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1 The potential losses from a decision problem are given in the table below 
 

 D1 D2 D3 D4 
1θ  5 8 12 3 

2θ  10 15 7 8 

3θ  7 12 16 9 

4θ  17 4 10 12 
 
 (i) Find the optimal decision using the minimax criteria. [2] 
 
 Now suppose that ( ) ( ) ( )1 2 3 0.3p p pθ = θ = θ =  and ( )4 0.1.p θ =  
 
 (ii) Find the optimal decision using the Bayes criteria. [2] 
   [Total 4] 
 
 
2 Claim amounts on a certain type of insurance policy depend on a parameter α which 

varies from policy to policy.  The mean and variance of the claim amount X given α 
are specified by 

 
  200E X⎡ ⎤α = +α⎣ ⎦  

  [ ] 10 2V X α = + α  
 
 The parameter α  follows a normal distribution with mean 20 and variance 4.   
 
 Find the unconditional mean and variance of X. [6] 
 
 
 
3 An actuary needs to generate samples from the standard normal distribution for use in 

a simulation model he is constructing. 
 
 (i) Describe the polar algorithm for generating pairs of samples from the standard 

normal distribution given pairs of samples from a uniform distribution on 
[0,1]. [3] 

 
 (ii) Calculate the probability that a pair of samples from a uniform distribution on 

[0,1] results in an acceptable pair of samples from the standard normal 
distribution under the algorithm in (i). [3] 

   [Total 6] 
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4 Claims arising on a particular type of insurance policy are believed to follow a Pareto 
distribution.  Data for the last several years shows the mean claim size is 170 and the 
standard deviation is 400. 

 
 (i) Fit a Pareto distribution to this data using the method of moments. [4] 
 
 (ii) Calculate the median claim using the fitted parameters and comment on the 

result. [3] 
   [Total 7] 
 
 
5 A discrete probability distribution is defined by 
 

  ( ) ( ) 1 2,  1          0, , , .,1n nynyn
f y y

ny n n
−⎛ ⎞

μ = μ −μ = …⎜ ⎟
⎝ ⎠

 

 
 where μ is a parameter between 0 and 1. 
 
 (i) Explain why this distribution belongs to an exponential family. [4] 
 
 (ii) State the three main components that need to be taken into account when 

constructing a generalised linear model. [3] 
 
 (iii) Suggest a natural choice of link function if the response variable followed the 

distribution defined above. [1] 
 
 (iv) Suggest a natural choice of link function if instead the response variable 

followed a lognormal distribution. [2] 
   [Total 10] 
 
 
6 Individual claim amounts from a particular type of insurance policy follow a normal 

distribution with mean 150 and standard deviation 30.  Claim numbers on an 
individual policy follow a Poisson distribution with parameter 0.25.  The insurance 
company uses a premium loading of 70% to calculate premiums. 

 
 (i) Calculate the annual premium charged by the insurance company. [1] 
 
 The insurance company has an individual excess of loss reinsurance arrangement with 

a retention of 200 with a reinsurer who uses a premium loading of 120%. 
 
 (ii) Calculate the probability that an individual claim does not exceed the 

retention. [2] 
 
 (iii) Calculate the probability for a particular policy that in a given year there are 

no claims which exceed the retention. [2] 
 
 (iv) Calculate the premium charged by the reinsurer. [4] 
 
 (v) Calculate the insurance company’s expected profit. [2] 
   [Total 11] 
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7 The table below shows claims paid on a portfolio of general insurance policies.  
Claims from this portfolio are fully run off after 3 years. 

 
Underwriting year Development Year 

0 1 2 3 
2008 85 42 30 7 
2009 103 65 25  
2010 93 47   
2011 111    

 
 (i) Estimate the outstanding claims using the basic chain ladder approach. [7] 
 
 You are asked to investigate the fit of the model by applying the development factors 

from part (i) to the claims paid in development year 0 and then comparing the fitted 
claim payments to the actual payments. 

 
 (ii) Construct a table showing the difference between the fitted payments and the 

actual payments in the table above. [3] 
 
 (iii) Comment on the results of the analysis in part (ii). [2] 
   [Total 12] 
 
 
8 An insurer classifies the buildings it insures into one of three types.  For Type 1 

buildings, the number of claims per building per year follows a Poisson distribution 
with parameter λ.  Data are available for the last five years as follows: 

 
Year 1 2 3 4 5 

Number of type 1 buildings covered 89 112 153 178 165 
Number of claims 15 23 29 41 50 

 
 (i) Determine the maximum likelihood estimate of λ  based on the data above.  [5] 
 
 The insurer also has data for the other two types of building for all five years.  Define 
 
  Pij = the number of buildings insured in the jth year from type i and 
 
  Yij = the corresponding number of claims.   
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The five years of data can be summarised as follows: 
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  There are 191 buildings of Type 1 to be insured in year six. 
 
 (ii) Estimate the number of claims from Type 1 buildings in year six using 

Empirical Bayes Credibility Theory model 2. [6] 
 
 (iii) Explain the main differences between the approaches in parts (i) and (ii). [2] 

[Total 13] 
 
 
9 In order to model a particular seasonal data set an actuary is considering using a 

model of the form 
 
  ( )( )3 2(1 ) 1 t tB B B X e− − α+β +αβ =  

 
 where B is the backward shift operator and te  is a white noise process with variance 

2σ .   
 
 (i) Show that for a suitable choice of s the seasonal difference series 

t t t sY X X −= −  is stationary for a range of values of α and β which you should 
specify. [3] 

 
 After appropriate seasonal differencing the following sample autocorrelation values 

for the series tY  are observed: 1ˆ 0.2ρ =  and 2ˆ 0.7.ρ =  
 
 (ii) Estimate the parameters α  and β  based on this information. [7] 
 
  [HINT: let X = α + β, Y = αβ and find a quadratic equation with roots 

α and β.] 
 
 (iii) Forecast the next two observations 101x̂  and 102x̂  based on the parameters 

estimated in part (ii) and the observed values 1 2 100, , ,x x x…  of tX . [4] 
   [Total 14] 
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10 Claims occur on a portfolio of insurance policies according to a Poisson process.  
Individual claim amounts are either 1 (with probability 0.7) or 8 (with probability 
0.3).  The insurance company uses a premium loading of 60% to calculate premiums 
and buys excess of loss reinsurance with a retention of M (1<M<8) from a reinsurer.  
The reinsurer uses a premium loading of 120%. 

 
 (i) Calculate the smallest value of M that the insurance company should consider 

if it wishes to expect to make a profit on this portfolio. [3] 
 
 (ii) Derive the adjustment coefficient equation for the insurance company. [2] 
 
 (iii) Calculate the adjustment coefficient (correct to 2 decimal places) if M=4. [4] 
 
 The same reinsurer also offers proportional reinsurance with the same premium 

loading such that the reinsurer pays a proportion α of each claim. 
 
 (iv) Show that the insurance company may either purchase excess of loss 

reinsurance with retention M or proportional reinsurance with 3(8 )
31

M−
α =  

for the same premium. [2] 
 
 (v) Determine whether the adjustment coefficient with proportional reinsurance is 

higher or lower than that with excess of loss reinsurance when M=4. [4] 
 
 (vi) Comment on the implications of part (v). [2] 
   [Total 17] 
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