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Comments 
 
Comments on solutions presented to individual questions for this April 2008 paper are given 
below. 
 
Question 1 This straightforward bookwork question was very well answered. 
 
Question 2 Answers to this question were disappointing.  In part (a) many candidates did 

not realise that smoothness is automatically ensured when graduating with a 
parametric formula with a small number of parameters.  In part (b) many 
candidates presented descriptions of the method of graphical graduation, 
rather than answering the question which was set. 

 
Question 3 Most candidates scored reasonably well on part (i), but few candidates could 

state the conditions required for a compound Poisson process to be a Poisson 
process in part (ii). 

 
Question 4 A reasonable attempt was made at this bookwork question by most candidates, 

although few made sufficient distinct points to score close to full marks. 
 
Question 5 This exposed-to-risk question was quite well answered by many candidates, 

who correctly identified the rate interval and the appropriate census-type 
formula.  An encouraging number of candidates also recognised the need to 
adjust the age definition in order to ensure correspondence between the first 
marriages data and the exposed-to-risk data.  

 
Question 6 Many candidates scored well on this question.  Common errors were failure to 

use (or incorrect use of) the continuity correction in the normal approximation 
to the signs test; calculating only the probability of 18 positive signs (rather 
than the probability of 18 or more signs) when using the exact binomial 
computation of the signs test; and calculating only the probability of 2 positive 
runs (rather than the probability of 2 or fewer positive runs) when using the 
exact computation of the grouping of signs test.   

 
Question 7 Only a small proportion of candidates correctly answered part (i).  In part (ii) 

a very large number of candidates adopted a three-state solution to this 
problem, with state space {A, B, C}.  Partial credit was given for this, and also 
for correctly following this three-state solution through in part (iii) to obtain 
the steady-state proportions of 3/11, 2/11 and 6/11 using auditors A, B and C 
respectively. 

     
Question 8 This question was not as well answered as some others.  Some candidates 

failed to write the numerical values of the estimated parameters down in part 
(ii).  There were few correct attempts at part (v).  Many candidates simply 
calculated the ratio between the two hazards, which is incorrect.  Others made 
unnecessary assumptions about the form of the baseline hazard (e.g. that it 
was constant). 
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Question 9 This straightforward calculation of the survival function was very well 
answered, apart from part (iv), in which only a handful of candidates realised 
that the Kaplan-Meier estimate of the hazard at any duration at which no 
event is observed to take place is 0. Given that the Kaplan-Meier estimate of 
the hazard is a step function, it is clear than this must be so.  It was very 
encouraging to see the high proportion of sensible answers to part (ii).  Credit 
was given in part (ii) to candidates who stated that the censoring was non-
informative provided that the reason given was consistent with this statement.  

 
Question 10 Few candidates scored highly on this question.  Many candidates got no 

further than part (ii).  Although there were a fair number of attempts to solve 
the differential equation in part (iii), only a minority of candidates spotted that 

( ) ( ) 1ON OFFP t P t+ = .  
 
Question 11 This question was very well answered.  Many candidates provided 

substantially correct answers to all parts, losing marks only for failure to 
include certain details in part (ii) (for example that we need to condition on 
the state occupied at time x+t); or for failing to point out that we need to 
substitute the estimated values from the data into the formula for the variance 
of  23μ in part (v).   
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1 Sex 
 Age 
 Type of policy 
 Smoker/non-smoker 
 Level of underwriting 
 Duration in force 
 Sales channel 
 Policy size 
 Known impairments 
 Occupation 
 
  
2 (a) Provided a formula with a small number of 
  parameters is chosen         
  the resulting graduation will be acceptably smooth.    
 
 (b) The graduation should be tested for smoothness   
 
  using the third differences of the graduated rates   
 
  which should be small in magnitude and progress 
  regularly.        
 

 A further iterative process, which involves manual adjustment of the 
 graduation (called ‘hand-polishing’) is sometimes necessary to ensure 
 smoothness.  
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3 (i) (a)       EITHER   
 
                         A Poisson process with rate λ  is a continuous-time  
   integer-valued process Nt ,  
   t ≥  0), with the following properties: 
 
   N0 = 0         
   Nt  has independent increments     
   Nt  has stationary increments    

   
( )[ ( )][ ]

!

n t s

t s
t s eP N N n

n

−λ −λ −
− = =  s < t, n = 0, 1, 2…..  

    
   OR 
 
                         A Poisson process with rate λ  is a continuous-time  
   integer-valued process Nt ,  
   t ≥  0), with the following properties: 
 
                          N0 = 0 
   [ 1] ( )t h tP N N h o h+ − = = λ +  
   [ 0] 1 ( )t h tP N N h o h+ − = = −λ +  
   [ 0,1] ( )t h tP N N o h+ − ≠ =       
 
  (b) If Nt is a Poisson process on t ≥  0 and Yi is a sequence of  
   independent and identically distributed random variables then a  
   compound Poisson process is defined by:  
 

   
1

tN

t i
i

X Y
=

=∑         

      
 (ii) A compound Poisson process meets the conditions for being  
  a Poisson process if Yi is an indicator function OR if each Yi is identically  
  1 (which is a special case of the indicator function) 
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4 Benefits 
 
 Systems with long time frames can be studied in compressed time,  
 for example the operation of a pension fund  (or other suitable example).  
     
 Complex systems with stochastic elements can be studied   

   
 Different future policies or possible actions can be compared.  

  
 In a model of a complex system we can usually get much better control over the 
 experimental conditions so that we can reduce the variance of the results output 
 from the model without upsetting their mean values    
 
 Avoids costs and risks of making changes in the real world, so we can study 
 impact of changing inputs before making decisions.     
    
 Limitations 

 Model development requires a considerable  investment of time and expertise.   
 In a stochastic model, for any given set of inputs each run gives only estimates of a 

model’s outputs. So to study the outputs for any given set of inputs, several 
independent runs of the model are needed.      

 
Models can look impressive when run on a computer so that there is a danger that one 
gets lulled into a false sense of confidence.       
   

 If a model has not passed the tests of validity and verification its impressive 
 output is a poor substitute for its ability to imitate its corresponding real world 
 system.   
 

Models rely heavily on the data input. If the data quality is poor or lacks credibility 
then the output from the model is likely to be flawed.     
It is important that the users of the model understand the model and the uses to which 
it can be safely put. There is a danger of using a model as a black box from which it is 
assumed that all results are valid without considering the appropriateness of using that 
model for the particular data input and the output expected.    

 
 It is not possible to include all future events in a model. For example a change in 
 legislation could invalidate the results of a model, but may be impossible to 
 predict when the model is constructed.   
 

It may be difficult to interpret some of the outputs of the model. They may only be 
valid in relative, rather than absolute, terms. For example comparing the level of risk 
of the outputs associated with different inputs. 
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5 (i) Calendar year rate interval starting on 1 January each 
  year.         
           
 (ii) The first marriages data may be described as 
 
  mx =   number of first marriages, age x on the birthday in the 

 calendar year of marriage, during a defined period of investigation of 
length N years  

 
A definition of the population data which is compatible with these data on first 
marriages is 

 
Px,t =  number of lives under observation at time t since the start of the 

investigation who were aged x next birthday on the 1 January 
immediately preceding t 

     
Since we follow each cohort of lives through each calendar year, this exposed 
to risk is  
 

  ,
0

N
c
x x tE P dt= ∫  

              
 which may be approximated as 

 

             
1

, 1, 1
0

1( )
2

N
c
x x t x tE P P

−

+ += +∑  

 
              (where the summation considers just integer values of t).    
   

This assumes that the population varies linearly across the  
  calendar year.        
 
  However, we have data classified by age last birthday 
  so we need to make a further adjustment. 
     
  If the number of lives aged x last birthday on 1 January  
  in year t is Px,t* then       
 
  Px,t = Px-1,t*        
 

  and an appropriate exposed to risk in terms of the data we  
  have is  
 

  * *
1, , 1

1( )
2

K N
c
x x t x t

t K
E P P

+

− +
=

= +∑ .     
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      (iii) The age range at the start of the rate interval is (x–1, x) 
  exact. 
         
  So, assuming that birthdays are uniformly distributed 
  across the calendar year the average age at the start of the rate interval is  
  x–½ and the average age in the middle of the rate interval 
  is x.         
 
  Therefore the estimate of xλ  applies to age x.  
 
6 (i) Since we do not know the values of the rates in the  
  crude experience but only the signs of the deviations the  
  tests we can carry out are limited.   
 
  We can, however, perform the signs test and the grouping  
  of signs test.        
           
 (ii) The signs test looks for overall bias.       
  We have 25 ages, and at 18 of these the crude rates  
  exceed the standard table rates (i.e. we have  positive deviations)  
     
  If the null hypothesis is true, then the observed number of  
  positive deviations, P, will be such that P ~ Binomial (25, ½).  
  
  EITHER 
 
  We use the normal approximation to the Binomial 
  distribution because we have a large number of ages (>20)   
  This means that, approximately, P ~ Normal (12.5, 6.25).  
 
  The z-score associated with the probability of getting 18  
  positive deviations if the null hypothesis is true is, therefore 

 

 17.5 12.5 5 2.00
2.56.25

− −
= = − .      

 
 (using a continuity correction). 
 
 We use a two-tailed test, since both an excess of  
 positive and an excess of negative deviations are of interest.   
     
 Using a 5 % significance level, we have -2.00 < -1.96.   
    
 This means we have just sufficient evidence to reject the   
 null hypothesis.       
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 OR 
 
 Using the Binomial exactly we have 
 

 Pr[j positive deviations] = 2525
0.5

j
⎛ ⎞
⎜ ⎟
⎝ ⎠

.    

 
 So that the probability of obtaining 18 or more positive  

 deviations is
25

25

18

25
0.5

j j=

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ .       

 
 This is equal to 
  
 (1 + 25 + 300 + 2,300 + 12,650 + 53,130 + 177,100 + 480,700) 
 × 0.0000000298 
 
 = 0.02164.        
 
 We apply a 2-tailed test, so we reject the null  
 hypothesis at the 5% level if this is less than 0.025   
 
 Since 0.02164 < 0.025      
 
 we reject the null hypothesis.      
 
 The grouping of signs test looks for long runs or clumps 
 of ages with the same sign, indicating that the crude 
 experience is different from the standard experience over a 
 substantial age range.       
 
 The number of runs of positive signs is 2 (65–72 years and 
 75–84 years).          
 
 We have 25 ages and 18 positive signs in total, which means 
 7 negative signs.       
 
 THEN EITHER 
 
 Using the table provided under n1 = 18 and n2 = 7, we find  
 that, under the null hypothesis, the greatest number of positive  
 runs x for which the probability of x or fewer positive runs  
 is less than 0.05 is 3.    
 
 Since we only have 2 runs, we conclude that the probability  
 of obtaining 2 or fewer runs is much less than 0.05.   
 
 Therefore we reject the null hypothesis.     
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 OR 
 
 Using exact computation 
 

 Pr[1 positive run] = 

17 8
0 1 8 0.0000166

25 480,700
18

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠ = =
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 

 Pr[2 positive runs] = 

17 8
1 2 (17)(28) 0.000990

25 480,700
18

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠ = =
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
 Therefore we conclude that the probability  
 of obtaining 2 or fewer runs is much less than 0.05.   
 
 Therefore we reject the null hypothesis.  
  
 OR 
 
 Using the Normal approximation, the number of positive runs is distributed 
 

 ( )
2

3
(18)(8) [(18)(7)], 5.76,1.02

25 (25)
N N
⎛ ⎞

=⎜ ⎟⎜ ⎟
⎝ ⎠

 

 
 so that the z-score associated with the probability of getting 2 runs  
 is 
 

  2 5.76 3.722
1.02
−

= − . 

 
 which is much less than -1.645 (using a 1-tailed test). 
 
 Therefore we conclude that the probability  
 of obtaining 2 or fewer runs is much less than 0.05.   
 
 Therefore we reject the null hypothesis.     
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7 (i)  Required number  
 

  =
1i

∞

=
∑ probability ith audit takes place prior to changing auditors   

 
 = 1 + 1 + 0.8 + 0.82+0.83+…….. 
 
 = 1 + 1/(1-0.8) = 6        

           
 (ii)  The transition probabilities depend on  
  whether it is the first year with the  
  current auditors, so need additional states to cover this. 
 
  State space = {AL, A, BL, B, CL, C} where subscript L  
  indicates locked in to the current auditor.    
 
  Transition matrix A is 
 

                        

0 1 0 0 0 0
0 0.8 0.1 0 0.1 0
0 0 0 1 0 0

0.15 0 0 0.7 0.15 0
0 0 0 0 0 1

0.05 0 0.05 0 0 0.9

L L L

L

L

L

A A B B C C
A
A

B
B

C
C

   

          
             This is a Markov chain because the probability  
  of future transitions is independent of history  
  prior to arrival in current state (Markov property).   
           
 
 (iii) Need to find stationary distribution 
  π  which by definition satisfies: 
 
  π  = πA        
 
  0.15 0.05

LB C Aπ + π = π    (1) 

  0.8
LA A Aπ + π = π     (2) 

  0.1 0.05
LA C Bπ + π = π     (3) 

  0.7
LB B Bπ + π = π     (4) 

  0.1 0.15
LA B Cπ + π = π     (5) 

  0.9
LC C Cπ + π = π     (6)   
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 Combining (1) and (2), (3) and (4), and (5) and (6) 
 
  0.15 0.05 0.2B C Aπ + π = π    (1A) 
 
  0.1 0.05 0.3A C Bπ + π = π    (3A) 
 
  0.1 0.15 0.1A B Cπ + π = π    (5A) 
 
  (1A) – (3A) gives  
 
  1.5A Bπ = π        
 
  (3A) – (5A) produces 
 
  3C Bπ = π         
 
  1i

i
π =∑  implies       

  (1.5 0.3 1 0.3 3 0.3) 1B+ + + + + π =      
  

  So 

0.046875
0.234375
0.046875
0.15625
0.046875
0.46875

L

L

L

A

A

B

B

C

C

π⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟π⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟π⎜ ⎟ = ⎜ ⎟⎜ ⎟π ⎜ ⎟⎜ ⎟ ⎜ ⎟π⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠π⎝ ⎠

 

 
  And proportions using (A,B,C) are 
 
   (0.28125, 0.203125, 0.515625).   
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8 (i)  0( , ) ( ).exp( . )T
ih z t h t z= β       

  where h(z,t) is the hazard at duration t    
 
  ho(t) is the baseline hazard      
 
  iz are the covariates       
 
  β is the vector of regression parameters    
           
 (ii)  z1 = 1 plays violin, 0 otherwise            1 0.07β =   
 
  z2 = 1 plays trumpet, 0 otherwise         2 0.14β =   
 
  z3 = 1 new tuition method, 0 otherwise 3 0.05β = −   
 
  z4 = 1 male, 0 otherwise   4 0.02β =   
           
 (iii)  Baseline hazard refers to 
   
  a female,  
             following traditional tuition method,  
             playing the piano       

        
            
 (iv)  The parameter associated with the new tuition  

method is -0.05. Because the parameter is negative, the hazard of dropping 
out is reduced by the new tuition method.      

  Therefore the new tuition method does appear  
  to improve the chances of a child continuing  
  with his or her instrument.      
  
 However the 95% confidence interval for the parameter spans zero.  

So at the 5% significance level it is not possible to conclude that  the new 
tuition method has improved the chances of children continuing to play their 
instrument.    

          
 (v) The hazard for a girl being taught the trumpet by the traditional 
  method giving up is 0 ( )exp(0.14)h t .     
 
  Therefore the probability of her still playing after 4 years is 
 

  
4 4

0 0
0 0

(4) exp ( )exp(0.14) exp 1.150274 ( )femaleS h t dt h t dt
⎛ ⎞ ⎛ ⎞

= − = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
∫ ∫  
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  Since this is equal to 0.7, we have 
 

  
4

0
0

exp 1.150274 ( )h t dt
⎛ ⎞
−⎜ ⎟
⎝ ⎠

∫  = 0.7, so that      

 

  
4

0
0

log 0.7 1.150274 ( )e h t dt= − ∫ , 

 

  and hence 
4

0
0

log 0.7( ) 0.310078.
1.150274

eh t dt = =
−∫     

 
  The hazard of giving up for a boy taught the piano by the new 
  method is 0 0( )exp( 0.05 0.02) ( )exp( 0.03).h t h t− + = −   
 
  Therefore the probability of him still playing after 4 years is 
 

  [ ]
4

0
0

(4) exp ( )exp( 0.03) exp 0.310078(0.970446)maleS h t dt
⎛ ⎞

= − − = −⎜ ⎟
⎝ ⎠
∫  

 
  which is exp(-0.300914) = 0.74014.      
   
 
             ALTERNATIVELY  
 
            The hazard of giving up for a girl being taught the trumpet by the    

 traditional method is 0 2( )exp( )h t β .     
 
  Therefore the probability of her still playing after 4 years is 
 

  
4 4

0 2 2 0
0 0

(4) exp ( )exp( ) exp exp( ) ( )femaleS h t dt h t dtβ β
⎛ ⎞ ⎛ ⎞

= − = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
∫ ∫  

 
             and hence 
 

             
4

0 2
20

log [ (4)]
( ) exp( ) log [ (4)]

exp
e female

e female

S
h t dt Sβ

β
= = − −

−∫ . 

 
             The hazard of a boy being taught the piano by the new 
  method giving up is 0 3 4( )exp( )h t β β+ . 
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             Therefore the probability of him still playing after 4 years is 
 

  
4

3 4 0
0

(4) exp exp( ) ( )maleS h t dtβ β
⎛ ⎞

= − +⎜ ⎟
⎝ ⎠

∫ . 

                         Substituting for 
4

0
0

( )h t dt∫ produces 

                        ( )3 4 2(4) exp exp( )exp( ) log [ (4)]male e femaleS Sβ β β= + −  

                                      = exp[exp(-0.05+0.02)exp(-0.14)loge(0.7)] 
                                      = exp[0.970446 x 0.869358 x -0.356675) 
                                      = 0.74014. 
 
 
9 (i) Type I censoring is present      
  
  because the study ends at a predetermined  
  duration of 30 days.       
 
  Type II censoring is not present     
 
  because the study did not end after a  
  predetermined number of patients had died    
 
  Random censoring is present      
 
  because the duration at which a patient left   
  hospital before the study ended can   
  be considered  as a random variable.     
           
 (ii) Yes         
 
  Those patients who left hospital before 30 days 
   had elapsed are more likely to be recovering  
  well than those patients who remained in hospital,   
  and so will probably be less likely to die.    
           
 (iii) The Kaplan-Meier estimate of the survival  
  function is estimated as follows 
 

 tj nj dj cj 
j

j

d
n

 1 - j

j

d
n

 1
j

j

jt t

d
n≤

−∏ =
^
( )S t  

 
   0 10   
   2 10 1 0 1/10 9/10  9/10   = 0.9 
   6   9 1 0 1/9 8/9         8/10   = 0.8 
 12   8 1 2 1/8 7/8             7/10   = 0.7 
 27   5 1 4 1/5 4/5  14/25 = 0.56 
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  The Kaplan-Meier estimate of the survival  
  function at duration 28 days is therefore 0.56.   
          
 (iv) The Kaplan-Meier estimate of the hazard at duration  
  8 days is 0.        
           
 
 (v) A suitable sketch is shown below. 
 

 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 10 20 30 40

Duration t (days)

S(
t)

 
 
 
10 (i)  Operates in continuous time (t ≥  0)  
  
             with discrete state space {ONline, OFFline},      
  and transition probability does not depend  
  on history prior to arrival in current state (Markov  
  property).          
        
 (ii)  ( )OFFP t′ = 0.8* ( )ONP t - 0.2* ( )OFFP t      
           
 (iii)   As there are only two states, 
 
  ( ) ( ) 1ON OFFP t P t+ =         
    
  Substituting using the solution to (ii), we obtain 
 
  ( )OFFP t′ + ( ) 0.8OFFP t =        
 
  so that      
 
  ( ( )) 0.8*t t

OFF
d e P t edt =        

      
  ( ) 0.8* constantt t

OFFe P t e= +       
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  Boundary condition (0) 1OFFP =     
 
  So ( ) 0.8 0.2 t

OFFP t e−= +        
             
 (iv)  If Ot is a random variable denoting the amount of time  
  spent offline and It is an indicator variable which 
   takes the value 1 if offline, 0 otherwise then required  
  expected value is  
 

  
0 0

[ (0) 1] [ (0) 1] ( )
t t

t OFF s OFF OFFE O P E I P ds P s ds= = = =∫ ∫    

  
0

0 0

( ) (0.8 0.2 ) 0.8 0.2 0.8 0.2(1 )
t t ts t t

OFFP s ds e ds t e t e− − −= + = − = + −∫ ∫  

  
  Either online or offline at any time so time spent online is: 
 
  (0.8 0.2(1 ) 0.2 0.2(1 )t tt t e t e− −− + − = − −     
 
  So proportion spent online is: 
 

  0.2 0.2(1 ) 10.2 0.2( )
t tt e e

t t

− −− − −
= −       

             
 (v) A suitable sketch is shown below. 
 

0

0.2

Time

Pe
rc

en
ta

ge
 o

nl
in

e

t=0
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 Shape: starts at zero as given offline at that point,  
 asymptotes to ratio of connection to  
 (connection + disconnection) rates.  
 
 
11 (i)  
 
 
 
 
 
 
 
 
 (ii) By the Markov assumption OR conditioning on the  
  state occupied  at time x+t      
 
  23 21 13 22 23 23 33

t dt x t x dt x t t x dt x t t x dt x tp p p p p p p+ + + += + + .   
 
  But 33

dt x tp +  = 1, so       
 
  23 21 13 22 23 23

t dt x t x dt x t t x dt x t t xp p p p p p+ + += + + .    
 
  We now assume that  
 
  23

dt x tp +  = 23 ( )x tdt o dt+μ +  and 13  =  
dt x tp +  = 13 ( )x tdt o dt+μ +   

 

  where ( )o dt  is defined such that 
0

( )lim 0
dt

o dt
dt→

= .   

 
  Substituting for 23

dt x tp +  and 13
dt x tp +  produces 

 
  23 22 23 21 13 23[ ( )] [ ( )]t dt x t x x t t x x t t xp p dt o dt p dt o dt p+ + += μ + + μ + + , 
 
  and, subtracting 23

t xp  from both sides and taking limits 
  gives 
 

  23 21 13 22 23
0

lim t x t dt x
t x t x x t t x x tdt

p pd p p p
dt dt

+
+ +

→

−
= = μ + μ    

           

1  Healthy 2  Sick

3  Dead
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 (iii) The likelihood, L, is proportional to 
 

  
12 21 13 2312 13 1 23 21 2 12 21 13 23exp[( ) ]exp[( ) ]( ) ( ) ( ) ( )d d d dv v−μ −μ −μ −μ μ μ μ μ  

         
  where iv  is the total observed waiting time in state i,   
  and ijd  is the number of transitions observed from  
  state i to state j.      
           
 (iv) Taking the logarithm of the likelihood in the 
  answer to part (iii) gives 
 
  23 2 23 23log logL v d= −μ + μ  + terms not involving 23μ    
     
  Differentiating this with respect to 23μ  we obtain 
 

  
23

2
23 23

logd L dv
d

= − +
μ μ

.       

 
  Setting this to 0 we obtain the maximum likelihood 
  estimator of 23μ        
 

  
^ 23
23

2
d
v

μ = .        

 

  This is a maximum because 
2 23

23 2 23 2
(log )

( ) ( )
d L d

d
= −

μ μ
   

 
  which is always negative.      
           
 (v) (a) Therefore, if there are 40 transitions from 
   the Sick state to the Dead state and 140 man-years 
   observed in the sick state, the maximum 

   likelihood estimate of 23μ  is 40 0.2857
140

= .   

 
  (b) The maximum likelihood estimator of 23μ  has a 

   variance equal to 
23

[ ]E V
μ , 23μ  is the true  

   transition rate in the population and [ ]E V  is the 
   expected waiting time in the Sick state.   
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   Approximating 23μ  by 
^
23μ  and [ ]E V  by 2v  we 

   estimate for the variance as 0.2857 0.00204
140

= .   

   
   A 95 per cent confidence interval around our 
   estimate of 23μ  is therefore 0.2857 1.96 0.00204±   
 
   which is 0.2857 0.0885±  
 
   or (0.1972, 0.3742).  
 
                                                                                                 

END OF EXAMINERS’ REPORT 


