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EXAMINERS COMMENTS  

Comments on solutions presented to individual questions for this September 2005 paper are 
given below:  

103 Part  

Question A1 This was not well answered. 
There was a lot of repetition in some of the solutions offered - for example 
several different instances of parameter error may have been mentioned.  

Question A2 This was well answered overall, even by the weaker candidates. 
Credit was not given in part (ii)(b) if the examples cited were not likely to be 
encountered by an actuary working in a professional capacity.  

Question A3 This was well answered overall.  
Some candidates lost marks by not explaining why the chains were not 
irreducible and were aperiodic.  Many candidates did not correctly identify 
the state space of the chain Cn and most did not realise that the chain will 
escape to infinity as the value increases without barrier.   

Question A4 This was very well answered overall, with the majority of candidates scoring 
highly. 
One common mistake was the omission of the constant term from the 
likelihood function in part (i).  

Question A5 This was very poorly answered by all but a few candidates. 
Some candidates offered general explanations in parts (i) and (iii), which, if 
clear enough, were given some credit.  

Question A6 Overall this was not well answered. 
In part (i), few candidates gave the full, correct Kolmogorov equations.   
Many candidates lost marks in part (ii) because of insufficient or inaccurate 
working.  

Question A7 Overall this was not well answered. 
However, part (i) was well answered.  Some candidates reached the correct 
answer via a different solution and received full credit. 
Many candidates struggled with part (ii), failing to identify the correct 
integrand required. 
In part (iii), many candidates described the shape of the function, but few 
explained it, as required by the question.  
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104 Part  

Question B1 This was not well answered. 
Some candidates commented on the advantages/disadvantages of graduation 
in general, rather than concentrating on the parametric formula method.  

Question B2 Part (i) was well answered. 
In part (ii), many candidates clearly did not understand the meaning of non-
informative censoring.    

Question B3 This was well answered overall.  
In part (ii), the question asked candidates to derive an expression and 
therefore we were looking for clearly set out steps here.  Many candidates lost 
marks by not providing sufficient explanation of their working.  

Question B4 This was very well answered, even by the weaker candidates.   
The main areas where candidates lost marks were: not stating the null 
hypothesis, or not stating it clearly enough; failure to identify the correct 
degrees of freedom to be used in the test; and insufficient or insufficiently 
clear descriptions of the shortcomings. 
In part (iii), the majority of candidates seemed confused between two issues in 
connection with bias.  There are two distinct problems.  Firstly, if the 
consistent bias is only small, the chi-squared test may fail to detect it because 
the resulting number (i.e. the sum of the squared deviations) is not large 
enough to exceed the critical value.  The signs test, which ignores the 
magnitude of the bias and looks only at how consistent it is across the ages, 
can be used to identify this.  The second problem is that even if the consistent 
bias is larger and the chi-squared test leads us to reject the null hypothesis, 
the test gives no indication of whether the graduated rates are too high or too 
low.  This is because the deviations are squared and the test statistic always 
positive.  The signs test is not a solution to this second problem.  

Question B5 This was well answered overall. 
Some parts of the question required candidates to show a result; 
candidates lost marks if their working was not sufficiently clear or complete.  

Question B6 This was not well answered. 
Surprisingly few candidates correctly answered part (i). 
In parts (ii) and (iii), very few candidates recognised that the expectation of 
life was an average of the future lifetimes of those bulbs still shining. As a 
result, although many candidates correctly calculated the expectation of life 
for a one-day old bulb, few managed to do so for a new bulb.  In part (iii), 
most candidates commented on the higher force of failure in the first day.   
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103 Part  

A1  

Items to be mentioned include:  

 
Models will be chosen which it is felt give a reasonable reflection of the underlying 
real world processes, but this may not turn out to be the case. (Model error.)  

 

The model may be very sensitive to parameters chosen, and the parameters are 
estimates because the true underlying parameters cannot be observed. (Parameter 
error.)  

 

Sampling error may result from running insufficient simulations. (It should be 
possible to give a confidence interval for the error that could result from this source.)  

 

The management actions assumed may not match what would happen in extreme 
circumstances.  

 

Policyholder behaviour, such as take-up rates for options, may differ in practice.  

 

There may be future events, such as legislative changes which affect the 
interpretation of the policy conditions, which have not been anticipated in the 
modelling.  

 

There may be errors in the coding of the model. The model is likely to be complex 
and difficult to verify completely.  

 

The model relies on input data, which may be grouped rather than being able to run 
every policy.  Any errors in the data could cause the output to be inaccurate.   
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A2   

(i) (a)  The state space is the set of values which it is possible for each random 
variable Xt to take.   

(b)  The time set is the set J, the times at which the process contains a random 
variable Xt.   

(c)  A sample path is a joint realisation of the variables Xt for all t in J, that is a set 
of values for Xt (at each time in the time set) calculated using the previous 
values for Xt in the sample path.  

(ii) Discrete State Space, Discrete Time  

(a) Simple random walk, Markov chain, or any other suitable example  

(b) Any reasonable example. For example: No Claims Discount systems, Credit 
Rating at end of each year   

Discrete State Space, Continuous Time  

(a) Poisson process, Markov jump process, for example  

(b) Any reasonable example. For example: Claims received by an insurer, Status 
of pension scheme member   

Continuous State Space, Discrete Time  

(a) General random walk, time series, for example  

(b) Any reasonable example. For example: Share prices at end of each trading 
day, Inflation index   

Continuous State Space, Continuous Time  

(a) Brownian motion, diffusion or Itô process, for example.   
Compound Poisson process if the defined state space is continuous.  

(b) Any reasonable example. For example: Share prices during trading period, 
Value of claims received by insurer   
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A3 (a)  Given the current state (the largest outcome or the number of sixes) up to the 
nth roll, no additional information is required to predict the status of the chain 
after the next roll. Therefore both Bn and Cn have the Markov property.    

(b)  Bn has state space {1, 2, 3, 4, 5, 6},  
the state space for Cn is the set of non-negative integers.    

(c)  For Bn, and 1  i, j  6,    

1 |
6n n
i

P B j B i    for j = i,     

1
1

|
6n nP B j B i

 

for each j >i     

and 1 | 0n nP B j B i

 

for i > j     

For Cn, and for k = 0,1,2, ,     

1
1

1|
6n nP C k C k ,     

1
5

|
6n nP C k C k ,     

and  1 | 0n nP C j C k  for all other , 1j k k

    

(d)  The chain Bn is clearly aperiodic; if currently at state i, it can remain there if 
the next outcome is at most i.  
It is not irreducible, as it cannot be reached from j for i < j.     

Cn is again aperiodic; if currently at state i, it can remain there if the next 
outcome is not a 6.  
It is not irreducible; state k cannot be reached from m if k < m.    

(e)  In the long run, Bn will reach state 6 and will remain there; hence in 
equilibrium P(Bn = 6) = 1 for sufficiently large n.     

Cn cannot decrease and has an infinite state space; therefore, it is certain that it 
will escape to infinity with probability one.   
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A4 (i)  The likelihood is     

23 15 3 5exp( 652( ))exp( 44( ))L K

   
(ii) l = ln L = 652  +23 ln  + constant with respect to 

     

Differentiating with respect to 

 

gives     

23
652

l

    

and setting equal to zero gives      

23
0 652

    

23
0.0353

652

 

p.a.     

Differentiating again gives     

2

2 2

23
0

l

     

therefore is the maximum likelihood estimate   

(iii)  The variance of  is 

12 2

2 23

l
,  

which we can estimate by 
2

.
23

      

Therefore the estimated standard deviation of  is 0.00736.
23
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A5 (i)  Let Nt denote the number of claims up to time t. Since the Poisson process has 
stationary increments, we may take t = 0, so that the required conditional 
distribution is      

0
0

, 1
| 1

1

1, 0

1

s
s

s

y s y

s

P T y N
P T y N

P N

P N N N

P N

    

But Ns  Ny is independent of Ny  

and has the same distribution as Ns y.     

Thus the right hand side above equals      

( )( )
,

y s y

s

ye e y

sse

    

which is the cdf of the uniform distribution on [0, s].      

(ii)  Since holding times are independent, each having an exponential distribution, 
their joint density is      

1 2

1 2

...
, ,..., 0 .1n

n

t t tn
t t te

   

(iii)  We have, as in part (i),    

,
|

,

s t
s t

t

s t s

t

P N k N n
P N k N n

P N n

P N k N N n k

P N n

    

Using again that the Poisson process has stationary and independent 
increments, and that the number of claims in an interval [0, t] is Poisson ( t), 
we derive from above that   
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( )( ) ( )

! ( )!
|

( )

!

( ) !

!( )!

! ( )

!( )!

1

s k t s n k n k

s t t n

t n k n k

t n n

k n k

k n k

k n k

e s e t s

k n k
P N k N n

e t

n

e s t s n

k n k e t

n s t s

k n k t t

n s s

k t t

    

which is binomial with parameters n and s/t.      
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A6  (i) The generator matrix is      

0

. .

. .

. .

0 0

A ,    

all other entries being zero     

The Kolmogorov equations are AtPtP )()( .      

In a component form the forward equations read      

( ) ( )ii iip t p t

  

for 0 1i N

     

, 1( ) ( ) ( )ij ij i jp t p t p t

 

for  i < j < N     

, 1( ) ( ).iN i Np t p t

     

(ii)   Differentiating the function given in the question, we get first for i = j,     

( ) ,t
iip t e

    

while for  i < j  N,    
1( ) ( )

( )
( )! ( 1)!

j i j i
t t

ij
t t

p t e e
j i j i

    

We can then check that the above satisfy the forward equations.    

(iii) For i = j(<N), the solution in (ii) implies that ( ) ,t
iip t e  so that the 

distribution of the holding times 0 1 1, ,..., NT T T  is exponential with parameter 

.    

For i = N, this is obviously not true; once the chain reaches state N, it stays 
there forever.   
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A7 (i)  ( ) 2 ( )AA AA
d

P t t P t
dt

    
ln ( ) 2

AA

d
P t t

dt

    
2ln ( ) constant

AA
P s s

    

We know (0) 1
AA

P , hence constant 0

    

Hence,  
2

( ) exp s
AAP s

    

(ii) P(in first visit to B at time T  in state A at t = 0)    

0
(remains in A to time )

T
P s

   

P(transition to B in time s, s + ds)       

 

P(remains in B to time T) ds     

0

( ) 2 ( , )
T

AA BB
s

P s s P s T ds

    

Using the result from part (i) and the similar result for PBB  with boundary 
condition PBB(s, s) = 1, this gives us:     

2 2 2

0

2
T

s T s

s

e s e ds

       

2

0

2
T

T

s

s e ds

     

2 2Te T
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(iii)  (a) The sketch should be shaped like:   

(b) Commentary:  

 

Initially probability increases from 0 at T = 0, and  
accelerates as the transition rate from A to B increases.  

 

However, as transitions increase, it becomes more likely that the 
process has already visited state B and jumped back to A.  
Therefore the probability of being in the first visit to B tends 
(exponentially) to zero.     

(c)  Differentiate to find turning point:      

2 2 22 32 2t t td
e t t e t e

dt

     

set derivative equal to zero     
2 22 (1 ) 0te t t

     

implies t = 1 for a positive solution  
and, from above analysis, this is clearly a maximum.    

Time

Pr
ob

ab
il

it
y
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104 Part  

B1 Advantages:   

The graduated rates will progress smoothly provided the number of parameters is 
small.   

Good for producing standard tables.   

Can easily be extended to more complex formulae, provided optimisation can be 
achieved.   

Can fit the same formula to different experiences and compare parameter values to 
highlight differences between them.   

Disadvantages:   

It can be hard to find a formula to fit well at all ages without having lots of 
parameters.   

Care is required when extrapolating: the fit is bound to be best at ages where we have 
lots of data, and can often be poor at extreme ages.    
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B2 (i) The table below gives the relevant calculations.   

        Lecture nj dj cj j

  
1 j

   
S(j)   

j    

1 50 1 5 1/50  49/50  0.980   
2 44 0 3 0  1  0.980   
3 41 3 2 3/41  38/41  0.908   
4 36 1 0 1/36  35/36  0.883   
5 35 2 0 2/35  33/35  0.833   
6 33 1 0 1/33  32/33  0.807   
7 32 0 0 0  1  0.807   
8 32     

The Index of Lecture Boringness is therefore equal to 0.807.    

(ii) Censoring in this case is unlikely to be non-informative.    

This is because the students who switched courses were probably less 
interested in the subject matter of Survival Models than those who remained 
registered.    

Therefore they would have been more likely, had they not switched courses, 
to cease attending lectures than those who did not switch.   
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B3 (i) The classification of deaths implies a calendar year rate interval.    

A person who dies will be aged x on the birthday in the calendar year of death, 
which implies that he or she will be aged x next birthday on 1 January in the 
calendar year of death.    

Since 1 January is the start of the rate interval, the age range at the start is x 
1 to x.   

(ii) A census of those aged x next birthday on 1 January in each year would 
correspond to the classification of deaths.     

But we have lives classified by age x last birthday.    

However, the number alive aged x next birthday on any date is equal to the 
number alive aged x  1 last birthday.    

The number alive aged x  1 last birthday on 1 January in year t is given by 
Px 1(t).      

At the end of year t this cohort will be aged x last birthday.      

Thus, using the trapezium rule, the correct exposed to risk at age x in year t is 
given by     

1
1

( ) ( 1)
2 x xP t P t .    

Over the three calendar years 2002, 2003 and 2004, we have, therefore, 
exposed to risk =      

1

1

1

1
(2002) (2003)

2
1

(2003) (2004)
2

1

   

(2004) (2005) .
2

x x

x x

x x

P P

P P

P P

   

(iii) Assuming birthdays are uniformly distributed over the calendar year, the 
average age at the start of the rate interval will be x ½.    

Therefore the average age in the middle of the rate interval is x.    

Assuming a constant force of mortality between x  ½ and x + ½, therefore,  
f = 0.  
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B4 (i) The null hypothesis is that the observed data come from a population in which 
the graduated rates are the true rates.    

The chi-squared statistic is given by the formula:     

2( )x x x

x x x

d E q

E q
.    

The calculations are shown in the table below.  

Age  Exqx Ex xq

 

2( )x x x xE q E q

 

2( )x x x x

x x

E q E q

E q

     

18  6 6.24   0.0576 0.0092  
19  8 6.50   2.2500 0.3461  
20 12 7.20 23.0400 3.2000  
21  8 8.50   0.2500 0.0294  
22  9 7.22   3.1684 0.4388  
23  6 7.20   1.4400 0.2000  
24  8 6.72   1.6384 0.2438     

Therefore the calculated chi-squared value is     

0.0092 + 0.3461 + 3.2000 + 0.0294 + 0.4388 + 0.2000 + 0.2438 = 4.4673    

Since we have 7 ages, we compare this with the tabulated value at the 5% 
level at, say, 4 degrees of freedom (since we lose 2 3 degrees for every 
10 ages graduated graphically).    

The tabulated value with 4 degrees of freedom is 9.488.    

Since 4.4673 < 9.488 we have no evidence to reject the null hypothesis.    

(ii) On the basis of the chi-squared test, the graphical graduation adheres to the 
data satisfactorily.    

However, there is a large deviation at age 20 which requires further 
investigation.   

(iii) Possible shortcomings, and the relevant tests are:    

There may be long runs of deviations of the same sign caused by 
undergraduation.   
These can be detected by the grouping of signs test or the serial correlations 
test.   
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There may be one or two large deviations at particular ages, balanced by lots 
of small deviations (as in the example in part (i))   
These can be detected by the individual standardised deviations test.     

The graduated rates may be too high or too low over the whole of the age 
range, but by an amount too small for the chi-squared test to detect.   
The signs test or the cumulative deviations test will detect this.     

The results of the graduation may not be smooth.   
This can be detected by looking at the third order differences of the graduated 
rates xq .  If the rates are smooth, these should be small in magnitude 

compared with the quantities themselves and should progress regularly.  

B5 (i) Taking logarithms of the Gompertz hazard produces     

log x = log B + x log c      

which indicates that the rate of increase of the hazard with age is constant.    

Empirically, this is often a reasonable assumption for middle ages and older 
ages, which include the age range 50 65 years.   

(ii) Putting B = exp( 0 + 1 X1 + 2 X2 + 3 X3) into the Gompertz model 
produces     

x = exp( 0 + 1 X1 + 2 X2 + 3 X3) . cx,    

defining x as duration since 50th birthday.     

The hazard can therefore be factorised into two parts:  

exp( 0 + 1 X1 + 2 X2 + 3 X3), which depends only on the values of 
the covariates, and   

cx, which depends only on duration.    

Therefore the ratio between the hazards for any two persons with different 
characteristics does not depend on duration, and so the model is a proportional 
hazards model.   

(iii) (a) The baseline hazard in this model relates to      

a female,    
non-smoker,   
who drinks less than 21 units of alcohol per week.  
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(b) For a female cigarette smoker who does not consume alcohol we have      
X1 = 0,  X2 = 1,  X3 = 0 and x = 5.     

Therefore the hazard is given by     

5 = exp( 0 + 1 .0 + 2 .1 + 3 .0) . c5     

= exp( 5 + 0.75)  1.105     

= 0.0230.    

(c) The hazard for a non-smoker at duration u is given by the formula      

u = exp( 0 + 1 X1 + 3 X3) . cu,     

The hazard for a smoker at duration v is given by the formula      

*v = exp( 0 + 1 X1 + 0.75 + 3 X3) . cv.     

If the smoker s and non-smoker s hazards are the same, then      

u = *v,      

which implies that     
exp( 0 + 1 X1 + 3 X3).cu      

= exp( 0 + 1 X1 + 0.75 + 3 X3) . cv.      

which simplifies to     
cu = exp(0.75) . cv,     

so that     
cu/cv = cu v  = exp(0.75) = 2.117.     

Since c = 1.1, we have     
1.1u v = 2.117.      

Therefore      

u 

 

v = log(2.117)/log(1.1)       
= 0.75/0.0953 = 7.87.     

So when the two hazards are equal, the non-smoker is approximately 
eight years older than the smoker.     

Alternatively this could be demonstrated by calculating u and *u-8 

and showing that they are approximately the same.  
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B6 (i) Let the probability of failure within the first 20 days be 20 0q .    

We have:       

20 0 20 0 1 0 19 1

1 0

1 1 .

       
1 (1 )exp( 19 )

       

1 0.95exp( 19 0.01)

       

1 0.95exp( 0.19)       

1 0.95(0.82696)

q p p p

q

   

which is 0.21439.   

(ii) (a) The complete expectation of life of a one-day old light bulb, 1e is 

given by         

1 1
0

0.01

0

t

t

e p dt

e dt

     

Integrating, this gives      

0.01
1

0

1 1
0 1

0.01 0.01
te e

        

= 100 days.    

(b) The complete expectation of life of a new light bulb, 0e  is given by      

1

0 0 0 0
0 0 1

t t te p dt p dt p dt .   (*)      

Alternative 1        

Assume a uniform distribution of failure times between exact ages 0 
and 1,      

the first term in (*) is equal to 
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1 0

1 0

1
1

2
1

1 (1 )
2

1
(1 0.95) 0.975

2

p

q

      

The second term is equal to     

1 0 1
0

0.95(100)tp p dt

    

(using the result from part (i) above).      

Therefore:     

0 0.975 100 0.95 95.975 days.e

       

Alternative 2     

Assume a constant force of failure between exact ages 0 and 1     

Let this constant force be .     

Then     
1

1 0
0

1 0

exp exp( )

1 0.95.

p ds

q

     

So that     
exp( ) 0.95

      

and     
log(0.95) 0.0513.

      

Thus the first term on the right-hand side of (*) is 
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1 1

0
0 0

1
0

exp( 0.0513 )

1
exp( 0.0513 )

0.0513

1
exp( 0.0513) 1

0.0513

0.97478,

t p dt t dt

t

      

and the second term is equal to     

1 0 1
0

0.95(100)tp p dt

     

(using the result from part (i) above).     

So that      

0 0.97478 100 0.95 95.97478 days.e

   

(iii) The complete expectation of life of a light bulb at any age is an average of the 
future lifetimes of all bulbs which have not failed before that age.     

The value of 0e  is lower than 1e  because the average 0e  includes the very 

short lifetimes of the relatively large proportion of bulbs which fail in the first 

day, which deflate the average, whereas 1e excludes these.     

END OF EXAMINERS REPORT 


