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The attached subject report has been written by the Principal Examiner with the aim of 

helping candidates. The questions and comments are based around Core Reading as the 
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credit for any alternative approach or interpretation which they consider to be reasonable. 
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Examiners’ Comments 

Comments on solutions presented to individual questions for the September 2009 paper are 

given below.  In general, those using this report should be aware that in the case of non-

numerical answers full credit could often be obtained for rather less than is given in the 

solutions which follow.  The solutions are meant as a guide to the various points which could 

have been made and considered relevant. 

 

1  

 A uniform distribution of deaths means  

EITHER 

that deaths are evenly spaced  between the ages x and y.   

 OR 

 that t x xq tq    ( t y x  )   

 OR 

 that t x x tp    is constant for t y x  .       

It also means that the survival function decreases linearly between ages x and y.  The 

assumption of a constant force of mortality between any two ages means 

EITHER  

that the hazard does not change with age over this age range. 

 OR 

 that ( )t

t x xp p .          

 This implies that the survival function decreases exponentially between ages x and y.   

 

Answers to this straightforward bookwork question were disappointing. Although 

most candidates could describe the difference between a constant force of mortality 

and the increasing force implied by a uniform distribution of deaths, few made correct 

reference to the form of the survival function. An alarming number of candidates 

referred to survival functions which increased with age!  Credit was given for graphs 

which correctly depicted the shape of the survival function under the two 

assumptions. 

 

2  

(i) Define objectives of modelling process. 

  Plan the modelling process and how it will be validated.   

  Collect and validate the data required.     
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  Define the form of the model.       

  Involve experts on the real world system/get feedback on validity.  

  Decide on software to be used, choose random number generator etc. 

  Write the computer program.        

  Debug the program.        

  Analyse the output        

  Test the reasonableness of the output.     

Consider appropriateness of response of the model to small changes in input 

parameters.       

  Communicate and document results.       

 

[½ mark was awarded for each point up to a maximum of 4 marks] 

  

(ii) Whilst in theory all steps are still required, some may take the form of 

reviewing the appropriateness of existing decisions made, such as how the 

form of the model was determined. 

Extent of work will depend on whether the existing model is to be used, 

adapted or superseded. 

An understanding of how results compare with those previously used by the 

company will be required. 

Process maps for the existing approach, or discussions with the people running 

the process about what they do, may be helpful. 

The scope needs to be tightly defined up front to ensure it is clear what is 

expected of the consultancy. 

  Data sources may already be established.   

    

[½ mark was awarded for each point up to a maximum of 2 marks]  

Part (i) of this question was basic bookwork and was extremely well 

answered.  Part (ii) required more thought, but many candidates were able to 

write down some relevant points.  

 

         

3   

(i) For each life we need 

EITHER date of birth OR exact age at entry into observation OR exact age at 

exit from observation 

  Date of entry into observation       

  Date of exit from observation      
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[Alternatives were given full credit, provided the information given allowed the 

calculation of the date of entry into and exit from observation and the life’s age]  

 

(ii) The contribution of each life to the central exposed to risk is the number of 

months between STARTDATE and ENDDATE, where STARTDATE  is the 

latest of date of 40th birthday 1 January 2008 and ENDDATE is the earliest of 

date of 41st birthday date of death 31 December 2008   

           

 Life STARTDATE ENDDATE number of months 

    between 

    STARTDATE 

    and ENDDATE 

 

 1 1 January 2008 1 March 2008 2  

 2 1 January 2008 1 May 2008 4 

 3 1 January 2008 1 July 2008 6 

 4 1 January 2008 1 October 2008 9 

 5 1 January 2008 1 February 2008 1 

 6 1 February 2008 31 December 2008 11 

 7 1 April 2008 31 December 2008 9 

 8 1 June 2008 1 November 2008 5 

 9 1 August 2008 31 December 2008 5 

 10 1 December 2008 31 December 2008 1  

      

Summing the number of months over the 10 lives gives a total of 53 months, 

which is 4.42 years, which is the central exposed to risk. 

(iii) 

a. The total number of deaths during the period of observation is 2. So the 

maximum likelihood estimate of the hazard of death is 2/4.42 = 

0.4528. 

b. ALTERNATIVE 1 

If the hazard of death at age 40 years is 40 , then 

   40 40 401 1 exp( )q p           

   =1 exp( 0.4528) 1 0.6358 0.3642.         

   ALTERNATIVE 2 

   If the central exposed to risk is 40

cE , then if we work in years 

   40
40

40 400.5c

d
q

E d



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   =
2 2

0.3690.
4.42 1 5.42

 


      

            

This was well answered. A common error was to count 3 deaths rather than 2.  

Although 3 deaths are mentioned in the data given in the question, one of these 

occurred after the life’s 41st birthday and so should not be included in the estimation 

of μ40.  Another common error was to forget that exposure ends at exact age 41 years.  

Each of these errors was only penalised once, so that calculations which followed 

through correctly in (iii) were awarded full marks for part (iii).  Note also that 

candidates who made BOTH the above errors were only penalised for one, as if 

exposure is assumed to continue past exact age 41 years, it is consistent to count 3 

deaths! 

4  

(i) The principle of correspondence states that a life alive at time t should be 

included in the exposure at age x at time t if and only if, were that life to die 

immediately, he or she would be counted in the deaths data at age x. Problems 

in adhering to this can arise when the deaths data and the exposed-to-risk data 

come from two different sources.  These may classify lives differently. 

(ii) Since deaths are classified by age last birthday at date of death, a central 

exposed to risk which corresponds to the deaths data is given by 

  

3

,

0

t
c
x x t

t

E P





           

where ,x tP is the population aged x last birthday at time t, and t is measured in 

years since 1 January 2005. We have censuses on 30 June 2004, 30 June 2005, 

30 June 2007 and 30 June 2008. 

Assuming that the population varies linearly across the period between each 

successive census for which we have data the population aged x last birthday 

on 1 January 2005 is equal to  

  ,30 / 6 / 2004 ,30 / 6 / 2005
1 ( )

2 x xP P       

  and the population aged x last birthday on 1 January 2008 is equal to  

  ,30 / 6 / 2007 ,30 / 6 / 2008
1 ( )

2 x xP P . 

  Dividing the period of the investigation into three sub-periods 

  from 1 January 2005 to 30 June 2005 

  from 30 June 2005 to 30 June 2007      

  from 30 June 2007 to 1 January 2008 

and applying the trapezium rule to each sub-period produces the following 

exposed to risk for persons aged x last birthday 

  For the sub-period between 1 January 2005 and 30 June 2005 
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,1/1/2005 ,30/6/2005

,30/6/2004 ,30/6/2005 ,30/6/2005

1 1 ( )
2 2

1 1 1( ( ) )
2 2 2

x x

x x x

P P

P P P

 
 

   
 

   

  For the sub-period between 30 June 2005 and 30 June 2007 

  ,30/6/2005 ,30/6/2007
12 ( )

2 x xP P 
 

      

  For the sub-period between 30 June 2007 and 1 January 2008 

  
,30/6/2007 ,1/1/2008

,30/6/2007 ,30/6/2007 ,30/6/2008

1 1 ( )
2 2

1 1 1( ( ))
2 2 2

x x

x x x

P P

P P P

 
 

   
 

   

  Summing these gives 

  
,30/6/2004 ,30/6/2005 ,30/6/2005 ,30/6/2005

,30/6/2007 ,30/6/2007 ,30/6/2007 ,30/6/2008

1 1 1
8 8 4

1 1 1
4 8 8

c
x x x x x

x x x x

E P P P P

P P P P

   

   
 

  which simplifies to 

   ,30/6/2004 ,30/6/2005 ,30/6/2007 ,30/6/2008
1 11 11 1

8 8 8 8
c
x x x x xE P P P P    . 

  The force of mortality may be estimated using the formula 

  x
x c

x

d

E
  ,         

  where xd  denotes deaths to persons aged x last birthday when they died. 

 

This was very poorly answered.  It was perhaps rather more difficult than some 

exposed-to-risk questions in previous examination papers, but nevertheless the 

standard of most attempts was disappointing.  In part (ii) credit was given for various 

alternative approximations provided that they were explained clearly. 

 

5  

(i) The Markov property states that the future development of a process can be 

predicted from its present state alone without reference to its past history. 

(ii) Formally, for times 1 2 ... ns s s s t      and for states 1 2, ,..., ,nx x x x  in the 

state space S and all subsets A of S, the Markov property can be written 

 1 1 2 2Pr[ ( ) | ( ) , ( ) ,...., ( ) , ( ) ] Pr[ | ( ) ]n n tX t A X s x X s x X s x X s x X A X s x         

  For independent increments we can write 

 

1 1 2 2

1 1 2 2

Pr[ ( ) | ( ) , ( ) ,...., ( ) , ( ) ]

Pr[ ( ) ( ) | ( ) , ( ) ,...., ( ) , ( ) ]

Pr[ ( ) ( ) | ( ) ]

Pr[ ( ) | ( ) ]

n n

n n

X t A X s x X s x X s x X s x

X t X s x A X s x X s x X s x X s x

X t X s x A X s x

X t A X s x

    

       

    

  
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(iii) 

a. A Markov chain is a stochastic process with the Markov property 

which has a discrete time set with a discrete state space.  A Markov 

jump process is a stochastic process with the Markov property which 

has a continuous time set with a discrete state space.  

b.A Markov chain is irreducible if any state can be reached from any 

other state. 

(iv)  

a. A lift could not serve its purpose unless it could return to each of the 

floors which it serves. This means an irreducible model would be 

appropriate. 

b.Suppose, for example, the lift is currently at the third floor, with its last 

two states being the fourth floor and the fifth floor. In such a case the 

lift is more likely to be heading downwards than upwards.  So the past 

history is likely to provide information on the likely future movement 

of the lift, unless the state space is very complicated (involving a 

number of past floors as well as the current floor). Therefore a Markov 

model is unlikely to be appropriate. 

                

This question was generally well answered, apart from section (iv)(b) in which few 

candidates spotted the point that the direction of travel of the lift as well as its current 

floor will influence its next location. 

 

6  

(i) A Poisson process is a continuous-time integer valued process 

  Nt, 0t   with          

  N0 = 0          

  independent  increments        

  EITHER 

increments follow a Poisson distribution  

OR 

  
[ ( )] exp[ ( )]

[ ]
!

n

t s

t s t s
P N N n

n

   
   ,     for s < t, n = 0, 1, 2, .... 

(ii) Average work created by a complaint is  

 

  60%* ½+ 30%* 1 + 10%*4 = 1 day.      

  Complaints arrive at a rate 1.25 per working day     

  So, work expected to be generated is 1.25*1*5 = 6.25 person-days.  

(iii)As the time to handle complaints follows an exponential (memoryless) 

distribution, only need to know how many unanswered complaints there are – 



Subject CT4 — Models Core Technical — September 2009 — Examiners’ Report 

 

Page 8 

 

but do need to know how many of each type.  If cases are allocated randomly 

rather than in order, then the state space consists of (in terms of complaints not 

resolved): 

r – straightforward, 

  s – medium,  

  t – complicated.        

  where   r = 0,1,2,3,4,5,…. 

   s = 0,1,2,3,4,5,…… 

   t = 0,1,2,3,4,5,…..       

 (iv)   EITHER The model will only give an approximation. 

  OR The model is not suitable for this purpose.      

The model could not be used to do this without extending the state space to 

consider the time the complaint has been in the queue.  There are only two 

employees, so holidays and sickness are important factors not taken into 

account.   

The model assumes complaints are time-homogeneous. We do not know the 

nature of the business, but for some industries complaints would be seasonal 

e.g. holiday companies.  

The model assumes that complaint arrivals are independent, but more 

complaints might be expected if the company has had a quality control 

problem at a particular time. If struggling to meet the service standard, action 

would be. Taken, such as overtime, or prioritising easy cases.  Staff may be 

able to deal with complaints which are similar to other recent complaints very 

quickly, using standard „template‟ responses. 

The memoryless property is unlikely to be realistic as the work required to 

complete the case could be assessed and then worked through to a schedule. 

The Markov jump process could be used to estimate the probability that a 

complaint is responded to within a given number of days of receipt. 

So the model could be used to estimate the probability of a complaint not 

being responded to in the stated time, that is the failure to meet the service 

standard.    

 

[½ mark was awarded for each point up to a maximum of 3 marks]  

Answers to this question were disappointing. Most candidates were able to tackle the 

calculation in part (ii) but few correctly identified the state space in part (iii), and 

most only made a cursory attempt at part (iv). 

 

7  

(i) Two step transition matrix  
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 =

0.5 0.25 0.25

0.25 0.75 0

0.25 0.25 0.5

 
 
 
 
 

.

0.5 0.25 0.25

0.25 0.75 0

0.25 0.25 0.5

 
 
 
 
 

=

0.375 0.375 0.25

0.3125 0.625 0.0625

0.3125 0.375 0.3125

 
 
 
 
 

       

(ii) 

0.5 0.25 0.25

0.25 0.75 0

0.25 0.25 0.5

 
 

   
 
 

        

  1 1 2 30.5 0.25 0.25        

  2 1 2 30.25 0.75 0.25        

  3 1 30.25 0.5              

  and 1 2 3 1        

  1 32    

  2 33    

  1
1

3
   

  2
1

2
   

  3
1

6
           

   

(iii)The stationary distribution gives the long run probability that a particular car 

will be at each location. However this does not take into account the demand 

for hiring vehicles at each location, or the amount of space available at each 

location. These factors are likely to be more important in determining how 

many cars to base at each site. 

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8 9

Number of rentals

P
ro

b
ab

ilt
y 

at
 lo

ca
ti

o
n

Airport

Beach

City
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(iv) A starts at 1, B and C at zero 

  Asymptote to the stationary distribution probs. 

  B and C same after 1 period 

  A and B same after 2 periods.   

 

The calculations in parts (i) and (ii) were, as is usually the case in CT4 examinations, 

successfully completed by the vast majority of candidates.  However only a minority 

made the point that, whereas the stationary distribution gives the long run probability 

that cars will be returned to each location, the company would be better advised to 

position cars at the three locations to reflect the demand for rentals. In part (iv), some 

candidates drew a set of histograms.  Credit was given for this, provided that 

histograms were presented for 1 rental, 2 rentals, and the long run distribution, 

together with a statement that at 0 rentals the car must be at the Airport. 

 

8  

(i)  

  

    
            

(ii) ( ) ( ) ( )
d

P x P x A x
dt

  where with order of state space  

{Healthy, Infected, Dead (not disease), Dead(from disease)} 

   

 A(x)=

( ) ( ) ( ) ( ) 0

0 ( ) ( ) ( ) ( )

0 0 0 0

0 0 0 0

x x x x

x x x x

    
 

    
 
 
 

    

 

Healthy 

 

Infected 

Dead 

(from 

disease) 

Dead (not 

from 

disease) 

( )x  
( )x  

( )x  ( ) ( )x x 
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(iii) 

a. PHH(x, x+t)=

0

exp[ ( ( ) ( )) ]

t

w

x w x w dw



      

b. PHI(x, x+t)=

0

( , ). ( ).exp[ ( ) ].

t t

HH

w u w

P x x w x w x u du dw

 

        

c. EITHER 

PHD(from disease)(x, x+t)=

0

( , ). ( ).

t

HI

w

P x x w x w dw



     

OR (backwards alternative) 

PHD(from disease)(x, x+t)  

= 




t

w

efromdiseasIDHH dwtxwxPwxwxP
0

)( ).,().().(  . 

Now dssxsxwxPtxwxP

t

ws

IIefromdiseasID .1).().,(),()(  


  

and 







 



s

wu

II duuxsxwxP )(exp),(  . 

So PHD(from disease)(x, x+t)  

0

( ). ( ). exp ( ) . ( ). .

t t s

HH

w s w u w

P x w x w x u du x s ds dw  
  

 
      

 
  

 

This question was considerably better answered than were similar questions in 

previous examinations.  In particular, the proportion of candidates making serious 

attempts at part (iii) was greater than has been the case for similar questions in the 

past. 

 

9  

(i) Type II censoring as the study was terminated after a pre-determined number 

of failures. Random censoring of the device which exploded. 

(ii) According to the information supplied by the sub-contractor, the Kaplan-

Meier estimate of the survival function should be calculated as follows: 

 

  j tj Nj dj cj dj/Nj 1 – dj/Nj  

 

  0 0 12  

  1 97 12 2 1 2/12 10/12 



Subject CT4 — Models Core Technical — September 2009 — Examiners’ Report 

 

Page 12 

 

  2 120   9 3 0 3/9 6/9 

  3 141   6 2 0 2/6 4/6 

  4 150   4 1  3 1/4 3/4    

 

  The Kaplan-Meier estimate is then 

  ˆ( ) 1

j

j

jt t

d
S t

N


 
  

 
 

  

  so we have 

  t   ˆ( )S t  

  0 97t    1 

  97 120t    5/6 

  120 141t    5/9 

  141 150t    10/27 

  150 t   5/18 = 0.2778      

(iii)Since 5/18 is not equal to 0.2727, the sub-contractor‟s story is  internally 

inconsistent.  The Kaplan-Meier estimate of the survival function after the  

failure of the 8th battery of 0.2727 would be obtained had only 11 batteries 

been tested at the start, and no battery being censored, as shown in the 

following table.    

  j tj Nj dj cj dj/Nj 1 – dj/Nj  

 

  0   0 11  

  1 97 11 2 0 2/11 9/11 

  2 120   9 3 0 3/9 6/9 

  3 141   6 2 0 2/6 4/6 

  4 150   4 1  0 1/4 3/4    

       +½ +½ 

  The Kaplan-Meier estimate is then 

 

  ˆ( ) 1

j

j

jt t

d
S t

N


 
  

 
 

  

 

  so we have 

 

  t   ˆ( )S t  
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  0 97t    1 

  97 120t    9/11 

  120 141t    6/11 

  141 150t    4/11 

  150 t   3/11 = 0.2727      

 

Therefore the value of ˆ(150)S reported by the sub-contractor is consistent with 

him having stolen the last battery. 

 

Many candidates scored highly on this question.  Credit was given in part (i) for other 

types of censoring provided that a sensible reason was given.  In part (iii), for full 

credit some kind of calculation of an alternative survival function was needed, 

together with an explanation of why this provided evidence to support the suggestion 

that the sub-contractor has stolen the battery. 

 

10    

(i) The chi-squared test is for the overall fit of the graduated rates to the data  

  The test statistic is 2
xz , where       

  

(1 )

o

x x x
x

o o

x x x

E q
z

E q q

 




.        

  The calculations are shown in the table below (since 
o

xq is  

  small we use the approximation 

o

x x x
x

o

x x

E q
z

E q

 
 . 

 

 Age x  x   
o

xq   
o

x xE q   zx  
2
xz  

 

 30  12  0.0091    8.645    1.141  1.302 

 31  14  0.0094  11.28    0.810  0.656 

 32  16  0.0097  11.64    1.278  1.633 

 33    9  0.0099    8.91    0.030  0.001 

 34  11  0.0106  10.60    0.123  0.015 

 35  15  0.0116  12.76    0.627  0.393 

 36  10  0.0127  10.16  -0.050  0.003 

 37  16  0.0138  17.25  -0.301  0.091 
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 38  17  0.0149  20.86  -0.845  0.714 

 

          ∑ 4.808 

 

The test statistic has a chi-squared distribution with degrees of freedom (d.f.) 

given by number of ages  

– 1 (for parameter of function linking 
o

xq and s
xq )    

  –  some d.f. for constraints imposed by choice of standard table   

  The critical value of the chi-squared distribution is 

11.07 with 5 d.f. 

12.59 with 6 d.f. 

14.07 with 7 d.f.  

15.51 with 8 d.f. 

16.92 with 9 d.f. at the 5% level (from tables)    

 

Since 4.808 < 11.07 (or 12.59 etc.) there is no evidence to reject the null 

hypothesis that the graduated rates are the true rates underlying the crude 

rates.   

 (ii) EITHER 

  Signs test  

a. The Signs test looks for overall bias.  

b. The number of positive signs among the xz s    

   is distributed Binomial (9, 0.5).     

   We observe 6 positive signs.      

   The probability of obtaining 6 or more positive signs is 

   (from tables)    

   1 – 0.7461 = 0.2539.       

 

[Alternatively, candidates could calculate the probability of obtaining exactly 6 

positive signs, which is 0.1641] 

  

   Since this is greater than 0.025 (two-tailed test)   

c. we cannot reject the null hypothesis and we conclude that the 

graduated rates are not systematically higher or lower than the crude 

rates. 

  OR 

  Cumulative Deviations test 



Subject CT4 — Models Core Technical — September 2009 — Examiners’ Report 

 

Page 15 

 

a. When applied over the whole age range, the Cumulative Deviations 

test looks for overall bias 

b. The test statistic is  

   Normal(0,1)

o

x x x

x

o

x x

x

E q

E q

 
  
 





      

   Age x  x  
o

x xE q   
o

x x xE q    

   30  12   8.645  3.355 

   31  14 11.28  2.72 

   32  16 11.64  4.36 

   33    9   8.91  0.09 

   34  11 10.60  0.40 

   35  15 12.76  2.24 

   36  10 10.16  -0.16 

   37  16 17.25  -1.25 

   38  17 20.86  -3.86 

     ∑ 112.105 7.895 

   So the value of the test statistic is 
7.895

0.7457
112.105

   

   Using a 5% level of significance, we see that    

   1.96 < 0.7457 < 1.96       

c. We accept the null hypothesis at the 5% level of significance and 

conclude there is no overall bias in the graduation. 

  Grouping of Signs test  

a. The Grouping of Signs test looks for runs or clumps of deviations of 

the same sign OR the grouping of signs test tests for overgraduation. 

b. We have:  

9 ages in total 

   6 positive deviations 

   3 negative deviations       

   We have 1 positive run      

   Pr[1 positive run] is therefore equal to 
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5 4

0 1 4 4
0.0476

9 9.8.7 84

3.26

  
  
     
   

  
  

     

   Since this is less than 0.05 (using a one-tailed    

   test) 

c. We reject the null hypothesis that the graduated rates are the true rates 

underlying the crude rates (OR we conclude that the graduation is 

unsatisfactory OR there is evidence of over-graduation).   

  Individual Standardised Deviations test 

a. The Individual Standardised Deviations tests looks for individual large 

deviations at particular ages. 

b. If the graduated rates were the true rates underlying the observed rates 

we would expect the individual deviations to be distributed Normal 

(0,1) and therefore only 1 in 20 xz s should have absolute magnitudes 

greater than 1.96. Looking at the xz s we see that the largest individual 

deviation is 1.278. Since this is less in absolute magnitude than 1.96 

c. we cannot reject the null hypothesis that the graduated rates are the 

true rates underlying the crude rates.     

  

Answers to this question were disappointing compared with previous years.  A 

common error was for candidates to misread the question and to try to compare the 

observed number of deaths with an ‘expected’ number computed on the basis of the 

x
q
^

given in the question.  These candidates were, in effect, examining deviations 

based solely on rounding!  Candidates who made this error were penalised in part (i), 

but could gain credit for some of the alternative tests in part (ii) provided that they 

performed the tests correctly.   

 

11  

(i) A proportional hazards (PH) model is a model which allows investigators to 

assess the impact of risk factors, or covariates, on the hazard of experiencing 

an event. 

In a PH model the hazard is assumed to be the product of two terms, one 

which depends only on duration, and the other which depends only on the 

values of the covariates.        

Under a PH model, the hazards of different lives with covariate vectors z1 and 

z2 are in the same proportion at all times:      

  for example in the Cox model 

  1 1

2 2

( ; ) exp( )

( ; ) exp( )

T

T

t z z

t z z

 


 
.         
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(ii) Cox‟s model ensures that the hazard is always positive.  Standard software 

packages often include Cox‟s model.   

Cox‟s model allows the general “shape” of the hazard function for all 

individuals to be determined by the data, giving a high degree of flexibility 

while an exponential term accounts for differences between individuals. 

This means that if we are not primarily concerned with the precise form of the 

hazard, we can ignore the shape of the baseline hazard and estimate the effects 

of the covariates from the data directly. 

(iii) 

a. 0( ) ( )exp( )A E St t A E S      , where ( )t  is the estimated 

hazard and 0 ( )t is the baseline hazard. 

b. A female aged exactly 16 years when she first claimed benefit who had 

not passed the school mathematics examination. 

(iv) “The hazard of resuming work for males aged 17 years who had passed the 

mathematics examination was 1.5 times the hazard for males aged 16 years 

who had not passed the mathematics examination” implies that 

  

exp[( *1) ]
exp( )

exp( )

exp( )exp( ) 1.5

A S E
A E

S

A E

  
  



   

      

“Females who had passed the examination were twice as likely to take up a 

new job as were males of the same age who had failed” implies that 

  
exp( )

2
exp( )

E

S





         

 since the age terms cancel out.   

“Females aged 20 years who had  passed the examination were twice as likely 

to resume work as were males aged 16 years who had also passed the 

examination” implies that 

  
exp( *4)

2
exp( )

A

S





.        

 

Substituting from (2) into (1) gives 

  2exp( )exp( ) 1.5A S    

so 

  exp( ) 0.75exp( )S A   . 

Substituting into (3) gives 

exp[ *4)
2

0.75exp( )

A

A





, 
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exp(5 ) 1.5

log 1.5
0.0811

5

A

e
A

 

  
       

From (1) then, we obtain 

exp( )exp(0.0811) 1.5

0.0811 0.4055

E

E

 

  
 

  0.3244E  .  

Finally, from (2) we obtain 

exp(0.3244)
2

exp( )

0.3244 log 2 0.6931

S

S e




  

 

  0.3688S            

 

This was satisfactorily answered by many candidates.  Although it is still the case 

than only a minority of candidates seem to understand the essential feature of a 

proportional hazards model that the hazard can be factorised into one part depending 

on duration and another part depending on the values of covariates, many candidates 

could list some advantages of the Cox model in part (ii).  In part (iii)(b) very few 

candidates spotted that the baseline person was aged 16 years when first claiming 

benefit.  In part (iv) candidates who failed to write down the correct equations 

implied by the three statements in the question were given some credit for correctly 

solving the equations they did produce.      

    

END OF EXAMINERS‟ REPORT 


