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Comments 
 
Comments on solutions presented to individual questions for this September 2007 paper are 
given below and further comments may be written within in the solutions that follow. 
 
Q1 This straightforward bookwork question was not especially well answered. 
 
Q2 This was the most poorly answered question on the examination paper.  Very few 
 candidates recognised that the baker’s problem could be modelled using the 
 compound Poisson process described in Unit 2 section 3.4 of the Core Reading. 
 
Q3 This was well answered, with many candidates scoring full marks. 
 
Q4 Although most candidates performed the chi-squared test correctly, few realised that 
 when using this to test a graduation some degrees of freedom are lost, a fact which is 
 clearly stated in the Core Reading in Unit 12, section 7.3.  In part (ii) comments 
 tended not to be related to the data in the question; rather they focused rather 
 mechanically on the shortcomings of the chi-squared test. 
 
Q5 This straightforward bookwork question was well answered by many candidates. 
 
Q6 Most candidates obtained the correct numerical answers in part (i) of this question, 
 but answers to part (ii) were rather sketchy and vague. 
 
Q7 This was more demanding than some previous questions on the Kaplan-Meier or 
 Nelson-Aalen estimators, and the standard of the answers was lower than  expected.   
  
Q8 This exposed-to-risk question was easier than many questions on the same topic in 
 previous papers.  Most candidates scored well on parts (i) and (ii), although few 
 explained that the method relied on the assumption of a uniform distribution of 
 deaths.  Answers to part (iii) were less impressive and tended to lack detail.  Some 
 candidates couched their answers to this part in aggregate terms, despite the question 
 clearly referring to individual-level data. 
 
Q9 Most candidates scored well on parts (i) and (ii).  Common errors included the use of 
 a three-state model (Deuce, Advantage and Game) which is inappropriate as the 
 transition out of the state “Advantage” is ill-defined.  Few candidates made attempts 
 at parts (iii) and (iv) and several of these wrongly thought that part (iv) could be 
 solved by finding the stationary distribution of the chain. 
 
Q10 Parts (i) and (iv) of this question tested knowledge of Unit 7, sections 2, 3 and 5 of the 
 Core Reading, which has not been tested in previous CT4 examination papers.  
 Perhaps because of this, many candidates gave very sketchy and vague answers.  In 
 part (ii), while most candidates spotted that Type I censoring was present, only a 
 small minority also registered the existence of random censoring.  In part (iii) few 
 candidates correctly interpreted the sex x smoking interaction. Part (v) was well 
 answered by most candidates. 
 
Q11 Many candidates only attempted parts (i) and (ii) of this question.  The remainder was 
 very poorly answered, with few candidates making serious attempts at part (vi), 
 despite this being bookwork based on Core Reading, Unit 4, section 5.4.  
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1 Factors to be considered include: 
 

• the objectives of the modelling exercise, 
• the validity of the model for the purpose to which it is to be put, 
• the validity of the data to be used, 
• the possible errors associated with the model or parameters used not being a 

perfect fit, 
• representation of the real world situation being modelled, 
• the impact of correlations between the random variables that drive the model, 
• the extent of correlations between the various results produced from the model, 
• the current relevance of models written and used in the past, 
• the credibility of the data input, 
• the credibility of the results output, 
• the dangers of spurious accuracy, 
• the ease with which the model and its results can be communicated. 

 
 Not all these factors needed to be mentioned for full marks to be awarded. 
 
 
2       (a) Assume that, during each day, customers arrive at the shop according to a 

Poisson process. 
 

Assume that the numbers of buns bought by each customer, the Bj, are 
independent and identically distributed random variables.  

 
Then if Xt is the total number of buns sold between the beginning of the day 
and time t, (where t is measured in hours since the shop opens), Xt  is a 
compound Poisson process defined by 

 

1

tN

t j
j

X B
=

=∑ ,  

 
where the number of customers arriving between the shop opening and time t 
is Nt .  

 
 (b) The probability that the baker will run out of buns is  

 

1
Pr[ 0]

tN

j
j

K ct B
=

+ − <∑   

 
for some t. 
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3        The transition matrix for the chain is:   
 

1
1

1

−α α⎛ ⎞
⎜ ⎟−α α⎜ ⎟
⎜ ⎟−α α⎝ ⎠

. 

  
To determine the long-run probability, we need to solve the equation Pπ =π , which 
reads: 
 
(I) ( ) ( )1 1 21 1π = −α π + −α π   

(II) ( )2 1 31π = απ + −α π   
(III) 3 2 3π = απ + απ .   
 
The probabilities must also satisfy: 
 
(IV) 1 2 3 1π +π +π = .   
 

(III) gives 2 3
1−α⎛ ⎞π = π⎜ ⎟α⎝ ⎠

. 

Substituting in (I) gives 
2

1 3
1−α⎛ ⎞π = π⎜ ⎟α⎝ ⎠

, 

and so (IV) leads to 
2

3
1 1 1 1

⎛ ⎞−α −α⎛ ⎞ ⎛ ⎞⎜ ⎟+ + π =⎜ ⎟ ⎜ ⎟⎜ ⎟α α⎝ ⎠ ⎝ ⎠⎝ ⎠
.   

 
We know that 3 0.75π = , which leads to: 
 

( ) ( )2 2

2
1 1

0.75 1
⎛ ⎞−α +α −α +α
⎜ ⎟× =
⎜ ⎟α⎝ ⎠

, 

( ) ( )( )2 2 2 20.75 1 2⇒ − α+α + α+α +α =α , 

20.25 0.75 0.75 0⇒ α + α− =  . 
 
Using the quadratic equation formula, this leads to 
  

20.75 0.75 4 0.25 0.75
2 0.25

− ± + × ×
α =

×
. 

   
 As 0α > , we must have 0.7913α = . 
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4 (i) The null hypothesis is that graduated rates are the same as the true underlying 
rates in the population.  

 
 To test overall goodness-of-fit we use the chi-squared test.  

 
2 2

x m
x

z χ∑ ∼ , where m is the number of degrees of freedom. 

 
 In this case, we have 10 ages.   
 
 The graduation was carried out by reference to a standard table, so we 
 lose a number of degrees of freedom because of the choice of standard 
 table.  
   
 So, m < 10, and let us say m = 8.  

 
 The observed value of the test statistic is 2 15.8623x

x
z =∑   

 
  The critical value of the chi-squared distribution with 8 degrees of  freedom at 

the 5 per cent level is 15.51.   
  
 Since 15.8623 > 15.51,  
 
 we reject the null hypothesis and conclude that the graduated rates do not 
 adhere to the data.  
  
[Credit was given for using other values of m, say m = 7 or m = 9,  provided 
candidates recognized that some degrees of freedom should be lost for the choice of 
standard table.  Note that if m = 9, the null hypothesis will not be rejected.] 

  
(ii) From the data we can see that the actual deaths are lower than those 
 expected at all ages. 

 
 The graduated rates are too high; the graduation should be revisited. 
  
 At these ages the force of mortality increases with age,  
 so a suitable adjustment may be to reduce the age shift relative to the 
 standard table from 2 years. 
 
 The standardised deviations also appear to show a systematic increase 
 with age, showing that departure of the graduated rates from the actual 
 rates increases with age. 
 
 There appear to be no outliers (all the zxs have absolute values below 
 1.96). 
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5 (i) We assume that mortality rates progress smoothly with age.  
 

Therefore a crude estimate at age x carries information about the rates at 
adjacent ages, and graduation allows us to use this fact to “improve” the 
estimate at age x by smoothing.  
 
This reduces the sampling errors at each age.  
 
It is desirable that financial quantities progress smoothly with age,  
as irregularities are hard to justify to clients.  
 

(ii) Any two of the following three methods are acceptable: 
 

By parametric formula: 
  
Should be used for large experiences, especially if the aim is to produce a 
standard table; 
  
Depends on a suitable formula being found which fits the data well.   
 
Provided the number of parameters is small, the resulting curve should be 
smooth.  
 
With reference to a standard table 
  
Should be used if a standard table for a class of lives similar to the experience 
is available, and the experience we are interested in does not provide much 
data.  
 
The standard table will be smooth,  
 
and provided the function linking the graduated rates to the rates in the 
standard table is simple, this smoothness will be “transferred to the graduated 
rates”.  
 
Graphical 
  
if a quick check is needed, or data are very scanty.  
 
The graduation should be tested for smoothness using the third differences of 
the graduated rates, which should be small in magnitude and progress 
regularly with age.  
 

 If the smoothness is unsatisfactory, the curve can be adjusted (“hand-
 polishing”) and the smoothness tested again. 
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6 (i) (a) Assuming a uniform distribution of deaths between ages 58 and 62  
implies that half of those who die between those ages die between ages 
58 and 60.  

 
   Therefore  

 
 l60  = l58 – 0.5(l58 – l62)  

 
= 88,792 – 0.5(88,792 – 84,173) 

 
= 86,482.5.  
 

  (b) ALTERNATIVE 1 
 
                                    Let the constant force of mortality be μ.   
 

Then we have  
4

4
4 58

0

expp dx e− μ
⎛ ⎞
⎜ ⎟= − μ =
⎜ ⎟
⎝ ⎠
∫ .  

 

But 62
4 58

58

84,173 0.94798
88,792

lp
l

= = = . 

  
Therefore 4 0.94798e− μ = , 

 
so that ( )4 log 0.94798 0.05342e− μ = = − , 
 
whence μ = 0.01336.  
 
Therefore with a constant force of mortality, 
 

60 58 exp[ 2(0.01336)] 88,792(0.97363)l l= − =  
 
so l60 = 86,452.  
   

                                  ALTERNATIVE 2 
 
                        Let the constant force of mortality be μ.   
 

Then we have  
4

4
4 58

0

expp dx e− μ
⎛ ⎞
⎜ ⎟= − μ =
⎜ ⎟
⎝ ⎠
∫ .  

 

But 62
4 58

58

lp
l

= . 

 



Subject CT4 — Models Core Technical — September 2007 — Examiners’ Report 

Page 8 

Now 60 58 2 58.l l p= . 
 

and, since 2 4 62
2 58

58

lp e e
l

− μ − μ= = = , 

 

62
60 58 58 62

58

ll l l l
l

= = =  (88,792)(84,173)  

 
                                    so l60 = 86,452 
 
 (ii) The actual value of l60 from the tables is 86,714.  
 

This shows that neither assumption is very accurate, but that the uniform 
distribution of deaths (UDD) is closer than the constant force of mortality.  
 
The UDD assumption is better than the constant force of mortality assumption 
because UDD implies an increasing force of mortality over this age range, 
which is biologically more plausible than the assumption of a constant force. 
 
The fact that the actual value of l60 is considerably greater than that implied by 
the UDD assumption suggests that the true rate of increase of  the force of 
mortality over this age range in English Life Table 15 (males) is even greater 
than that implied by UDD. 

 
 

7 (i) (a) If, for player i, Ti is the number of games played before he is 
dismissed, and Ci is the total number of games played before 
1 December, and di = 1 if the player had been dismissed before 
1 December and 0 otherwise. 
 

 then  
 
 EITHER 
 
 from the data given we can create the two variables 
 
 min(Ti,Ci)   
 and di,  
 e.g. for player 1, min(Ti,Ci) = 12 and di = 0  
 

OR 
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 The required data for the Kaplan-Meier estimator are therefore 
 
   Player            min(Ti,Ci)     di 

 
 1  12  0  
 2  12  0 
 3    5  1  
 4  12  0  
 5    7  1  
 6  12  0  
 7  10  0  
 8               0  1  
 9    5  1  
 10    8  0 
 11        2  1  
 12               5  0 
 13               5  0 

                         14    0  1  
                         15    4  0   

  
(b) Censoring in these data arises because not all players have been 

dismissed before 1 December.  Those players who have yet to be 
dismissed on that data are right-censored.  

  
This censoring is random [NOT Type I], because the metric of 
“duration” is the number of games played since the start of the season, 
and this may vary from player to player.  

 
(ii)       ALTERNATIVE 1 (where censorings are assumed to occur immediately 

before events) 

 tj   Nj       Dj           Cj 
j

j

D
N

     1 j

j

D
N

−  

 0           15            2               0             2/15        13/15 
                        2            13            1               3             1/13        12/13 
                        5              9            2               0             2/9            7/9 
                        7              7            1               6             1/7            6/7                           
 

Then the Kaplan-Meier estimate of the survival function is 

  t     
^
( )S t  

                                                         
                        0≤ t < 2               0.8667 
                        2≤ t < 5               0.8000 
                        5≤ t < 7               0.6222 
                        7≤ t < 12             0.5333 
  

Therefore the value of the chosen statistic, 
^

(10)S  is 0.5333. 
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       ALTERNATIVE 2 (where censorings are assumed to occur immediately after 
events) 

  tj Nj Dj Cj 
j

j

D
N

 1 j

j

D
N

−  

 0   15            2               0             2/15       13/15 
                        2            13            1              1             1/13        12/13 
                        5            11            2               2             2/11          9/11 
                        7              7            1               6             1/7            6/7                           
 
  Then the Kaplan-Meier estimate of the survival function is 

  t  
^
( )S t  

                                                            
                        0≤ t < 2               0.8667 
                        2≤ t < 5               0.8000 
                        5≤ t < 7               0.6545 
                        7≤ t < 12             0.5610 
  

Therefore the value of the chosen statistic, 
^

(10)S  is 0.5610. 
 

8 (i) The central exposed to risk at age x, c
xE , is the observed waiting time in a 

multiple-state or a Poisson model.  It is the sum of the times spent under 
observation by each life at age x.    

 
In aggregate data, the central exposed to risk is an estimate of the number of 
lives exposed to risk at the mid-point of the rate interval. 
 
The initial exposed to risk requires adjustments for those lives who die, whom 
we continue observing until the end of the rate interval.  
 
It may be approximated as 0.5c

x xE d+ , where dx is the number of deaths to 
persons aged x.  

  
(ii) The age definition used for both deaths and exposed to risk is the same, so no 

adjustment is necessary. 
 

Using the census formula, and assuming that the population aged 22 and 23 
years changes linearly over the year, we have, for the central exposed to risk:  

 
1

,
0

c
x x tE P dt= ∫ ,  

 
so that 
 

,0 ,1
1 ( )
2

c
x x xE P P= + .  
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The initial exposed to risk, Ex , is then obtained using the approximation 

0.5c
x xE d+ .   

 
This assumes that deaths are uniformly distributed across each year of age.  
 
Therefore, at age 22 we have  
 

22
1 20(150 160) 165
2 2

E = + + = , 

 
and 
 

23
1 25(160 155) 170
2 2

E = + + = .  

 

Hence 22
20 0.1212

165
q = =  and 23

25 0.1471
170

q = = .  

  
[The complete derivation was not required for full marks.] 
 
(iii) ALTERNATIVE 1 

The central exposed to risk is calculated as ( )i i
i

b a−∑ , for all lives i for 

whom 0i ib a− > , 
 
where ai and bi are measured in  years since the person’s 22nd birthday, and
  
where bi is the earliest of 
 
the date of person i’s death 
the date of person i’s 23rd birthday 
the end of the calendar year 2005 
the date of person i’s exit from observation for reasons 
other than death   
 
and ai is the latest of 
 
the date of person i’s 22nd birthday 
the start of the calendar year 2005 
the date of person i’s entry into observation.  
 
The initial exposed to risk is then calculated by adding on to the central 
exposed to risk a quantity equal to 1 ib−  for all lives who died aged 22 last 
birthday during the calendar year 2005.  
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                        ALTERNATIVE 2 
 

The initial exposed to risk is calculated as ( )i i
i

b a−∑ ,          

            where ai and bi are measured in  years since the      person’s 22nd birthday, 
and 

 
where bi is the earliest of 
 
the date of person i’s 23rd birthday 
the date of person i’s exit from observation for reasons other than death   
 
and ai is the latest of 
 
the date of person i’s 22nd birthday 
the start of the calendar year 2005 
the date of person i’s entry into observation.  
 

                        for all lives i for whom 0i ib a− > . 
 
9 (i) State space: 

 
 {Deuce, Advantage A(ndrew), Advantage B(en),  
 Game A(ndrew), Game B(en)}. 
   

Transition matrix: 
 

 Deuce Adv A Adv B Game 
A 

Game 
B 

Deuce 0 0.6 0.4 0 0 
Adv A 0.4 0 0 0.6 0 
Adv B 0.6 0 0 0 0.4 
Game A 0 0 0 1 0 
Game B 0 0 0 0 1 

  
The chain is Markov because the probability of moving to the next state does 
not depend on history prior to entering that state (because the probability of 
each player winning a point is constant) 

 
(ii) The chain is reducible because it has two absorbing states Game A and 

Game B.  
 
States Game A and Game B are absorbing so have no  period. The other three 
states each have a period of 2 so the chain is not aperiodic. 
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(iii) The game either ends after 2 points or it returns to Deuce.  
 

The probability of it returning to Deuce after two points is: 
 

  Prob A wins 1st point ×  Prob B wins 2nd point  
  + Prob B wins 1st point ×  Prob A wins 2nd point 

 
  = 0.6×0.4 + 0.4×0.6 = 0.48.  

 
[This can also be obtained by calculating the square of the transition matrix.] 
 
Need to find number of such cycles N such that: 
 
0.48 1 0.9N < − , 

 
so that 
 

ln 0.1 3.14
ln(0.48)

N > > .  

 
But the game can only finish every two points so we require 4 cycles, that is 8 
points.  

 
(iv) (a) Define AX  to be the probability that A ultimately wins the game when 

the current state is X. 
 

We require ADeuce.  
 
By definition AGame A = 1 and AGame B = 0.  
 
Conditioning on the first move out of state Adv A: 
 

   Adv A Game A Deuce Deuce0.6 0.4 0.6 0.4A A A A= × + × = + × .  
 
Similarly: 
 

Adv B Deuce0.6A A= × ,  
 
and 
 

  Deuce Adv A Adv B Adv A Deuce0.6 0.4 0.6 0.24A A A A A= × + × = × + × .  
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So, 
 

Deuce Adv A
0.6
0.76

A A= , 

 

Adv A Adv A
0.60.6 0.4
0.76

A A= + × ,  

 
and 
 

Adv A 0.8769A = , 
 
and 
 

Deuce 0.6923A = . 
  

 ALTERNATIVELY 
 
 Probability A wins after 2 points = 0.6*0.6 =0.36 
 
 Probability that A wins from Deuce 

 = ∑
∞

=1i

Probability A wins after i points have been played 

 
 = Probability A wins after 2 points 
 + Probability A wins after 4 points +…..  
 (as period 2) 
 
 = 0.36 + 0.48 * 0.36 + 0.482 * 0.36 +……. 
 
 = 0.36/(1-0.48) as a geometric progression  
 
 = 0.6923 

 
 (b)        This is higher than 0.6 because Ben has to win at least two points in a 

row to win the game.  
 
 
10         (i) Fully parametric models are good for comparing homogenous groups, as 

confidence intervals for the fitted parameters give a test of difference between 
the groups which should be better than non-parametric procedures, or semi-
parametric procedures such as the Cox model.  

 
But parametric methods need foreknowledge of the form of the hazard 
function, which might be the object of the study. 
The Cox model is semi-parametric so such knowledge is not required.  
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The Cox model is a standard feature of many statistical packages for 
estimating survival model, but many parametric distributions are not, and 
numerical methods may be required, entailing additional programming.  

  
(ii) Type I censoring, since the investigation ends after a period which is fixed in 

advance.  
 

Random censoring, since death from a cause other than a heart attack is a 
random variable and may occur at any time.  

  
(iii) The likelihood ratio statistic is a common criterion.  

 
Suppose we fit a model with p covariates and another model with p+q 
covariates which include all the p covariates of the first model.  

 
Then if the maximised log-likelihoods of the two models are Lp and Lp+q, then 
the statistic  
 

2( )p p qL L +− −   
 
has a chi-squared distribution with q degrees of freedom, under the hypothesis 
that the extra q covariates have no effect in the presence of the original p 
covariates.  
 
This statistic can be used either will full likelihoods or with partial likelihoods 
in the Cox model  
 
This statistic can be used to test the statistical significance of any set of q 
covariates in the presence of any other disjoint set of p covariates.  

  
(iv) Holding other factors constant, 
 

females have a lower risk of heart attack than males,  
  
and smokers have a higher risk than non-smokers, 
  
but the effect of smoking varies for men and women.  

 
The relative risks, compared with the baseline category of male non-smokers 
are as follows. 
 
female non-smokers exp(-0.4) = 0.67 
male smokers exp(0.5) = 1.65 
female smokers exp(-0.4+0.5-0.25) = 0.86 
 
(or any other numerical example to illustrate the previous points) 
  



Subject CT4 — Models Core Technical — September 2007 — Examiners’ Report 

Page 16 

(v) Let the required age for the woman smoker be 50+x. 
 

The hazard for this woman is  
 
h(t,x) = h0(t) exp(0.01x – 0.4 + 0.5 – 0.25),  
 
The hazard for a male non-smoker aged 50 at the initial interview is simply 
h0(x), since this is the baseline category.  
 
Thus we have  
 
h0 (t) exp(0.01x – 0.4 + 0.5 – 0.25) = h0 (t) 
 
so that  
 
exp(0.01x – 0.4 + 0.5 – 0.25) = 1  
 
or 
 
exp(0.01x - 0.15) = 1 
 
so that 
 
0.01x = 0.15 
 
Therefore x = 15, and the woman’s age at interview must be 65 years. 

 
11      (i) (a) The parameters are: 
 

• the rate of leaving state i, λi, for each i,  
• the jump-chain transition probabilities, rij, for j ≠ i, where rij is the 

conditional probability that the next transition is to state j given the 
current state is i.   

  
[Alternatively the parameters may be expressed as σij, where σii = -λi 
and (for j ≠ i), σij = λi rij.] 
 

(b) The assumptions are as follows. 
 

• The holding time in each state is exponentially distributed. The 
parameter of this distribution varies only by state i.  The 
distribution is independent of anything that happened prior to the 
current arrival in state i. 

  
• The destination of the jump on leaving state i is independent of 

holding time, and of anything that happened prior to the current 
arrival in state i. 
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ALTERNATIVELY 
 
The holding time in each state is exponentially distributed and the 
destination of the jump on leaving state i is independent of holding 
time 
 
Both holding time distribution and destination of jump on leaving state 
i are independent of anything that happened prior to arrival in state i 
 

(ii)         (a)       The estimator [it is the MLE but this need not  
be stated] of λi, λ̂ , is the inverse of the average duration of each visit 
to state i. 

 
so ˆ

Aλ = 4 per hour, ˆ
Bλ = 5 per hour, ˆ

Cλ = 1.5 per hour  
 

The estimator [it is the MLE but this need not be stated] of rij, îjr , is 
the proportion of observed jumps out of state i to state j. 
 

ÂBr = 11/20 

ÂCr = 9/20 

B̂Ar = 80/125 =16/25 

B̂Cr = 9/25  

ĈAr = 24/27 =8/9 

ĈBr = 1/9  
  

(b) The estimated generator matrix (in hr-1) is: 
 

9114 5 5
16 955 5

34 1
3 6 2

⎛ ⎞−
⎜ ⎟
⎜ ⎟−⎜ ⎟
⎜ ⎟⎜ ⎟−⎝ ⎠

 

  
(iii)     Distribution is binomial with mean n.rij and variance n.rij  
           (1  - rij), where n is the given number of transitions.  
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(iv)      Null hypothesis is that the Markov property applies to successive transitions, 
or that the observed triplets are from a Binomial distribution with the 
estimated parameters (given the number of transitions to the middle state).  

 
Using test statistic given in the hint, we can draw up the table below. 
 

Triplet nijk E=nij ˆjkr  
2( )ijkn E

E
−

   

 
ABC 42 39.6 0.1455 
ABA 68 70.4 0.08182 
ACA 85 80 0.3125 
ACB 4 10 3.6 
BAB 50 44 0.8182 
BAC 30 36 1 
BCA 38 40 0.1 
BCB 7 5 0.8 
CAB 64 66 0.0606 
CAC 56 54 0.07407 
CBA 8 9.6 0.2667 
CBC 7 5.4 0.4741 
 

Test statistic 7.7335    

Under the null hypothesis, the test statistic follows a 2χ distribution with the 
following number of degrees of freedom: 
 

 Number of triplets 12 
Minus Number of pairs  6 
Plus Number of states 3 
Minus  One   1 
  8 degrees of freedom  
 
The critical value of 2

8χ at the 5% significance level is 15.51  
 
As 7.7335 < 15.51 there is no evidence to reject the null hypothesis. 
 
[Alternative approaches could be taken which resulted in a slightly different 
result for the test statistic.  These were given full credit where appropriate.]  
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(v)       [Refer back to part (i) — the test in (iv) has only tested that there is no 
evidence that the destination that the next jump depends on the previous state 
occupied. Need to test the other assumptions]. 

  
Holding times — are these exponentially distributed? 
 
A chi-squared goodness of fit test would be appropriate  

 
Is destination of jump independent of the holding time? 
  
There is no obvious test statistic for doing this. A suitable test would be to 
classify jumps as being from short, medium and long holding times and 
investigating these graphically.  

  
(vi)      APPROXIMATE METHOD 
 

Divide time into very short intervals, h, such that ijhσ  is much less than 1. 
  
Simulate a discrete-time Markov chain { }: 0nY n ≥ , with transition 

probabilities ( )*
ij ij ijp h h=δ + σ . 

  
The jump process, Xt is given by [ ]t t hX Y= .  

 
EXACT METHOD 
 
Simulate the jump chain as a Markov chain, with transition probabilities 

ij ij ip = σ λ . 
  
Once the path { }ˆ : 0,1,...nX n=  has been generated, the holding times 

{ }: 0,1,...nT n=  are a sequence of independent exponential random variables, 
having parameter ˆ

nXλ .  

 
 

END OF EXAMINERS’ REPORT 


