
INSTITUTE AND FACULTY OF ACTUARIES 
 
 
 
 
 
 
 

EXAMINERS’ REPORT  
 

September 2013 examinations 
 

Subject CT6 – Statistical Methods 
Core Technical 

 
 

Introduction 
 
The Examiners’ Report is written by the Principal Examiner with the aim of helping 
candidates, both those who are sitting the examination for the first time and using past papers 
as a revision aid and also those who have previously failed the subject. 
 
The Examiners are charged by Council with examining the published syllabus.  The 
Examiners have access to the Core Reading, which is designed to interpret the syllabus, and 
will generally base questions around it but are not required to examine the content of Core 
Reading specifically or exclusively. 
 
For numerical questions the Examiners’ preferred approach to the solution is reproduced in 
this report; other valid approaches are given appropriate credit.  For essay-style questions, 
particularly the open-ended questions in the later subjects, the report may contain more points 
than the Examiners will expect from a solution that scores full marks. 
 
The report is written based on the legislative and regulatory context pertaining to the date that 
the examination was set.  Candidates should take into account the possibility that 
circumstances may have changed if using these reports for revision. 
 
D C Bowie 
Chairman of the Board of Examiners 

 
December 2013 

 
 
 
 
 
 
 
 
 
 
 

© Institute and Faculty of Actuaries



Subject CT6 (Statistical Methods Core Technical) – September 2013 – Examiners’ Report 
 

Page 2 

General comments on Subject CT6 
 
The examiners for CT6 expect candidates to be familiar with basic statistical concepts from 
CT3 and so to be comfortable computing probabilities, means, variances etc. for the standard 
statistical distributions.  Candidates are also expected to be familiar with Bayes’ Theorem, 
and be able to apply it to given situations.  Many of the weaker candidates are not familiar 
with this material. 
 
The examiners will accept valid approaches that are different from those shown in this report.  
In general, slightly different numerical answers can be obtained depending on the rounding of 
intermediate results, and these will still receive full credit.  Numerically incorrect answers 
will usually still score some marks for method providing candidates set their working out 
clearly. 
 
Comments on the September 2013 paper 
 
The examiners felt that this paper was slightly less routine than the April paper, but broadly 
in line with other recent papers.  The quality of solutions was often good, with questions 7 
and 9 providing the greatest challenge to most students. 
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1 The posterior distribution of p is given by 
 
  (  claims) (  claims ) ( )f p k f k p f p    

 

 1 11 ) (( 1 )k n kp p p p      

 

 1 1(1 )k n kp p       

 
 which is the pdf of a Beta distribution with parameters k   and n k  .  
 
 Using the fact given in the questions, the mode of the posterior distribution (which is 

the estimate of p under all or nothing loss is given by: 
 

  p̂   =
1 1

2 2

k k

k n k n

     


           
  

 

 = 
1 2

2 2 2

k n

n n n

    
  

           
 

   = 
1

(1 )
2

k
Z Z

n

 
   

  
  

 

 where Z = 
2

n

n   
. 

 

 This is in the form of a credibility estimate since 
1

2

 
 

 is the prior estimate of p 

under all or nothing loss and k
n  is the estimate of p derived from the data.  

 
The first part of this question was answered well.  Most candidates didn’t recognise the need 
to base the prior estimate on the mode of the prior distribution and therefore didn’t manage 
to express the posterior estimate as a credibility estimate. 
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2 The mean amount paid by the reinsurance company is given by: 
 

  
160

0.01 0.01

80 160

1
40 0.01 ( 120) 0.01

2
x xx e dx x e dx


       

   .  

 
 The first integral is (using integration by parts): 
 

  
160

0.01

80

1
40  

2
xx e

       
+ 

160
0.01 

80

1

2
xe dx   

 

  = 
1601.6 0.01

80
40 50 xe e       

 

  = 0.8 1.650 90  4.2957.e e     
 
 The second integral is: 
 

  0.01

160
( 120)  xx e

    + 0.01 

160

xe dx


   

 

  = 1.6 1.640 1 00e e   
 
  = 28.26551.  
 
 So total mean claim = 4.29576 + 28.26551 = 32.56.  
 
This question was generally answered well.  Weaker candidates could not integrate by parts 
accurately. 
 
 

3 (i) If    U t U ct S t    where  0 $0.1U U  m then 

 

         Ψ $0.1 ,1 Pr 0 for some  0,1  given  0 $0.1m U t t U m     

 
and 

 
      Ψ $0.1 Pr( 0 for some 0 given 0 $0.1 )m U t t U m     

 (ii) The premium charged will be: 
 
   1.3 0.2 (0.25 $1m 0.75 $0.1m) $0.0845m.        
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 (iii) The possibilities are tabulated below, where N means not injured, R means 
injured but recovered and X means injured but career ending: 

 

Year 1 Year 2 Probability Ruin? 

N N 0.8  0.8 =0.64 No 

N R 0.8  0.15 = 0.12 No 

N X 0.8  0.05 = 0.04 Yes 

R N 0.15  0.8 = 0.12 No 

R R 0.15  0.15 = 0.0225 No 

R X 0.15   0.05 = 0.0075 Yes 

X N/A 0.05 Yes 

    
  Summing the cases where ruin occurs we have: 
 
   ($0.1m,2) 0.04 0.0075 0.05 0.0975       
 
Many candidates lost marks in part (i) by not giving a sufficiently precise definition to score 
full marks.  For part (iii) candidates who worked through the possibilities methodically 
generally scored well.  A number of candidates unnecessarily used approximate methods in 
part (iii). 
 
 
4 (i) The algorithm is as follows: 
 
  Step 1 Generate u from the uniform distribution on [0,1]. 
 
  Step 2 If 0 < u < 0.3 set X = 1. 
 
   If 0.3 <= u < 0.6  set X = 2. 
 
   Otherwise set X = 3. 
  
 (ii) We need to solve ( 2.5) 0.75P Y     
 
  but  2.5( 2.5) 1P Y e     
 

  so  2.51 0.75e    
 

  so  2.5 0.25e     
 

  so  
log(0.25)

0.554517744
2.5

  


 and the mean of Y is 1.803368801.  
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 (iii) The extended algorithm is: 

  Step 1 Generate v from the uniform distribution on [0,1]. 
 
  Step 2 If v<0.2 then generate a sample from X as in (i) and finish, 

otherwise go to step 3.  
 
  Step 3 Generate u from the uniform distribution on [0,1].  
 

  Step 4 Set 1 xe u   
 

   i.e. 
log(1 )

0.55451744

u
x





  

 
This question was answered well. 
 
 

5 (i) The premium loading   is given by: 
 
   74.25 (1 ) (0.75 2000 0.25 5000) 0.02 55(1 )             
 
  and so  
 

   
74.25

1 35%.
55

      

 
 (ii) Under A expected profit is: 
  
   2000 74.25 2000 0.02 (0.75 2000 0.25 5000)        
   38,500.   
 
  Under B expected profit is: 
 
  2,000 74.25 2,000 27 0.7 2,000 0.02 (0.75 2,000 0.25 5,000)            
   17,500.   
 
  Under C expected profit is: 
 
   2000 74.25 2000 15 2000 0.02 (0.75 2000 0.25 3000)          
   28,500   
 
  so the optimal course under the Bayes criterion is no reinsurance.  
 



Subject CT6 (Statistical Methods Core Technical) – September 2013 – Examiners’ Report 

Page 7 

 (iii) Under the minimax we need to consider the worst case scenario – which is that 
all 2,000 workers die in industrial accidents.  

 
  Under this outcome, the losses are: 
 
  Under A:    2000 74.25 2000 5000 9,851,500      
  Under B:   2000 (74.25 27) 2000 5000 0.7  6,905,500       

  Under C: 2000 (74.25 15) 2000 3000     = 5,881,500 
     
  so the optimal decision under the minimax criterion is C. 
 
 (iv) The approach in (iii) puts all the weight on what is at first seems a pretty 

unlikely scenario – so that our decision making is driven by something fairly 
remote.    

 
  That said, the workers are all in the same factory, so it is not inconceivable 

that a single catastrophe could result in a large number of claims all at the 
same time – i.e. the lives are not independent.  

 
This question was well answered.  There are a number of alternative approaches available 
(for example working on a per policy basis) which all give the same results, and all of which 
were given full credit.  Candidates made a range of comments in part (iv) and all sensible 
answers were given credit. 
 
 

6 The average cost per claim is given in the table: 
 

 0 1 2 
 

2010 497.59 662.35 836.49
2011 588.89 803.14
2012 750.00

   
 The grossing up factors for average costs are given in the table below (the underlined 

figures are the simple averages): 
 

 0 1 
 

2 Ult 

2010 497.6 662.3 836.5 836.5 
 59.49% 79.18% 100.00%
2011 588.9 803.1 1014.3 
 58.06% 79.18%
2012 750.0 1276.1 
 58.77%
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 The grossing up factors for claim numbers are as follows: 

 0 1 2 Ult 
 

2010 87.0 132.0 151.0 151.0 
 57.62% 87.42% 100.00%
2011 117.0 156.0 178.5 
 65.56% 87.42%
2012 99.0 160.7 
 61.59%

    
 So the total claims are: 
 

 Average 
amount 

 

Number Total 

2010 836.5 151.0 126310 
2011 1014.3 178.5 181006 
2012 1276.1 160.7 205126 
   512442 

    
 So the outstanding claims are: 
 
  512,442 – 126,310 – 125,290 – 74,250 = 186,592.  
 
This question was well answered. 
 
 

7 (i) Let iX  be the amount paid on the ith claim: 

 
  Then 
 

   
50

0 50

( 50 ( )) ( )iE X f y dy yf y dy


     

 

   
50

0.01
1

0

50 0.01 ye dy I   

 
  Using the notation given in the question. 
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  Now 
 

   0.5 0.01
1

50

50 100 0.01 yI e e dy


     

 

   0.5 0.01

50
50 100 ye e

       

 

   0.5 0.5 0.550 100 150e e e       
 
  So 
 

   
500.01 0.5

0
( 150) 50 y

iE X e e       

 

   0.5 0.5 0.550 50 150 50 100 110.653066e e e           
 
  And  
 

      
50

2 2 2

0 50

( 50)iE X f y dy y f y dy


    

 

   
50

0.01
2

0

2,500 0.01 ye dy I    

 

   
500.01 2 0.5

1
0

2,500 50 200ye e I        

 

   0.5 0.5 0.52,500 2,500 2,500 200 150e e e         
 

   0.52,500 200 150 20,695.91979e      
 
  So finally we have:  
 
   ( ) 20 110.653066 2213.06E S      
 
   Var( ) 20 20695.91979 413918.40.S      
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 (ii) We need to solve: 
 

   
2 /2 2213.06e   (1) 

 
  and 
 

    2 22 1 413918.40.e e       (2) 

 
  Dividing (2) by the square of (1) we have: 
 

   
2

2

413918.40
1 0.084514

2213.06
e     

 

   2 log(1.084514) 0.081132     
 
  and substituting into (1) we have: 
 

   
0.081132

log(2213.06) 7.6615655.
2

      

 
  Finally: 
 
   ( 4000) ( (7.6615655,0.081132) log(4000))P S P N    
 

   
8.29404964 7.6615655

(0,1) ( (0,1) 2.2205)
0.081132

P N P N
 

    
 

 

 
   0.95 (1 0.98679) 0.05 (1 0.98713)       
 
   = 0.01319  
 
 (iii) The probability will be lower.   
 
  This is because the log normal distribution has a “fat tail” and hence gives 

more weight to extreme outcomes.  
 
Only the best candidates were able to derive the value of the variance in part (i) despite the 
formula for integration by parts being given in the question paper.  The remaining parts were 
well answered. 
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8 (i) We have 4 years of observations such that 1 2 3 4 33y y y y    .  The 

likelihood function is then: 
  

   
4 1 33 4 29

33 33
1 (1 ) (1 )(1 )

i

i

y

y
i

L
 



  
  

 
   

 
  The log-likelihood is then: 
 
   29 log 33log(1 )l        
 
  Taking its derivative w.r.t.  and equation it to zero we have: 
 

   
29 33

0
1

 
  

 

  
   29(1 ) 33     
 
  which implies that 29 4   
 

  therefore 
29

ˆ 7.25.
4

     

 

  Differentiating the log likelihood again gives 
 2 2

29 33

1
 
  

 which is 

negative at  ˆ 7.25.    
 
 (ii) We have: 
 

   
1

( ) exp[ log log(1 ) log ]
(1 )

y

y
p y y y


      


  

 

   exp log log
1

y
         

 

 

   
( ( ))

exp ( , )
( )

y b
c y

a

   
    

  

   
  where 
 

   log
1

      
, the natural parameter   

 
   1    
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   ( )a      
 

   ( ) log log(1 )b e         
 
   ( , ) 0c y     
 
This question was mostly well answered.  Only the best candidates showed that the estimate 
was a maximum by evaluating the second derivative of the log-likelihood at the value of the 
estimate.  In part (ii) some candidates failed to score full marks as a result of not specifying 
all the parameters. 
 
 

9 (i) The three main stages are: 
 
  (a) tentative model identification 
  (b) model fitting 
  (c) diagnostics 
    
 (ii) Since the auto-correlation is non-zero for the first lag only and the partial auto-

correlation function decays exponentially it is likely that the observed data 
comes from an MA(1) (or equivalently a ARMA(0,1) or ARIMA(0,0,1) 
model).  

 
 (iii) First note that for this model: 
  

   2Cov( , )t tX e     

 
  and 
 

   2 2
1 1 1 1 1 1 1Cov( , Cov( , ( )) ) .t t t tX e X e             

   
  Taking the covariance of the defining equation with tX  we get: 

 

   2 2
0 1 1 2 2 1 1 1( ) .             

 
  Taking the covariance with 1tX   we get: 

 

   2
1 1 0 2 1 1 .          

 
  Taking the covariance with 2tX   we get: 

 
   2 1 1 2 0         
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  and in general 
 
   1 1 2 2n n n        for 2.n    

 
 (iv) The presence of the term 1 1te   means that the PACF will decay exponentially 

to zero, but it will never get there, so that the PACF will always be non-zero. 
     
Many candidates struggled with this question, with only the best accurately calculating the 
covariance of Xt with et1.  The chart on the printed examination paper was not clear, and the 
examiners took a generous approach to marking part (ii) where candidates had struggled 
interpreting the chart. 
 
 
10 (i) Firstly: 

 
   1 2 1 2( , , , ) ( , , , ( ))n nf x x x f x x x f       

 

   1

1

 
! Γ( )

in x

ii

e e
x


  



 
  

  

 

   1

1
( )

n

i
i

x
ne


  


    

 
  which is the pdf of another gamma distribution.  So the posterior distribution 

is gamma with parameters 
1

n

i
i

x


    and .n    

 
 (ii) Under quadratic loss the Bayes estimate is the mean of the posterior 

distribution, so: 
 

   1ˆ

n
ii

x

n


 
 

 


  

 
  which can be written as 
 

   1ˆ

n
ii

x n

n n n
 

    
    


 

 

   (1 )Z Zx


  

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  where 
n

Z
n


 

.  This is in the form of a credibility estimate since the mean 

of the prior distribution is   and we have written the posterior mean as a 

weighted average of the prior mean and the mean of the observed data. 
 
 (iii) In this case we have: 
 

   
10 42

ˆ 6.5.
2 6


  


  

 
 (iv) (a)  Let S be the time taken to resolve a single query.  Then for a simple 

query: 
 

    
3

320
( 30 simple) 0.4 0.064.

20 30
P S

      
  

   For a complicated query we have 
 

    
0.50.4 30( 30 complicated) 0.111817.P S e      

 
   And finally 
 
    ( 30) 0.75 0.064 0.25 0.111817 0.07595P S       .  
 

  (b) Mean time for simple calls is 
20

10
3 1




.  

 
   Mean time for complicated calls is  
 

    
1 2 20.51

Γ 1 0.4 Γ(3) 0.4 2 0.4 12.5
0.5

          
 

.  

 
   Overall mean is 0.75 10 0.25 12.5 10.625    .  
 
  (c) Overall total time is 6.5 10.625 69.0625  .     
  
 (v) (a) The parameter of the exponential distribution is 

1
0.094117647

10.625
 .    

 
  (b) The probability of taking more than 30 minutes using this 

approximation is 
30

 
10.625( 30) 0.059396P S e


   .  

 
  (c) This compares to the true value of 0.07595.  The exponential 

distribution underestimates this tail probability since it has less fat tails 
than the Pareto and Weibull distributions.  
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 (vi) We first find the parameter   of the exponential distribution being used.  This 
is given by:  

 

   30( 30) 0.1P S e     
 
  so 
 

   
log 0.1

0.076752836
30

  


  

 
  and the mean of the exponential distribution is 13.0288. 
 

  The mean of the given Weibull distribution is 
1

 20.51
Γ 1 2

0.5
c c
     

 
.   

 

  The overall mean is then given by 2 20.75 10 0.25 2 7.5 0. .5c c       
 
  Equating this to 13.0288 gives: 
 

   27.5 0.5 13.0288c     
 

 2 11.0576c   

   0.300725.c     
 
Parts (i) to (iv) were well answered.  Parts (v) and (vi) were attempted by only the more able 
candidates. 
 
 

END OF EXAMINERS’ REPORT 


