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A. General comments on the aims of this subject and how it is marked 
 

1. The aim of the Models subject is to provide a grounding in stochastic processes and 

survival models and their application. 
 

2. Subject CT4 comprises five main sections:   

 

(1)  a study of the properties of models in general, and their uses for actuaries, including 

advantages and disadvantages (and a comparison of alternative models of the same 

processes); 

 

(2)  stochastic processes, especially Markov chains and Markov jump processes; 

 

(3)  models of a random variable measuring future lifetime; 

 

(4) the calculation of exposed to risk and the application of the principle of 

correspondence; 

 

(5)  the reasons why mortality (or other decremental) rates are graduated, and a range 

of statistical tests used both to compare a set of rates with a previous experience 

and to test the adherence of a graduated set of rates to the original data. 

 

Throughout the subject the emphasis is on estimation and the practical application of 

models.  Theory is kept to the minimum required in order usefully to apply the models to 

real problems. 

 

3. Different numerical answers may be obtained to those shown in these solutions 

depending on whether figures obtained from tables or from calculators are used in the 

calculations but candidates are not penalised for this.  However, candidates may lose 

marks where excessive rounding has been used or where insufficient working is shown.   

Credit is given for valid solutions different from those shown below.  Partial credit is also 

given to candidates submitting incomplete solutions with valid intermediate workings. 

 
B. General comments on student performance in this diet of the 

examination 
 

1. The performance of candidates in this examination was below the average over the past 

five years, but somewhat better than that in April or September 2016.  The examination 

paper was considered to be of slightly greater difficulty than the September 2016 paper, 

and a slightly lower Pass Mark was therefore used.  

 

2. This examination paper included questions on parts of the syllabus that have not been 

examined for many sessions.  A substantial number of candidates scored poorly on these 

questions.  This suggests that candidates are relying too much on previous examination 

papers in their preparation, training themselves to pass the examination by making sure 

they can do certain commonly-asked questions.  If questions are asked on parts of the 

syllabus which are not often examined, or questions are asked on commonly examined 
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parts of the syllabus in a slightly unusual form, these candidates struggle.  

 

3. A number of candidates did not read the wording of the questions closely enough, and so 

lost marks on straightforward sections of the paper because they did not answer the 

question asked. 

 
C. Pass Mark 
 

The Pass Mark for this exam was 56. 
 
 
Solutions   
 

Q1  We require  +½ 

 

 
2 7

7 93
0 2

exp 0.10 0.15 
    
 

p dt dt    +½ 

 
 7 93 exp( 0.95) 0.386741  p   +½ 

 

 
5

5 100
0

exp 0.20
   
 

p dt    +½ 

 
 5 100 exp( 1.00) 0.367879  p   +½ 

  
 So  +½

  [Total 3] 
 

Full credit could be obtained for the correct numerical answer and some 

indication of the method used.  A common error was to use an incorrect age 

range when evaluating survival probabilities.  Most candidates, however, 

scored well on this question. 

 
 

  

5 100 7 93 5 100 7 93. (1 ).q p p p 

5 100 7 93. 0.632121*0.386741 0.244467q p  
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Q2 (i) An increment of a process is the amount by which its value increases over a 
period of time, for example X(u + t) – X(u) where t > 0. +1
 [1] 

 
 (ii) EITHER 
 

  log[ (30 )] log[ (30 )] log[ (1 ) ] log[ (1 ) ]u t uh u t h u B B         +1 
 
  log ( )log(1 ) (log log(1 )).B u t B u           +½ 
 
  log(1 )t     +½ 
 
  The increment thus depends on t, the duration of the process but not 
  on u, hence the process is stationary. +1 
 
  OR 
 
  log (30 ) log log(1 )h u B u       +1 
 

  log (30 ) log(1 )
d

h u
du

     +1 

 
  which is constant and does not depend on u, so the process is stationary. +1

 [3]
    [Total 4] 

 

Most candidates (though by no means all) could define an increment.  Many 

candidates did not make a serious attempt at part (ii), which dealt with a topic 

that had not been examined for several sessions.  The better-prepared 

candidates saw that the increment for each time unit was constant and hence 

the process was stationary.  A few candidates failed to spot this and tried to 

demonstrate weak stationarity.  Credit was given for this, although such 

candidates often encountered difficulty in calculating the covariance of the 

process. 

 
 

  



Subject CT4 (Models Core Technical) – April 2017 – Examiners’ Report 

Page 5 

Q3  (i) A Markov Chain is a process operating in discrete time with a discrete state 
space  +1 

 
  EITHER 
 
  It obeys the Markov property:  +½ 
 
  that the future state of the process can be predicted from its present  
  state alone, without any reference to its past history +½ 
 
  OR 
 
  P[Xt  A  

1s
X = x1 , 2sX = x2 , ..., nsX = xn , Xs = x] = P[Xt  A  Xs = x]  +½ 

 
  for all times s1 < s2 < ... < sn < s < t, all states x1 , x2 , ..., xn , x in S and  

  all subsets A of S. +½ 
   [2] 
 
 (ii) In a time-homogeneous Markov chain the transition probabilities are time-

independent. +½ 
   
  In a time-inhomogeneous Markov chain the transition probabilities depend on 

the absolute values of time, not just the time difference. +½ 
 
  Examples: time-homogeneous – no claims discount system in which the 

probability of a claim in each year is constant. +½ 
 
  time-inhomogeneous – no claims discount system in which accident 

probabilities reflect changing traffic conditions from one year to the next. +½ 
   [2] 
   [Total 4] 
 

Most candidates could define a Markov Chain.  There was less sure-

footedness about describing the difference between a time-homogeneous and 

a time-inhomogeneous Markov chain.  Many candidates referred to “transition 

rates” when they meant one-step transition probabilities.  Others made vague 

statements about the “Chain depending [or not] on time”, for which only 

limited credit was given.  In part (ii) credit was given only for examples which 

could sensibly be analysed using a Markov Chain. 
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Q4  (i) The state space may be either discrete or continuous. +½ 
 
  The time set may be either discrete or continuous. +½ 
 
  Hence we have 2  2 = 4 possibilities: 
 
  State space Time set 
 
  Discrete Discrete 
  Discrete Continuous 
  Continuous Discrete 
  Continuous Continuous 

  +1 
    [2] 
 
 
 (ii) State space  Time set  Examples 
 
  Discrete  Discrete  Simple random walk 
        Counting process 
        Markov chain 
        Markov jump chain 
 
  Discrete  Continuous  Poisson process 
        Counting process 
        Markov jump process 
        Compound Poisson 
        process 
 
  Continuous  Discrete  White noise 
        General random walk 
        Time series 
 
  Continuous  Continuous  Compound Poisson 
        process 
        White noise 
        Brownian motion 
        Itô process 
   +2

 [2]
 [Total 4] 

  

This question was well answered, with many candidates scoring full marks.  

As indicated in the model solutions above, credit was given in part (ii) for 

examples which are not on the CT4 syllabus, but which were correctly 

classified (e.g. Itô process). 
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Q5  (i)  

  

0 0.7 0.3 0 0 0

1 0.2 0.5 0.3 0 0

2 0 0.2 0.5 0.3 0

3 0 0 0.2 0.5 0.3

4 0 0 0 0.2 0.8

 
 
 
 
 
 
 
 

 . +2

 [2] 
 
 (ii) For the long run proportion of time that the rack is either full or empty,  
  we need to find the stationary distribution.  
  OR 
  Let the long-run probability of there being i bicycles in the rack be i .   +½ 

 
  Then if P is the transition matrix we need to solve  
 

     0 1 2 3 4 0 1 2 3 4 P           . +½ 

 
  The equations are 
 
  

  

0 0 1

1 0 1 2

2 1 2 3

3 2 3 4

4 3 4

0.7 0.2

0.3 0.5 0.2

0.3 0.5 0.2

0.3 0.5 0.2

0.3 0.8

    

      

      

      

    

            +1½ 

 
  Starting with the equation for π0 we have 
 

  
0 1

1 0

0.3 0.2

1.5

  

  
  

 
  Then in the equation for 1  we have 

 
 

  
0 0 0 2

0 2

2 0

1.5 0.3 0.5(1.5 ) 0.2

0.45 0.2

2.25

      

  

  
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  and in the equation for 2  we have 

 

  
0 0 0 3

0 3

3 0

2.25 0.3(1.5 ) 0.5(2.25 ) 0.2

0.675 0.2

3.375

      

  

  
 

 
  and, finally, in the equation for 4  we have 

 
  

  
4 0 4

4 0

4 0

0.3(3.375 ) 0.8

0.2 1.0125

5.0625

    

  

  
  

 +1½ 
  Since 
 
  0 1 2 3 4 1      , +½ 

 
  we have  
 
  EITHER 
 
  0 0 0 0 0 01.5 2.25 3.375 5.0625 13.1875 1            , 

 
  OR 
 

  0
16 24 36 54 81

1
24 24 24 24 24
       
 

 

  
  and hence 
 
   

  0
16

0.0758
211

     4
81

0.3839
211

    +½ 

 
  Thus the rack is full or empty 45.97 per cent (97/211) of the time,  
  which is more than 35 per cent, +½ 
 
  and the city will increase the size of the rack. +½

 [6] 
 
 (iii) The increase in the size of the rack is likely to reduce the proportion  
  of time for which the rack is empty or full, as the fact that there are  
  more states will “dilute” the probabilities.  +1 
 
  This assumes that behaviour of the users of the scheme remains the same. +½ 
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  However, if the behaviour/characteristics of those using the bicycle  
  scheme change in response to the increased size of the rack  
  (for example new people join the scheme)  +½ 
 
  then the transition matrix may change so that the proportion of time  
  the rack is empty or full may shift. +½ 
   [Max 2]

 [Total 10] 
 

Many candidates scored highly on parts (i) and (ii) of this question.  

Candidates who produced an incorrect matrix in part (i) could potentially score 

full credit in part (ii) if they followed through correctly.  In part (iii) a substantial 

number of candidates spotted that, with more states, the dilution of the 

probability should mean that the proportion of time the rack is empty or full will 

decrease.  Some, however, thought that that chance of it being full would be 

less, but that the chance of it being empty would remain the same.  Only a 

few candidates went further to comment on the possible effect on the 

increase in the size of the rack on the behaviour of those using the bicycle 

scheme. 

 
 

Q6  (i) A Poisson process is a counting process in continuous time { , 0}tN t  ,  

  where Nt records the number of occurrences of a type of event within  
  the time interval from 0 to t.   +1 
 
  Events occur singly and may occur at any time;  +½ 
 
  the probability that an event occurs during the short time interval from time t 

to time t + h is approximately equal to λh for small h, where the parameter λ is 
the rate of the Poisson process. +½ 

  
  OR 
 
  A Poisson process is an integer valued process in continuous time{ , 0}tN t   , 

where +½ 
 
  0 0N   +½ 

  Pr[ 1| ] ( )t h t tN N F h o h       

  Pr[ 0 | ] 1 ( )t h t tN N F h o h        

  Pr[ 0,1| ] ( )t h t tN N F o h      +1 
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  OR 
 
  A Poisson process with rate  is a continuous-time integer-valued process   
  , 0tN t   , with the following properties: +½ 

 
  0 0N    +½ 

  tN  has independent increments +½ 

 

  tN  has Poisson distributed stationary increments 

  

       
, , 0,1,...

!

n t s

t s

t s e
P N N n s t n

n

           +½ 

   [2] 
 
 (ii) Because it is total claims divided by number of weeks (to the nearest whole 

week):  
 

  200
3.846

52
 ,  +½ 

 
  and this can be shown by formal procedures (e.g. maximum likelihood)  
  to be a good estimate. +½ 
   [1] 
 
 (iii) The null hypothesis is that the number of claims per week follows a  
  Poisson distribution with parameter 3.846. +½ 
 
  Using the Poisson formula, the probability of getting exactly d claims  
  in a week is given by 
 

   Pr[D = d] = 
(200/52) (200 / 52)

!

de

d


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  This produces an expected distribution of claims per week as follows: 
 
 Claims Probability Expected number of weeks 
 
 0 0.02136 1.11 
 1 0.08216 4.27 
 2 0.15800 8.22 
 3 0.20257 10.53 
 4 0.19478 10.13 
 5 0.14983 7.79 
 6 0.09604 4.99 
 7 0.05278 2.74 
 8 0.02537 1.32 
 9 or more 0.01711 0.89  
   +2 
 
  Combining the categories 0 and 1, and the categories 69 so that  
  each of the expected values exceeds 5, we can test the fit using a  
  chi-squared test as follows:                   +½ 
 
 Claims Actual number Expected number (A – E)2/E  
  of weeks, A of weeks, E  
 
 01 6 5.38 0.071 
 2 8 8.22 0.006 
 3 10 10.53 0.027  
 4 12 10.13 0.345 
 5 4 7.79 1.844 
 69 12 9.94  0.427  
   +1 
 
  The chi-squared statistic is 2.72. +½ 
 
  The number of degrees of freedom is the number of categories less one 

because of the constraint imposed by the number of weeks in the year. +½ 
 
  So there are 5 degrees of freedom.. +½ 
 
  The critical value at the 5% level is 11.07. +½ 
 
  Since 2.72 < 11.07  +½ 
 
  we do not reject the null hypothesis, and conclude that the  
  Poisson distribution with parameter 3.846 fits the data well. +½ 
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  ACCEPTABLE ALTERNATIVE GROUPING OF CLAIMS 
 
 Claims Actual number Expected number (A – E)2/E  
  of weeks, A of weeks, E  
 
 01 6 5.38 0.071 
 2 8 8.22 0.006 
 3 10 10.53 0.027  
 4 12 10.13 0.345 
 5 4 7.79 1.844 
 6 6 4.99 0.203 
 79 6 4.95  0.223  
   +1 
  
  The chi-squared statistic is 2.72. +½ 
 
  The number of degrees of freedom is the number of categories less one 
  because of the constraint imposed by the number of weeks in the year. +½ 
 
  So there are 6 degrees of freedom. +½ 
 
  The critical value at the 5% level is 12.59. +½ 
 
  Since 2.72 < 12.59  +½ 
 
  we do not reject the null hypothesis, and conclude that the  
  Poisson distribution with parameter 3.846 fits the data well. +½ 
   [7] 
    
 (iv) In order to test for independence of the number of claims in  
  successive weeks. +1

 [1]
 [Total 11] 

 

Parts (i) and (ii) of this question were well answered.  In part (ii) many 

candidates correctly calculated the expected number of weeks having 0, 1, 2, 

… claims using a Poisson distribution with parameter 3.846.  Fewer knew 

how to test the hypothesis that this Poisson distribution fit the data.  Of those 

who did a chi-squared test, only a minority grouped the claims categories so 

that the expected number of claims in each category was 5 or more.  A 

significant minority of candidates calculated a table based on the actual and 

expected number of claims occurring in weeks with 0, 1, 2, … claims, and 

tried to do a chi-squared test on this.  This test cannot include the weeks in 

which no claims take place (when both actual and expected numbers are zero 

whatever the value of the parameter), so limited credit was given for this 

approach.  A common error was to state that the number of degrees of 

freedom was the number of groups minus 1 because of the estimation of the 

Poisson parameter.  This is incorrect; it is the number of groups minus one 

because of the constraint that there are 52 weeks in the year.  In part (iv) only 
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a small number of candidates correctly identified the reason for performing a 

serial correlations test.  Many candidates made vague reference to “clumps” 

or “runs”, suggesting that they were thinking in a general way about statistical 

tests of a graduation, rather than trying to understand the scenario in the 

question. 

 
 

Q7  (i) EITHER 
 
  In a proportional hazards model the hazard factorises  +½

  
  into a component which depends only on duration and a  
  component which depends only on the covariates. +½ 
 
  OR 
 
  In a proportional hazards model the hazard, h(t), may be represented as  
  h(t) = h0(t)g(z),  +½

  
  where h0(t) depends only on duration and g(z) depends only  
  on the covariates +½ 
 
  As a consequence, the effect of a covariate is to shift the hazard up or  
  down by a the same proportion at all durations OR the ratio between the 

hazards for two individuals, A and B, with different  
  covariate vectors, hA(t)/hB(t), is constant/does not depend on duration t. +1

 [2] 
 
 (ii) µ is the hazard for a man who does not drink beer. +1 
 
  β measures the impact on the hazard of a one glass increase in the daily 

amount of beer drunk +1
 [2] 

 
 (iii) The hazard for a man who drinks two glasses of beer a day is  
 
  0.03exp(0.2*2) 0.0448.  +1 
   [1] 
 
 (iv) (a) The probability that a man aged 60 years who drinks three glasses of 

beer a day will survive to his 70th birthday is 
 

  
10

0

exp 0.03exp(0.2*3) exp( 0.547) 0.579dt
 
    
 
 
 . +1 
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  (b) Because the hazard of death is constant, the expectation of life at age 
60 years is given by 

 

   
1 1 1

18.3
( ) exp( ) 0.03exp(0.2*3)h t x

  
 

 years. +1  

    [2] 
 
 (v) The owner’s total revenue R is proportional to the average number of glasses 

of beer drunk per day multiplied by the man's expectation of life: 
 

  
0.03exp(0.2 )

x
R

x
 . +1 

 
  THEN EITHER 
 
   We maximise R with respect to x. 
  

  2

0.03exp(0.2 ) (0.03*0.2)exp(0.2 ) 1 0.2

0.03exp(0.2 )[0.03exp(0.2 )]

dR x x x x

dx xx

 
  . +½ 

 
  This is zero when 1 – 0.2x = 0, or when x = 5. +½ 

  

2

2 2

0.2[0.03exp(0.2 )] (1 0.2 )[0.03*0.2exp(0.2 )]

[0.03exp(0.2 )]

0.2 0.2(1 0.2 ) 0.2(0.2 2)

[0.03exp(0.2 )] [0.03exp(0.2 )]

d R x x x

dx x

x x

x x

  


   
 

 +½

  
  which is negative when x = 5,  +½ 
 
  so we have a maximum, +½ 
 
  and the owner should sell the man five glasses of beer per day. +½ 
 
  OR 
 
  Taking the logarithm of R we have 
 
  log log log0.03 0.2R x x          

  
log 1

0.2
d R

dx x
   .        +½ 

 
  This is zero when x = 5.       +½ 
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  Since 
2

2 2

log 1d R

dx x
         +½ 

 
  which is always negative,       +½ 
 
  we have a maximum.        +½ 
  
  So the owner should sell the man five glasses of beer per day. +½

 [4]
 [Total 11] 

 

The better-prepared candidates answered part (i) well.  Part (ii) was answered 

poorly by many candidates.  The question asked for the interpretation of the 
parameters μ and β “in the context of this model”, but most candidates simply 

gave general interpretation which were not given credit.  Few candidates 

made serious attempts at part (v).  Most seemed to have little idea of how to 

express the total amount of beer the man buys over his remaining lifetime as 

a function of the number of glasses of beer to be sold to him per day.  Credit 

was given for an alternative approach in which candidates computed the 

expected revenue for 0, 1, 2, … glasses per day and showed that this 

reached a maximum at 5 glasses.  

 
 

Q8  (i) Right censoring +½ 
 
  Of those packets of cheese which are sold or discarded after 10 days.  
  We do not know when these packets would have gone mouldy, but  
  we know that it was after they ceased to be observed. +½ 
 
  Random censoring +½ 
 
  The time at which a packet of cheese is sold may be considered as 
  a random variable.  +½ 
 
  Type 1 censoring +½ 
 
  For those packets thrown out at day 10, the time of censoring is known in 

advance. +½ 
 
  Interval censoring +½ 
 
  Because data were only collected once per day: we only know that  
  events happened between 8 a.m. one day and 8 a.m. the next day;  
  we do not know exactly when within this period they happened. +½  
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  EITHER 
 
  Informative censoring +½ 
 
  If packets that were sold were those which looked the freshest then  
  those packets censored for this reason might be less likely to go  
  mouldy at each duration in excess of the censoring time than those  
  which remain on the shelves. +½ 
 
  OR 
 
  Non-informative censoring +½ 
 
  If shoppers select packets of cheese at random there is no reason to  
  believe that those packets bought are any more or less likely to go  
  mouldy than those remaining on the shelves. +½ 
       [Max 3] 
 
 (ii) Right censoring 
 
  Hard to change this, as would need to prevent customers buying cheese. +1 
 
  Random censoring 
 
  Hard to change as would need to prevent customers buying cheese. +1 
 
  Type 1 censoring 
 
  Could be removed by leaving all the cheese in the shelves until the  
  last packet went mouldy or was sold. +1  
 
  OR 
 
  Could be removed by throwing the remaining cheese away once a certain 

number had already gone mouldy, in which case we would have  
  introduced Type II censoring. +1 
 
  Interval censoring 
 
  Could be reduced by more frequent checks.  Hard to remove,  
  other than by continuous monitoring of the cheese and the  
  removal of cheeses at the first sign of mould.  Video surveillance  
  might be a solution. +1 
 
  Informative censoring 
 
  Could be removed by giving customers no choice about which  
  packet of cheese they bought.  However, customers  
  might object to being treated this way. +1 
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  Non-informative censoring 
 
  This feature is desirable so we would not want to remove it. +1 
      [Max 3] 
 
 (iii)  tj    nj dj cj dj/nj 1  dj/nj  
 
 0 20  3 
 2 17  1 
 2 16 1  1/16 15/16 
 3 15 2  2/15 13/15  
 4 13  4   
 6 9 2  2/9 7/9 
 9 7  2   
 10 5 3 2 3/5 2/5    
                        
       +½       +1      +½          +½       +½        +½ 
                          +3½ 
 

  The Kaplan-Meier estimate is S(t) = 1
j

j

t t j

d

n

 
   

 
. +½ 

 
 t Kaplan-Meier estimate of S(t) 
 
  0 ≤ t < 3 1 
  3 ≤ t < 4 15/16=0.9375 
  4 ≤ t < 8 13/16=0.8125  
  8 ≤ t < 10 91/144=0.6319 
   t = 10 91/360=0.2528                
 
  +1 +1 +2 
         [6] 
        [Total 12] 

 

The most common error with this question was to assume the wrong 

decrement (i.e. that the decrement was cheese being sold, whereas the 

question stated that interest is in “the hazard of cheese going mouldy”).   

Candidates who assumed the wrong decrement scored little for part (i) but 

could gain credit for part (ii) if their suggestions were sensible given what they 

had written in part (i), and for part (iii) if they applied the correct method. 
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Q9  (i) The matrix is 
 
 

   

0.6 0.2 0.2

0.25 0.6 0.15

0.1 0.4 0.5

 
 
 
 
 

A

B

C

 +1 

   [1] 
 
 (ii) We need second order transition probabilities. +½ 
 
  The second order transition matrix is: 
 

  * =  +1 

   
  So the probabilities are 0.43 in Atlantis, 0.32 in Beachy and 0.25 in  
  Coral. +½ 
   [2] 
 
 (iii) Either of the following two graphs was acceptable. 

 
   
   

















5.04.01.0

15.06.025.0

2.02.06.0

















5.04.01.0

15.06.025.0

2.02.06.0

















33.046.021.0

215.047.0315.0

25.032.043.0

Probability on each island
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+3 
[3] 

+½ 

+½  
[1] 

+½ 

 
+1½ 

[2] 
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 (vi) 
    
 
 
 

 
          
 
 
   

 +3 
   [3] 
   [Total 12] 
 

This was a demanding question, and many candidates only attempted parts 

(i) and (ii).  In part (iii) a graph with smooth lines was acceptable.  Many 

candidates simply computed the long-run probabilities of being in each 

country and plotted these on a bar chart.  This did not answer the question, 

which was about the “probabilities … over time”.  Of those who did try parts 

(v) and (vi), many posited incorrect state spaces, the most common which 

considered where the foreign correspondent was and had states {A for the 

first time, A for a second or subsequent time, B for the first time, B for a 

second or subsequent time, C for the first time, C for a second or subsequent 

time}.  This is incorrect because the purpose of the exercise is to model 

“which countries he has visited so far” and the state B for the first time, say, 

does not distinguish individuals who have visited country A only, country C 

only, and both countries A and C.  Partial credit was given in parts (v) and (vi) 

for various alternative state spaces, notably {A, AB, AC, ABC} where the 

letters refer to the countries the foreign correspondent has already visited. 

This is not Markov, since the probability of moving from state AB to state ABC 

depends on whether he is in country A or in country B. 

 

A only 

On A 
A and B

On A 
A and C 

On B 
A and B 

On C 
A and C

All 
islands 
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Q10  (i) The crude rates are estimated independently at each age. +½
  

  Therefore they are subject to sampling error. +½ 
 
  This is a fairly small country, so there may be scanty data at certain ages. +½ 
 
  This means that the crude rates may exhibit “roughness” in the  
  progression from age to age. +½ 
 
  We believe that underlying mortality actually progresses smoothly  
  from age to age. +½ 
 
  Graduation “irons out” the roughness in the crude rates which is due to 

sampling error while preserving the underlying level and shape of the 
mortality curve. +½ 

    
  It uses information from adjacent ages to adjust the rate at any  
  particular age. +½ 
 
  We believe that the graduated rates are close to the true mortality 

rates underlying the crude rates. +½ 
 
  The government of the country may wish to use the new table for  
  financial calculations and economic planning (e.g. for a state  
  pension scheme), so it is important that sampling errors are removed. +½ 
       [Max 3] 
 
 (ii) Graduation using a parametric formula. +½ 
 
  As the results are being used to create a standard table. +½ 
 
  As the data reflect adult ages, a formula from the Gompertz or  
  Makeham family would seem appropriate. +½ 
 
  The parameters can be estimated by maximum likelihood or least squares, 

using weights which are proportional to the amount of data at each age. +½ 
       [Max 1] 
 
 (iii) Might not find a suitable formula with a small number of parameters 
  to fit the data at all ages. +1 
 
  At extreme ages data might be scanty and so less weight should be  
  given to those ages when estimating the parameters of the formula. +1 

   [2] 
 
 (iv) Under the null hypothesis that the graduated rates are  
  equal to the mortality underlying the crude rates,  +½ 
 
  the individual standardised deviations should be distributed N(0,1)  +½ 
 



Subject CT4 (Models Core Technical) – April 2017 – Examiners’ Report 

Page 22 

  There are 80 deviations.   +½ 
 
  The number of positive deviations P is distributed Binomial (80, 0.5).   +½ 
 
  We have a large number of deviations so 
  we can use the Normal approximation +½ 
    
  P ~ Normal(40, 20) 
  
  We have 31 positive deviations. +½ 
 
  EITHER WITHOUT CONTINUITY CORRECTION 
 

  We compute the z-score which is 
31 40

2.01
20


  . +½ 

  Since –2.01 < 1.96  +½ 
 
  we have sufficient evidence to reject the null hypothesis at the  
  5% level (two-tailed test). +½ 
 
  OR WITH CONTINUITY CORRECTION 
 

  We compute the z-score which is 
31.5 40

1.9007
20


  . +½ 

 
  Since –1.9007 > 1.96  +½ 
 
  we have insufficient evidence to reject the null hypothesis at the 5% level 

(two-tailed test). +½ 
 
  EITHER 
 
  We expect 1 in 20 of the standardised deviations  
  to be greater than 2 in absolute magnitude.  Here we have  
  12 out of 80 which is 3 in 20, which is more than we should expect.   +1 
 
  OR 
 
  We also expect fewer than 1 in 100 of the standardised   
  deviations to be greater than 3 in absolute magnitude, and here  
  we have 3 out of 80, which is again a larger proportion than we  
  should expect. +1 
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  We can compute a chi-squared test.  The calculations are shown in the table 
below. 

 
  Range Actual number Expected number (A – E)2/E 
  of zxs of zxs 
 
  1xz     23 12.8 8.2  

 0 1xz     26 27.2 0.1 

  1 0xz    16 27.2 4.6 

  1xz    15 12.8 0.4  

   +1 
  
  The chi-squared statistic is 13.3. +½ 
 
  There are 3 degrees of freedom (the number of groups minus 1) +½ 
 
  because the total number of ages is fixed, so once the zxs have been 
  allocated to three groups, the number to go in the final group is 
  determined. +½

  
  The critical value at the 5% level is 7.82. +½ 
 
  Since 13.3 > 7.82 we reject the null hypothesis. +½

                 [Max 6] 
 
 (v) The tests seem to indicate that the graduated rates are statistically 
  different from the “true” mortality rates underlying the crude rates. +½ 
 
  The government would be unwise to use these graduated rates for  
  financial calculations or economic planning. +½ 
 
  They will tend to overestimate mortality and therefore underestimate  
  the amount of money required to fund future pensions. +½ 
 
  This could lead to fiscal problems for future governments. +½ 
   [2] 
   [Total 14] 
 

Answers to this question were often relatively weak, especially part (iv).  The 

data were provided to allow the chi-squared test described on Unit 11, page 

10 of the Core Reading, but only a small minority of candidates attempted 

such a test.  Most were content with a non-rigorous check for outliers.  

Several candidates, however, made sensible comments in part (v).  Credit 

was given in part (v) for any thoughtful comments which were consistent with 

candidates’ answer to part (iv).  So, if a candidate used the continuity 

correction in part (iv) and did not reject the null hypothesis, credit was given in 

part (v) for stating that the graduated rates were not biased up or down. 



Subject CT4 (Models Core Technical) – April 2017 – Examiners’ Report 

Page 24 

Q11  (i)  
 
 
 
  
 
     
      
   
   +2 
   [2] 
 
 (ii) Let the number of transitions observed from state i to state j be dij. +½ 
 
  Let the total waiting time in state i be Wi. +½ 
 
  Let the intensity of the transition from state i to state j be µij. +½ 
 
  Then the likelihood, L, is 
 

exp[ ( )]exp[ ( )]( ) ( ) ( ) ( )
HS HD SH SDH HS HD S SH SD HS d HD d SH d SD dL W W            

 +2½
 [4] 

 
 (iii) Taking logarithms of the likelihood we have 
 

  log ( ) log terms not involving H HS HS HS HS
e eL W d         +½ 

 

  To maximize this with respect to HS  we proceed as follows: 
 

  
log HS

He
HS HS

d L d
W

d
  

 
 . +½ 

 
  Setting this to zero produces the estimate +½ 
 

  
^ HS
HS

H

d

W
    +½ 

 
  and since 
 
 

  
2

2 2

log

( ) ( )

HS
e

HS HS

d L d

d
 

 
 +½ 

 
  which is negative, we have a maximum. +½ 
   [3] 

Sick (in receipt of 
sick pay) 

Dead 

Healthy 
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 (iv)  Let the number of healthy members aged x last birthday on 1 January in  
  year t be Hx,t, and the number of sick members be Sx,t. 
 
  We need to adjust the exposed-to-risk to age nearest birthday. +½ 
 
  Assuming birthdays are evenly distributed across the calendar year,  +½ 
   
  those aged 52 nearest birthday consist of half of those aged 51 last  
  birthday and half of those aged 52 last birthday. +½ 
 
  Further, assuming the population varies linearly over each calendar year  
  we can apply the trapezium rule. +½ 
 

  The required central exposed to risk for sick members, 52,
c

SE   is given by 

 

       52, 51,2014 52,2014 51,2015 52,2015 51,2015 52,2015 51,2016 52,2016
1 1 1 1 1

2 2 2 2 2
c

SE S S S S S S S S
          

 +1 
 
  which is 
 

         52,
1 1 1 1 1

12 10 20 18 20 18 8 7 28.25
2 2 2 2 2

c
SE

           
. +½

  
  Similarly, we have 
 

       52, 51,2014 52,2014 51,2015 52,2015 51,2015 52,2015 51,2016 52,2016
1 1 1 1 1

2 2 2 2 2
c

HE H H H H H H H H
          

 +1 
 
  and, since Hx,t = total members – Sx,t, we have +1 
 

        52,
1 1 1 1 1

136 136 142 130 142 130 172 153 285.25
2 2 2 2 2

c
HE

           
 +½ 

   [6]
 [Total 15] 

 

This question was well answered by most candidates.  A very common error 

in part (iii) was to forget that the exposed to risk for falling sick should not 

include those persons who are already sick.  The total exposed to risk was 

313.5, of whom 285.25 were Healthy (and hence at risk of falling sick) and 

28.25 were Sick (and hence at risk of recovery). 

 

END OF EXAMINERS’ REPORT 


