit for later parts by carrying through 
their answer correctly.  The other commonly occurring errors were to allow a transition out 
of state 0 (this is not possible, as the game ends when the player has no lives left), or to 
ignore the absorbing state 0 completely.  Again, these errors were penalised in parts (i) and 
(ii) but credit was given for correctly following through into later parts.  Candidates who 
ignored state 0 completely were unable to give a sensible answer to part (vi).  In part (iv) a 
disappointing number of candidates simply provided a general definition of a Markov chain 
(i.e. repeating the answer to Question 7, part (i)), rather than relating the Markov jump chain 
to a Markov jump process. 
 
 

11 ALTERNATIVE 1 
 
(i) 

      
 
            
 
 
 
 
             
 
 
 
 
 (ii)  The likelihood is 
 

        exp 0.6 0.4 exp 0.6
HDdHO H RO RL           

       0.4
HO ROHR d dd HO RO         

                            
  where 
 
  the four states are H – healthy, R – recovered, D – dead from 
  the disease and O – dead for some other reason, and   
 

  I  is the waiting time in state I (I = H, R)      
  

Healthy 
(H) 

Recovered and 
immune 

(R) 

Dead from disease 
(D) 

Dead from other 
reason (O) 

0.4ρ 

0.6ρ 
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  IJd is the number of transitions from state I to state J (J = R, D, O)   

  and IJ is the intensity of the transition from state I to state J  and ρ is  
  the rate of first time sickness        
 
 (iii)   Taking logarithms of the likelihood we have: 
 

       ln 0.6 0.4 ln 0.6 ln 0.4H HS HRL d d           plus terms not  

  dependent on           
 
  Differentiating with respect to    gives: 
 

  
 ln 0.6 0.4

0.6 0.4

HS HR
Hd L d d

d
   

  
       

 
  and setting this to zero gives a maximum likelihood estimate of   
 

  ˆ
HD HR

H

d d



         

  This is a maximum as the second derivative  
 

   

2

2 2

ln HD HRd L d d

d


 

 
 must 

  be negative.          
 
 (iv)  We want a person in H at t = 0 not dead at t = 3. 
 
  So they can either be healthy throughout: 
 

     
3 3

0
0 0

exp 0.4 0.6 expHH HO HO
t p du du

               
      
     

 
  or go H to R and stay there which is the integral between  
  0 and 3 of the product of 

  surviving healthy for a period u i.e.     exp HO u      

  getting sick and recovering at time u i.e.  0.4ρdu     

  and staying recovered  i.e.    exp 3RO u      ,                   

 
  where we ignore the short time spent in the sick state.    
 

  So altogether       
3

0

exp 0.4 exp 3HO ROu u du               . 
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 (v)   We need enough information to calculate the number of transitions from 
Healthy to Sick and the waiting time in the “Healthy” state.  Hence we will 
need: 

   
  Date of birth of all births in last three years.      
  Date of death of all “Healthy” deaths in last three years.    
 
 Date of any other immigration or emigration of Healthy people in last three 

years.         
 
  Date at which each person who contracted the disease fell ill   
 
 ALTERNATIVE 2 
 

(i) 
  
      
 
 
            
 
 
 
 
 
             
 
 
 
 (ii)  The likelihood is 
 

           exp exp exp
HSdHS HD H RD R SR SD S HSL           

         
HD RD SR SDd d d dHD RD SR SD         

                      
  where                     
 

  I  is the waiting time in state I,        

  IJd is the number of transitions from state I to state J,     

  and IJ is the intensity of the transition from state I to state J.   
 
  The four states are H – healthy, S – suffering from disease,  
  R – recovered, D – dead.            
  
  

Healthy 
(H) 

Suffering 
from 

disease 
(S) 

Recovered and 
immune 

(R) 

Dead 
(D) 
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 (iii)   Taking logarithms of the likelihood we have: 
 

   ln lnHS H HS HSL d       plus terms not dependant on HS    

 

  Differentiating with respect to  HS  gives: 
 

  
 ln HS

H
HS HS

d L d

d
  

 
        

 

  and setting this to zero gives a maximum likelihood estimate of HS  
 

  ˆ
HS

HS
H

d
 


          

  This is a maximum as the second derivative  
 

   
2

2 2

ln HS

HS HS

d L d

d
 

 
 must be 

  negative.          
 
 (iv)  We want a person in H at t = 0 neither suffering from the 
  disease nor dead at t = 3. 
 
  So they can either be healthy throughout: 
 

   
3

0
0

expHH HS HD
t p du

      
  
        

 
  or to go H to S to R and stay there which is the integral between  
  0 and 3 of the product of: 
 

  surviving healthy for a period u i.e.     exp HS HD u       

  getting sick at time u i.e.  HS du  and recovering, i.e. 0.4    
 

  and staying recovered  i.e.    exp 3RD u      ,                   

 
  where we ignore the short time spent in the sick state.    
 

  So altogether       
3

0

exp 0.4exp 3HS HD HS RDu u du                .  
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(v)   We need enough information to calculate the number of transitions from 
Healthy to Sick and the waiting time in the “Healthy” state.  Hence we will 
need: 

   
  Date of birth of all births in last three years.      
 
  Date of death of all “Healthy” deaths in last three years.    

Date of any other immigration or emigration of Healthy people in last three 
years.         

 
  Date at which each person who contracted the disease fell ill.   
 
Various alternative (usually simpler) models were suggested by some candidates.  For 
example a much simpler model was proposed with only three states: 
 
 
     
 
 
 
  
 
 
 
 
 
 
 
 
 
This was treated sympathetically for parts (i) to (iii) as the rate of first-time sickness can be 
derived from this model.  However in part (iv) the probability of remaining alive for three 
years depends on the rate of death from causes other than the disease, even among islanders 
who have never suffered from the disease, so this needs to be introduced.  Moreover, the rate 
of death from causes other than the disease may vary for persons who have never had the 
disease and persons who have recovered from the disease.   
 
Few candidates attempted part (iv).  Candidates were expected to calculate the probability of 
being alive in three years’ time for a person who had never had the disease at the start of that 
three-year period, not the probability that a person who had not had the disease would be 
alive and still not have had the disease in three years’ time. In part (iv) some candidates 
assumed constant transition intensities and evaluate the integral, which was given full credit.   
 
In part (v) many candidates stated that what is required is the number of healthy 
persons at the beginning of the period (three years ago) and the current number of healthy 
persons, together with the number of persons who had fallen sick.  This would allow an 
approximate sickness rate to be calculate using various assumptions and was given partial 
credit.  
 
 

Healthy 
Recovered 

from 
disease 

Dead 
from 

disease 

0.4ρ 

0.6ρ 
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12 (i) Right censoring          
 
  The exact duration of the event is not known, but only that it  exceeds some 

duration.  
 
  Example: job seekers with whom contact was lost during the investigation (or 

those still seeking jobs at the end of the investigation)  
      
  Random censoring          
 
  The time at which contact was lost may be regarded as a random variable.  
 
  Example: a job seeker with whom contact was lost during the investigation.
           
  Type I censoring         
 

The censoring times were known in advance (as they were determined by the 
fixed period of the investigation).    

 
  Example:  a person still without work after 8 months.     
 
  Interval censoring          
 

The censoring mechanism prevents us from knowing exactly when the event 
of interest took place, only that it fell within a certain period.    

 
  Example: EITHER a person who actually found a job after 5.5 months (say) is 

recorded as having found a job after 6 months; 
  OR a person who was still seeking work at the end of the investigation found a 

job within the interval [8,∞)  
 
  Informative censoring       
 
  Censoring gives information about the lifetimes of those who remain (survival 

function for each censored observation for t greater than the time of censoring 
is the same as that for the non-censored observations).  

 
  Example: a person lost to the investigation will have a greater or lesser chance 

of finding a job than those who remained. [3] 
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 (ii) The calculations are shown in the table below. 
  
 tj    Nj dj cj dj/Nj 1  dj/Nj  
 
 0 700  
 1 700 100 50 0.1429 0.8571 
 2 550 70 0 0.1273 0.8727 
 3 480 50 20 0.1042 0.8958 
 4 410 40 20 0.0976 0.9024 
 5 350 20 30 0.0571 0.9429 
 6 300 20 60 0.0667 0.9333 
 7 220 12 38 0.0545 0.9455 
 8 170 6 164 0.0353 0.9647 
   

  The Kaplan-Meier estimate is S(t) = 1
j

j

t t j

d

n

 
   

 
.     

 
 t Kaplan-Meier estimate of S(t) 
 
  0 ≤ t < 1 1.0000 
  1 ≤ t < 2 0.8571 
  2 ≤ t < 3 0.7480 
  3 ≤ t < 4 0.6701 
  4 ≤ t < 5 0.6047 
  5 ≤ t < 6 0.5702 
  6 ≤ t < 7 0.5321 
  7 ≤ t < 8 0.5031 
  t = 8 0.4854   
 
 (iii) The null hypothesis is that the durations at which job seekers find  
  work follow a Weibull distribution with parameters λ = 0.18 and β = 0.3.  
 
  Using the chi-squared test we have the following calculations: 
 

 t h(t)  Nj expected  observed zx 
2
xz   

  
 1 0.1794 700   125.55 100 2.28 5.20 
 2 0.1104 550     60.72 70 1.19 1.42 
 3 0.0831 480     39.90 50 1.60 2.56 
 4 0.0680 410     27.86 40 2.30 5.29 
 5 0.0581 350     20.35 20 0.08 0.01 
 6 0.0512 300     15.35 20 1.19 1.41 
 7 0.0459 220     10.11 12 0.60 0.36 
 8 0.0418 170      7.11 6 0.42 0.17 
 
  The calculated value of the chi-squared statistic is 16.40.    
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  This should be compared with the critical value at the 5% level  
  with 6 degrees of freedom (because we have eight ages and two parameters 

have been fitted, and 8 – 6 = 2) 
 
  which is 12.59.         
 
  Since 16.40 > 12.59   
 
  we reject the null hypothesis that the time  to employment follows the Weibull 

distribution.  
 
In part (i) credit was given for up to two different forms of censoring.  For informative/non-
informative censoring, a candidate could decide that censoring is EITHER informative OR 
non-informative and gain credit for a sensible explanation and example which are consistent 
with this decision.  In part (ii) a common error was to suggest that the estimate of S(t) 
extended to values of t above 8.  This is not the case as there is no information in the data 
about what might happen after 8 months.  In part (ii) some candidates decided that censoring 
precedes the event.  Provided they explained this, full credit was given.  
 
A substantial proportion of candidates did not attempt part (iii).  Of those who did, the 
approach given above was the most common.  Little credit was given to candidates who tried 
to compare hazards or survival functions directly using the chi-squared test, as the 
assumptions of the test are not met.  A common error was to use an exposed-to-risk of 700 to 
compute the expected deaths at all durations. 
 
 

END OF EXAMINERS’ REPORT 


