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EXAMINERS COMMENTS  

Comments on solutions presented to individual questions for this April 2005 paper are given 
below:  

103 Part  

Question A1 This was reasonably well answered. 
Descriptive (rather than formulaic) answers to part (i) were given equal 
credit.  Very few candidates correctly identified the state space for the 
compound Poisson process in part (ii).  

Question A2 This was reasonably well answered.  
Marks were lost by candidates who did not provide sufficient detail or did not 
provide enough distinct points.  Some candidates attempted to define the 
model they would adopt, rather than the stages in the modelling process.  

Question A3 This was very poorly attempted by most candidates.  
Very few candidates provided any real attempt at part (i).  The examiners 
were looking here for a demonstration of pairwise (not mutual) independence, 
and the hint should have made this clear.  
In part (ii), most candidates wrongly stated that the sequence was Markov. 
Many candidates did not attempt part (iii); this may be because of the failure 
to make any progress in part (i), although it should be noted that subsequent 
parts of the question did not depend on correctly answering part (i).  

Question A4 This was well answered overall. 
In part (i), some candidates did not allow for re-marriage from the divorced 
or widowed states, which then caused them problems in part (ii).   
Candidates lost marks in part (iii) if they did not provide sufficient 
explanation of their steps.  

Question A5 This was very well answered, with the majority of candidates scoring highly.  

Question A6 Overall this was not well answered, but the better candidates did score well. 
Many candidates produced good answers to part (i) to (iv).  In part (iii), a 
number of candidates did not verify that the boundary conditions were 
satisfied. 
Some candidates struggled with part (v) and a significant number did not 
attempt this part of the question.  
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104 Part  

Question B1 This was well answered overall.   
Most candidates answered part (i) well, but many then struggled to express 
clearly what was required in part (ii).  

Question B2 This was very poorly answered.   
Many candidates did not seem to know how to start this, with a significant 
number starting with the uniform distribution assumption and working 
backwards.    

Question B3 This was well answered overall.  Many candidates included a continuity 
correction. This was not necessary, as there were 92 ages, but candidates who 
did so received full credit if they used it correctly.   

Question B4 This was not well answered.   
In part (i) significant numbers of candidates talked about general goodness of 
fit tests.  This did not receive credit, as it was the appropriateness of the linear 
form of the function that we were looking for, before doing the graduation.  
Goodness-of-fit tests come later, after the graduation has been done, and were 
not part of this question. 
In parts (i) and (ii), many candidates considered the graduated rates rather 

than the crude rates, for example plotting 1
2

xm against 1
2

s

x
 and this was 

penalised.  

Question B5 This was well answered.   
Some candidates assumed that there was no censoring until the end of the 
investigation.  This led to a non-integer number of deaths, which should have 
indicated an error, but few of these candidates realised this.  

Question B6 Most candidates correctly answered part (i). 
As with similar questions in previous years, part (ii) was not well answered.  
Many candidates lost marks by not providing sufficient explanation of their 
working. 
In part (iii), most candidates mentioned the variance ratio and gave the 
formula from the gold book, but many did not provide a good explanation of 
what this meant in practice.  

Question B7 This was reasonably well answered overall.   
In part (i), candidates were asked to estimate , so some indication of how 
they reached their answer was required for full credit.   
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103 Part   

A1 (i)  (a) Let Y1, Y2, , Yj, , be a  sequence of independent and identically 
distributed random variables with       

1
1 1

2j jP Y P Y

     

and define       

1

n

n j
j

X Y

     

Then 
1n n

X  constitutes a symmetric simple random walk.    

(b)  Let Nt be a Poisson process, t  0 and let Y1, Y2, , Yj, , be a 
sequence of i.i.d. random variables. Then a compound Poisson process 
is defined by       

1

, 0.
tN

t j
j

X Y t

    

(ii)  (a) A simple random walk operates on discrete time and has a discrete 
state space (the set of all integers, Z).    

(b) A compound Poisson process operates on continuous time.     

It has a discrete or continuous state space  depending on whether the 
variables Yj are discrete or continuous respectively.   

A2    

 

Review the regulatory guidance.  

 

Define the scope of the model, for example which factors need to be modelled 
stochastically.  

 

Plan the development of the model, including how the model will be tested and 
validated.  

 

Consider alternative forms of model, and decide and document the chosen 
approach. Where appropriate, this may involve discussion with experts on the 
underlying stochastic processes.  
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Collect any data required, for example historic losses or policy data.   

 
Choose parameters.  For economic factors should be able to calibrate to market 
data. For other factors e.g. expenses, claim distributions need to discuss with staff.  

 
Existing worst case scenarios. Discuss with staff who made the estimates, 
especially to gauge views on the probability of events occurring.  

 

Decide on the software to be used for the model.  

 

Write the computer programs.  

 

Debug the program, for example by checking the model behaves as expected for 
simple, defined scenarios.  

 

Review the reasonableness of the output. May include:  

 

median outcomes (how do these compare with business plans) 

 

what probability is assigned to worst case scenarios  

 

Test the sensitivity of the model to small changes in parameters.  

 

Calculate the capital requirement.  

 

Communicate findings to management. Document.   

Other suitable points were given credit, including:  

 

Validate data. 

 

Run model on historic data to compare model s predictions with previous 
observations. 

 

Review parameters that have greatest effect on outputs. 

 

Present range of capital requirements for differing parameter inputs.   

A3 (i)  It is clear that 2kY  can only take two values, ±1, with probabilities    

2 2 1 2 1 2 1 2 1
1

1 1 1
2k k k k kP Y P Y Y P Y Y

   

and     

2

2 1 2 1 2 1 2 1

1

1
1, 1 1, 1

2

k

k k k k

P Y

P Y Y P Y Y

    

so that they have the same distribution as Y2k+1.    

To show that 2 2 1,k kY Y  are independent, we observe first that 
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.0122 kk YEYE    

Next,     

2 2 1k kE Y Y

 

2 2 1 2 1 2 2 1 2 1
1 1

| 1 | 1
2 2k k k k k kE Y Y Y E Y Y Y

     

But     

2 2 1 2 1| 1 1 1 0 ( 1) 1,k k kE Y Y Y

    

and similarly 2 2 1 2 1| 1 1,k k kE Y Y Y  which yields that     

2 2 1
1 1

1 1 0.
2 2k kE Y Y

    

Since     

2 2 1 2 2 1( )k k k kE Y E Y E Y Y

    

it now follows from the hint that 2 2 1,k kY Y  are independent.    

For the proof to be complete, we need to show that 2 2,k mY Y  are also 

independent for all k, m.  This is obvious from the statement for all k, m 
except when m = k + 1 or m = k - 1.  For this case, we could either argue as 
above or simply state that it is obvious by symmetry.   

 (ii)  The sequence ,...2,1: kYk  is not Markov; for instance     

2 1 2
1

1| 1
2k kP Y Y

   

but    

2 1 2 2 11| 1, 1 0.k k kP Y Y Y

   

(iii) (a) Since the Yk are pairwise independent, we see that for all i, j, m, n,     
1

( ) | .
2ij m n mp n P Y j Y i
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(b) The probabilities do not depend on the current state as they are all ½     

Using the result in (a) we therefore see that      

1,1

1 1 1 1 1
( ) ( )

2 2 2 2 2ik kj
k

p n p r

      
        ( ).ijp n r

   

which shows that the Chapman  Kolmogorov equations are satisfied 

although ,...2,1: kYk  is not Markov.    

A4 (i)   

NM

M W

D

DIV

0.1

0.025

0.025
0.025

0.1

0.025

0.1

0.05
0.025    

(ii)  The transitions out of the divorced state are to the same states, and with the 
same transition probabilities, as the transitions out of state NM.  
Therefore the probability of ever reaching state W is the same from both 
states.    

Alternatively, this could be shown by producing the equation conditioning on 
the first move out of DIV, as in part (iii), and showing this is identical to that 
for NMP .    

(iii)  Conditioning on the first move out of each state:    

0.025 0.1

0.125 0.125

0.025 0.05 0.025

0.1 0.1 0.1

NM D M

M D DIV W

P P P

P P P P

     

As 1DP and 0WP , these give  
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0.025 0.1 1 4

0.125 0.125 5 5

0.025 0.05 1 1

0.1 0.1 4 2

NM M M

M DIV DIV

P P P

P P P

    
as required.    

(iv)   Using NM DIVP P in the above equations gives:    

1 4 1 1

5 5 4 2

2 2
1

5 5

2

3

NM NM

NM

NM

P P

P

P

  

(v)  

 

Make mortality and marriage rates age dependent. 

 

Divorce rate dependent on duration of marriage. 

 

Divorce rate dependent on whether previously divorced. 

 

Make mortality rate marital status-dependent.    

Other sensible suggestions received credit.   

A5 (i)(a) It is clear that X(t) is a Markov chain; knowing the present state, any 
additional information about the past is irrelevant for predicting the next 
transition.    

(b) The transition matrix of the process is     

P = 

0.15 0.85 0 0

0.15 0 0.85 0

0.03 0.12 0 0.85

0 0.03 0.12 0.85

     

(ii)(a)  For the one year transition, ,022p 
as can be seen from above (or is obvious from the statement).  

(b) The possible transitions, and relevant probabilities are:    

2 1 2 : 0.15 0.85 0.1275

   

2 3 2 : 0.85 0.12 0.102
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The required probability is 0.1275 + 0.102 = 0.2295    

Alternatively    

The second order transition matrix is   

P2=

2 2

2 2

2

2 2

0.15 0.85 0.15 0.85 0.15 0.85 0

0.15 0.85 0.03 0.85 0.15 0.85 0.12 0 0.85

0.03 0.15 0.12 0.15 0.85 0.03 2 0.85 0.12 2 0.85

0.03 0.15 0.12 0.03 0.12 0.85 0.03 0.85 0.03 0.85 0.12 0.12 0.85 0.85

    

= 

0.15 0.1275 0.7225 0

0.048 0.2295 0 0.7225

0.0225 0.051 0.204 0.7225

0.0081 0.0399 0.1275 0.8245

    

Hence the required probability is 0.2295.     

(c) The possible transitions, and relevant probabilities are:    

2 1 1 2 : 0.15 0.15 0.85 0.019125

   

2 3 1 2 : 0.85 0.03 0.85 0.021675

   

2 3 4 2 : 0.85 0.85 0.03 0.021675

    

The required probability is    
0.019125 + 0.021675 + 0.021675 = 0.062475     

Alternatively    

The relevant entry from the third-order transition matrix equals     

0.15 0.1275 0.85 0.051 0.062475.

   

(iii) The chain is irreducible as  
any state is reachable from any other.    

It is also aperiodic;  
If currently at either state 1 or 4, it can remain there. This is not true for states 
2 and 3, however these are also aperiodic states since the chain may return e.g. 
to state 2 after 2 or 3 transitions.   
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(iv) In matrix form, the equation we need to solve is P = ,  
where  is the vector of equilibrium probabilities.      

This reads     

1 2 3 10.15 0.15 0.03     (1)   

1 3 4 20.85 0.12 0.03     (2)   

2 4 30.85 0.12    (3)   

3 4 40.85 0.85     (4)    

Discard the first of these equations and use also that 
4

1
1ii

. Then, we 

obtain first from (4) that 3 40.85 0.15 or, that 4 317 / 3

    

Substituting in (3) this gives    

2 3 3 3 2
17

0.85 0.12 2.65625
3

    

(2) now yields that    

1 2 3 4

3 3 3 3

0.85 0.12 0.03

1
0.12 0.17 0.0865 ,

2.65625

p p p p

p p p p

    

so that finally we get 1 30.10173 .

     

Using now that the probabilities must add up to one, we obtain    

1 2 3 4 3(0.10173 0.3765 1 5.666) 1,

   

or that 3 0.13996.

    

Solving back for the other variables we get that    

1 2 40.01424, 0.05269, 0.79311

    

The long-run probability that the motorist is in discount level 2 is therefore 
0.05269.     
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A6 (i)  

 
No 
Breakdowns

 
One  
Breakdown 

Two 
Breakdowns

 
Three 
Breakdowns

 
1/10 1/5 1/4 

    

(ii)  0 0
1

( ) ( )
10

P t P t

    

1 0 1
1 1

( ) ( ) ( )
10 5

P t P t P t

    

2 1 2
1 1

( ) ( ) ( )
5 4

P t P t P t

    

(iii)(a) Dividing the first equation by 0 ( )P t :    

0
1

ln ( )
10

d
P t

dt

    

Hence, using the boundary condition 0 (0) 1P

     

10
0( )

t

P t e

    

(b) Substitute into the second equation above to obtain    

10
1 1

1 1
( ) * ( )

10 5

t

P t e P t

    

Using an integrating factor 5e
t

, we get    

     '5 10 5
1 1

1 1
e ( ) e

5 10

t t t

P t P t

     

5 10
1

1
( )

10

t t
d

e P t e
dt

     

5 10
1( )

t t

e P t e const

     

10 5
1( )

t t

P t e const e
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10 5
1( ) exp exp

t t

P t

     
using boundary condition 1(0) 0P

    
Alternatively    

Differentiate the suggested solution and verify it obeys the second equation.    

And that the boundary condition is satisfied.   

(iv) Proceeding in a similar way with the equation for 2 ( )P t

      

10 5
2 2

1 1 1
( ) exp exp * ( )

5 5 4

t t

P t P t

     

3 1
20 204

2
1

exp ( ) (exp exp )
5

t
t td

P t
dt

     

3 1
20 204

2
4 8

exp ( ) exp 4 exp
3 3

t
t t

P t

     

10 5 4
2

4
( ) [exp 3 exp 2 exp ]

3

t t t

P t

  

(v) 1 2
3

Expected Claims 1 (1) 2 (1) 3 (1)i
i

P P P

      

1 2 0 1 2(1) 2 (1) 3 1 (1) (1) (1)P P P P P

     

1/10
0(1) exp 0.905P

     

1/10 1/5
1(1) exp exp 0.0861P

     

1 1 1
10 5 4

2
4

(1) [exp 3 exp 2 exp ] 0.00832896
3

P

    

Substituting these values gives:      

Expected Claims = 0.1049 
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104 Part  

B1 (i) If the hazard for life i is ( ; )it z , then    

0( ; ) ( ) exp( )T
i it z t zl l b ,    

where 0( )t is the baseline hazard,     

and  is a vector of regression parameters.  
(ii) The model is semi-parametric because is possible to estimate 

   

from the data without estimating the baseline hazard.    

Therefore the baseline hazard can have any shape determined by    
the data.   

B2 Since    

0

exp
t

t x x sp ds ,    

0

1 1 exp
t

t x t x x sq p ds .    

Substituting for x s  produces    

0

1 exp
1

t
x

t x
x

q ds
q

sq

   

Performing the integration we have    

0
1 exp log(1 )

     

1 exp log(1 ) log1

     

1 exp log(1 )      

1 exp log(1 )     

1 (1 )     

.

t
t x x

x

x

x

x

x

q sq

tq

tq

tq

tq

tq

   

This is the assumption of a uniform distribution of deaths and implies that deaths 
between exact ages x and x + 1 are uniformly distributed.  
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B3 The null hypothesis is that the observed rates are a sample from a population in which 
English Life Table 15 represents the true rates.   

If the null hypothesis is true, then the observed number of positive deviations, P,  
will be such that P ~ Binomial (92, ½).   

We use the normal approximation to the Binomial distribution because we have > 20 
ages   

This means that, approximately, P ~ Normal (46, 23).   

The z-score associated with the probability of getting 53 positive deviations if the null 
hypothesis is true is, therefore    

53 46 7
1.46

4.7923
.   

We use a two-tailed test, since both an excess of positive and an excess of negative 
deviations are of interest.   

Using a 5 % significance level, we have -1.96 < 1.46 < +1.96.   

(Alternatively, the p-value of the test statistic could be calculated.)   

This means we have insufficient evidence to reject the null hypothesis.   

B4 (i) The suitability of a linear relationship between 1
2

s

x
 and 1

2
x

 could be 

investigated by plotting log(1 ) against log(1 )s
x xq q  or by plotting    

1
2

x
against 1

2

s

x
 and 

 looking for a linear relationship.      

An approximately linear relationship will suffice.      

If data are scarce, too close a fit is not to be expected, especially at extreme 
ages.  
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(ii) (a) We can work with either s
xq  or 1

2

s

x
.     

The value of k which minimises either      

2( )x x x
x

w q q

    

or     
2

1 1
2 2

x
x x

x

w

     

should be found (note that the summations are over all relevant ages x)     

At each age there will be a different sample size or exposed to risk, Ex.     
This will usually be largest at ages where many term assurances are 
sold (e.g. ages 25 to 50 years) and smaller at other ages.    

(b) The estimation procedure should pay more attention to ages where 
there are lots of data.  These ages should have a greater influence on 
the choice of k than other ages.       

This implies weights wx 

 

Ex.         
A suitable choice would be      

1
2

1 1
 or 

var varx x
x

x

w w
q

 or wx = Ex   

(iii) The graduated forces of mortality are a linear function of the forces in the 
standard table.      

Since the forces in the standard table should already be smooth, a linear 
function of them will also be smooth.   

B5  (i) Consider the durations tj at which events take place.  
Let the number of deaths at duration tj be dj and the number of insects still at 
risk of death at duration tj be nj.    

At tj  = 1, S(t) falls from 1.0000 to 0.9167.     

Since the Kaplan-Meier estimate of S(t) is     

( ) (1 ( ))
j

j
t t

S t t ,  
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we must have 0.9167 1 (1) ,    

so that (1) 0.0833.

    
Since 1

1
(1)

d

n
, then we have 1

1
0.0833

d

n
,     

and, since all 12 insects are at risk of dying at tj = 1, we must therefore have 
d1 = 1 and n1 = 12.    

Similarly, at tj = 3, we must have 0.7130 0.9167(1 (3))

    

so that 3

3

0.9167 0.7130
(3) 0.222

0.9167

d

n
.      

Since we can have at most 11 insects in the risk set at tj = 3, we must have 
d3 = 2 and n3 = 9.   
Similarly, at tj = 6, we must have 0.4278 0.7130(1 (6)) ,    

so that 6

6

0.7130 0.4278
(6) 0.400

0.7130

d

n
.      

Since we can have at most 7 insects in the risk set at tj = 6, we must have 
d6 = 2 and n6 = 5.    

Therefore 2 insects died at duration 3 weeks and 2 insects died at duration 6 
weeks.    

Alternatively    

Some candidates worked back to produce a table in the usual format, as 
follows; this received full credit.    

t S(t) = (1- t)  t  nt dt ct   

0 1.0000   0  12 0    
1 0.9167   0.0833  12 1 2   
3 0.7130   0.22  9 2 2   
6 0.4278   0.4  5 2

 

3

          

5 7   

(ii) Summing up the number of deaths we have    
total deaths = 1 3 6 1 2 2 5d d d .    

Since we started with 12 insects, the remaining 7 insects histories were right-
censored.  



Subject CT4  Models  April 2005 Examiners report  

Page 17 

B6 (i) The principle of correspondence states that a life alive at time t should be 
included in the exposure at age x at time t if and only if were that life to die 
immediately, he or she would be counted in the deaths data x  at age x.   

(ii) Px(t) is the number of policies under observation aged x nearest birthday on 
1 January in year t.    

To correspond with the claims data, we wish to have policies classified by age 
last birthday.      

Let the number of policies aged x last birthday on 1 January in year t be ( )xP t .  

Then, assuming that birthdays are evenly distributed,     

1
1

( ) ( ) ( )
2x x xP t P t P t .    

The central exposed to risk is then given by    
1

0

( )c
x xE P t dt .    

Using the trapezium approximation this is     

1
( ) ( 1)

2
c
x x xE P t P t ,    

and, substituting for the ( )xP t  in terms of Px(t) from the equation above 

produces     

1 1
1 1 1

( ) ( ) ( 1) ( 1)
2 2 2

c
x x x x xE P t P t P t P t .   

(iii) The principle of correspondence still holds, because we are dealing with 
claims and policies: one policy can only lead to one claim.      

However, because one life may have more than one policy it is possible that 
two distinct death claims are the result of the death of the same life.        

Therefore claims are not independent, whereas deaths are.  
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The effect of this is to increase the variance of the number of claims 
(compared to the situation in which each life has one and only one policy) by 
the ratio     

2
i

i

i
i

i

i
,    

where i is the proportion of the lives in the investigation owning i policies  (i 
= 1, 2, 3, ...).     

Typically the ratio will vary for each age x.   

B7 (i)(a) The two-state estimate of 70  is 70

70

d

v
, where v70 is the total time the members 

of the sample are under observation between exact ages 70 and 71 years.    

70 70,i
i

v v ,   

where 70,iv is the duration that sample member i is under observation between 

exact ages 70 and 71 years.    

For each sample member, 70,iv  = ENDDATE  STARTDATE    

where ENDDATE is the earliest of the date at which the observation of that 
member ceases and the date of the member s 71st birthday,   
and STARTDATE is the latest of the date at which observation of that 
member begins and the date of the member s 70th birthday.    

The table below shows the computation of v70.    

i Date  Date of Date Date of v70,i    

obs. 70th obs. 71st  (years)    
begins birthday ends birthday    

1 1/1/2003 1/4/2002 1/1/2004 1/4/2003 0.25   
2 1/1/2003 1/10/2002 1/1/2004 1/10/2003 0.75   
3 1/3/2003 1/11/2002 1/9/2003 1/11/2003 0.5   
4 1/3/2003 1/1/2003 1/6/2003 1/1/2004 0.25   
5 1/6/2003 1/1/2003 1/9/2003 1/1/2004 0.25   
6 1/9/2003 1/3/2003 1/1/2004 1/3/2004 0.3333   
7 1/1/2003 1/6/2003 1/1/2004 1/6/2004 0.5833   
8 1/6/2003 1/10/2003 1/1/2004 1/10/2004 0.25    

Therefore 70 70,i
i

v v = 3.167. 
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We observed two deaths (members 3 and 4), so    

70
2

0.6316
3.167

.    

(b) 70 701 exp( )q

     

1 exp( 0.6316) 1 0.5318 0.4682.

   

(ii) The contributions to the Poisson likelihood made by each member are 
proportional to the following   

Member   
1  exp(-0.25 70 )  

2  exp(-0.75 70 )  

3  70 exp(-0.5 70 )  

4  70 exp(-0.25 70 )  

5  exp(-0.25 70 )  

6  exp(-0.3333 70 )  

7  exp(-0.5833 70 )  

8  exp(-0.25 70 )    

The total likelihood, L, is proportional to the product     

2
70 70[exp( 3.167 )]( ) .L

   

Then      

70 70log 3.167 2logL

    

so that     

70 70

log 2
3.167 .

d L

d

    

Setting this equal to zero and solving for 70 produces the maximum 

likelihood estimate,  
which is 2/3.167 = 0.6316    

Since 
2

2 2
70 70

log 2d L

d
, which is always negative, we definitely have a 

maximum.    

This is the same as the estimate from the two-state model.   
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(iii) The Poisson model is not an exact model, since it allows for a non-zero 
probability of more than n deaths in a sample of size n.    

The variance of the maximum likelihood estimator for the two-state model is 
only available asymptotically, whereas that for the Poisson model is available 
exactly in terms of the true .    

The two-state model extends to processes with increments, whereas the 
Poisson model does not.      

The Poisson model is a less satisfactory approximation to the multiple state 
model when transition rates are high. 


