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Comments 
 
Comments on solutions presented to individual questions for the April 2009 paper are given 
below. 
 
Q1    Answers to this question were satisfactory.  Most candidates realised that graduation by 
reference to a standard table was potentially appropriate, and that graphical graduation 
might have to be used as a last resort.  Credit was given for sensible points other than those 
mentioned in the specimen solution below.   
 
Q2    In part (ii) some explanation of the correct possible values of a and b was required for 
full credit.  A common error in part (ii) (a) was to write 0 < a < 1 and 0 < b < 1, ignoring 
the possibility that a and b could equal 1. 
 
Q3    This bookwork question was well answered by many candidates.  Credit was given for 
sensible points other than those mentioned in the specimen solution below. 
 
Q4    Answers to parts (i) and (ii) were generally good, with a substantial proportion of 
candidates scoring full marks.  Part (iii) was much less convincingly answered.  Although not 
all the points mentioned in the specimen solutions below were required for full credit, many 
candidates only included the briefest of comments, and consequently scored few marks. 
 
Q5   Most candidates simply wrote down the formula for Pr[G=t] (which is given in the book 
of Formulae and Tables) and then explained what each bracketed expression in the formula 
meant.  Few candidates gave more than the briefest explanation of why the test is useful, and 
what it is designed to achieve, and still fewer gave any indication of how the test was to be 
performed. 
 
Q6   Answers to this question were very disappointing.  Although this was slightly more 
demanding than some exposed-to-risk questions in the past, many candidates seemed to have 
little notion of how to approximate the central exposed to risk.   
 
Q7   This question was generally well answered, although part (ii) was less well answered 
than similar questions on previous papers in which examples relevant to actuarial work were 
asked for.   Marks were deducted in part (ii) for problems which seemed trivial, or where 
essentially the same examples were given for more than one class of models.   
 
Q8   Few candidates made a serious attempt at this question.  Many answers consisted of an 
attempt at part (i) followed by a description of the state space in part (ii)(a), the general 
expression for the Kolmogorov equations, and a statement in part (iii) that the distribution of 
holding times was exponential.  Few candidates attempted to write down the matrix in part 
(ii).  Note that credit was given in part (iv) for errors carried forward from incorrect 
matrices in part (ii). 
 
Q9  Part (i) of this question was well answered by a good proportion of candidates. Fewer 
managed to calculate the values of B and c in part (ii), partly due to algebraic errors. Credit 
was given for the calculation of B to candidates who calculated an incorrect value for c but 
then correctly computed the value of B which corresponded to their value of c.  Part (iii) was 
poorly answered, with many candidates offering no comments at all. 
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Q10  Answers to this question were very disappointing.  Parts (i) and (ii) were bookwork 
based on the Core Reading, yet many candidates seemed not to understand what was 
required.  Part (iii) was rather better answered.  Candidates who derived an incorrect hazard 
 function in part (iii) could score full credit in part (iv) for correct sketches of these incorrect 
hazards.  Indeed, of the relatively small number of candidates who scored highly for the 
sketches in part (iv), some did indeed produce correct plots of incorrect (and sometimes 
much more complicated) hazard functions.   
 
Q11  This question was well answered by many candidates.  The only general weaknesses 
were steps missing in part (i) and the lack of explanation of where the approximate variance 
came from in part (iii)(b).  In part (iv), an encouraging number of candidates realised that 
the Cox model was an obvious alternative model, though few made any further comments on 
how it might be applied to the problem mentioned in the question. 
 
Q12  This question was also well answered by the majority of candidates. Many scored full 
marks on parts (i), (ii) and (iii), and made a good attempt at part (iv).  The comments asked 
for in part (v) were, however, much less convincingly made.  In part (iv), several candidates 
combined the two categories “4 claims” and “5 claims” because the expected value was 
small.  Full credit was given for this if the chi-squared statistic was computed correctly, and 
the number of degrees of freedom was correct for this alternative.  However, candidates who 
performed the test on the reduced number of categories “0 claims”, “1 claim” and “2 or 
more claims” were penalised. 
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1 Graduation by reference to a standard table might be appropriate, if a suitable 
standard table could be found.     

 
 However the fact that the company insures non-standard lives makes it unlikely that a 

suitable standard table would exist. 
  

 Graphical graduation might be used if no suitable standard table can be found. 
   

 However it is a last resort as it is difficult to obtain results which are smooth and 
which adhere to the data. 

 
 Graduation using a parametric formula is unlikely to be appropriate as the amount of 

data in this investigation is likely to be small and it is unlikely that the company will 
want to produce a standard table. 

 
 
2 (i) A Markov chain is a stochastic process with discrete states operating in 

discrete time in which the probabilities of moving from one state to another 
are dependent only on the present state of the process.   
     

  EITHER 
 
  If the transition probabilities are also independent of time. 
 
  OR  
 
  If the l-step transition probabilities are dependent only on the time lag, the 

chain is said to be time-homogeneous.  
 
 (ii) (a) In this case the chain is irreducible if the transition probability 

out of each state is non-zero (or, equivalently, if it is possible to 
reach the other state from both states)  

 
   So requires  0 1a< ≤  and 0 1b< ≤     

     
  (b) The chain is only periodic if the chain must alternate between  
   the states.         
 
   So a = 1 and b = 1.      
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3 Benefits 
 
 Complex systems with stochastic elements can be studied.     
 
 Different future policies or possible actions can be compared. 
 
 In models of complex systems we can control the experimental conditions and thus 

reduce the variance of the results without upsetting their mean values.  
        

 Can calibrate to observed data and hence model interdependencies between 
 outcomes.       
     
 Often models are the only practicable means of answering actuarial questions.  
 
 Systems with a long time-frame can be studied and results obtained relatively quickly.

           
 Limitations 
 
 Time or cost or resources required for model development. 
     
 In a stochastic model, many independent runs of the model are needed to obtain 

results for a given set of inputs. 
      
 Models can look impressive and there is a danger this results in false sense of 

confidence.          
 
 Poor or incredible data input or assumptions will lead to flawed output. 
 
 Users need to understand the model and the uses to which it can safely be put — the 

model is not a “black box”. 
 
 It is not possible to include all future events in a model (e.g. change in legislation).

         
 Interpreting the results can be a challenge. 
 
 Any model will be an approximation. 
 

Models are better for comparing the impact of input variations than for optimising 
outputs.         
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4 (i) (a) Under UDD the number of deaths between exact ages 30 and 35 years 
is half the number of deaths between exact ages 30 and 40 years.  

 
   So the number of deaths between exact ages 30 and 35 years is 
 
   ½(98,617 – 97,952) = 332.5      
 

   and 5 30
332.5 0.0033716

98,617
q = = .      

 
  (b) Let the constant force of mortality be µ.   
 

   Then, since 
0

exp
t

t x x sp ds+

⎛ ⎞
⎜ ⎟= − μ
⎜ ⎟
⎝ ⎠
∫ ,      

   ( )10 30 exp 10p = − μ          
 
   so 
 

   ( ) ( )10 30 log 97,952 / 98,617log
0.0006766

10 10
ee p −−

μ = = = .              

 
   5 30 5 301 1 exp( 5 )q p= − = − − μ  
 
   1 exp[( 5)(0.0006766)] 0.0033773= − − = .     
 
 (ii) EITHER  
 
  The number of survivors to exact age 35 years is 
 
  5 30 5 3098,617 98,617(1 )p q= − , 
 
  so for UDD this is 
 
  98,617(1 0.0033716) 98,284.5− = ,      
 
  and under a constant force of mortality this is 
 
  98,617(1 0.0033773) 98,283.9− = .       
 
  OR 
 
  Under UDD the number of survivors to exact age 35 years is 
  (98,617 + 97,952)/2 = 98,284.5.  
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  Under a constant force of mortality the number of survivors to 
  exact age 35 years is given by 
 
  98,617*97,952 98, 283.9=        
 
 (iii) The actual number of survivors to exact age 35 years is higher (or, 

equivalently, mortality is lighter) than that under either the UDD or the 
constant force assumptions.     

 
  The actual number of survivors implies that there were 258 deaths between 

ages 30 and 35 years and 407 deaths between ages 35 and 40 years.  
        

 
  The actual data reveal that the force of mortality is higher between ages 35 and 

40 years than it is between ages 30 and 35 years for females in English Life 
Table 15, which suggests that the force of mortality is increasing over this age 

  range. 
 
  The assumption of UDD implies an increasing force of mortality.  

      
  The actual force of mortality seems to be increasing even faster than is implied 

by UDD.        
 
  A constant force of mortality is unlikely to be realistic for this age range.  
 
  Used over a 10-year age span the assumption of UDD is unlikely to be 
  appropriate, whereas used over single years of age it is acceptable.   
 
                    
5 Suppose we have a set of n crude mortality rates for a given age range x to x + n − 1, 

and we wish to compare them to a standard set of n mortality rates for the same age 
range.       

 
 If the mortality underlying the crude rates is the same as that of the standard set of 

rates (the null hypothesis), then we should expect the difference between the two sets 
of rates to be due only to sampling variability.       
     

 The grouping of signs test tests the null hypothesis by examining the number of 
groups of consecutive positive deviations among the n ages, where a positive 
deviation occurs when the crude rate  exceeds the corresponding rate in the standard 
set.    

 
 Suppose there are a total of m positive deviations, n – m negative deviations and G 

positive groups.       
 
 Then the number of possible ways to arrange t positive groups among n – m negative 

deviations is 
1n m

t
− +⎛ ⎞

⎜ ⎟
⎝ ⎠

.      
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 There are 
1

1
m
t
−⎛ ⎞

⎜ ⎟−⎝ ⎠
ways to arrange m positive signs into t positive groups.  

       

 There are 
n
m
⎛ ⎞
⎜ ⎟
⎝ ⎠

 ways to arrange m positive and n – m negative signs.  

 
 Therefore the probability of exactly t positive groups is  
 

 

1 1
1

Pr[ ]

n m m
t t

G t
n
m

− + −⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠= =

⎛ ⎞
⎜ ⎟
⎝ ⎠

       

 
 The grouping of signs test then evaluates Pr[ ]t G≤  under the null hypothesis.   

       
 If this is less than 0.05 we reject the null hypothesis at the 5% level.   
 
 
6 (i) (a)   The relevant recovery rates can be estimated as  
 

   x
x c

x

dr
E

= ,    x = 0, 1, 2, ... months       

 
   where dx is the number of persons recovering in the calendar month 

that was x months after the calendar month of their operation, and c
xE is 

the central exposed to risk.  
 
  (b) We need to ensure that the c

xE correspond to the data on persons 
recovering       

 
   The hospital’s data imply a calendar month rate interval for the 

recoveries, running from the first day of each month until the last day 
of each month.     

 
   Using the monthly “census” data, a definition of c

xE which corresponds 
to the deaths data can be obtained as follows. 

 
   We observe ,x tP = number of lives under observation for whom the 

time elapsing since the operation was between x − ½ and x + ½ 
months, where t is the time in months since 1 January 2008.  
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   Therefore, using the census formula: 
 

   ( )
12 11

, , 1, 1
00

1* * *2
c
x x t x t x tE P dt P P + += = +∑∫ ,    

 
   where  , 1, ,

1* ( )2x t x t x tP P P−= + .      

 
   We assume all months are the same length, and that the numbers in the 

hospital vary linearly across each month.  
 
 (ii) At the start of the rate interval, durations since the operation range from x − 1 

to x months, so the average duration is x − ½,  assuming operations take place 
evenly across the month.    

 
  rx  estimates the recovery rate at the mid-point of the rate interval.  
 
  This is exactly x months since the operation, so f = 0.    
 
         
7 (i) Processes can be classified, first, according to whether their state space (i.e. 

the range of states they can possibly occupy) is discrete or continuous 
       

  For processes operating in both discrete and continuous state space the time 
domain can either be discrete or continuous  

  
  Therefore we have four possible types of process  
 
  EITHER  
 
  2 types of state space × 2 types of time domain    
 
  OR 
 
  State space Time domain 
 
  Discrete Discrete 
  Discrete Continuous 
  Continuous Discrete 
  Continuous Continuous       
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 (ii)  
 
Type of process Statistical model Problem of relevance 

to food retailer 
Problem of relevance 
to a general insurer 

SS Discrete/ 
T Discrete 

Markov chain 
Markov jump chain 
Counting process 
Random walk 

Whether or not 
particular product out 
of stock at the end of 
each day 

No claims bonus 

SS Discrete/ 
T Continuous 
 

Counting process 
Poisson process 
Markov jump process
Compound Poisson 
process 

Rate of arrival of 
customers in shop 

Number of claims 
received monitored 
continuously 

SS Continuous/ 
T Discrete 

ARIMA time series 
model 
General random walk 
White noise 

Value of goods in 
stock at the end of 
each day 

Total amount insured 
on a certain type of 
policy valued at the 
end of each month   

SS Continuous/ 
T Continuous 

Compound Poisson 
process 
Brownian motion 
Ito process 

Volume (or value) of 
trade in shop over a 
continuous period of 
time 

Value of claims 
arriving monitored 
continuously 

          
  
8 (i)  There are x infected cats and hence 10 – x uninfected cats.   
 
  Flea transmission requires one of the x infected cats to meet one of the (10 − x) 

uninfected cats.       
 

 (ii) The total number of pairings of cats is 
10
2

⎛ ⎞
⎜ ⎟
⎝ ⎠

= 45.      

 
  So the probability of a meeting resulting in an increase in the number of cats 

with fleas is 0.5x(10 − x)/45.      
 
  As this depends only on the number of cats currently infected, and meetings 

occur according to a Poisson process, the number of infected cats over time 
follows a Markov jump process.      
   

  (a) The state space is the number of cats infected {0,1,2,,…..10} 
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  (b)  The generator matrix is   
               

 

0 0
9 9

16 16
21 21

24 24
25 25

90
24 24

21 21
16 16

9 9
0

A

⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟−
⎜ ⎟

−⎜ ⎟
⎜ ⎟−
⎜ ⎟μ

= −⎜ ⎟
⎜ ⎟−
⎜ ⎟

−⎜ ⎟
⎜ ⎟−⎜ ⎟
⎜ ⎟−
⎜ ⎟
⎝ ⎠

          

            
 
   Kolmogorov’s equations: 
 
   EITHER 
 

   forward form ( ) ( )d P t P t A
dt

=       

 
   OR 
 

   backward form ( ) ( )d P t AP t
dt

=       

 
 (iii)  Holding times are exponentially distributed.     
 

  With mean 90
(10 )x xμ −

 OR parameter (10 )
90

x xμ − .     

 
 (iv) Total expected time is the sum of the mean holding times.    
 

  
9

1

90 1 90 1 1 1 1 1 1 1 1 1
(10 ) 9 16 21 24 25 24 21 16 9x x x=

⎛ ⎞= = + + + + + + + +⎜ ⎟μ − μ ⎝ ⎠
∑    

   
  = 50.92/µ          
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9 (i) Under Gompertz’s Law 
 
  x

x Bcμ = .          
 
  Since 
  

  
0

exp
t

t x x wp dw+

⎛ ⎞
⎜ ⎟= − μ
⎜ ⎟
⎝ ⎠
∫ ,        

  

  we have 
0 0

exp exp
ln

tt x w
x w

t x
Bc cp Bc dw

c
+

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟= − = −

⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
∫ ,   

  

  which is exp
ln

x t xBc c Bc

c

⎛ ⎞⎡ ⎤−⎣ ⎦⎜ ⎟− =
⎜ ⎟
⎝ ⎠

( 1)

exp
ln

x tc cB
c

−
⎡ ⎤−⎛ ⎞

⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
.    

 

(ii) Define Q =  
50

exp
ln

cB
c

⎡ ⎤−⎛ ⎞
⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

      

 
  ln 0.995 = (c − 1) ln Q  
  
  ln 0.989 = (c2 − 1) ln Q        
  

  
2( 1) ( 1)( 1) 2.20665

( 1) ( 1)
c c c
c c
− − +

= =
− −

       

  
  c = 1.20665          
  
  Therefore Q = 0.976036128        
 

  
501.20665

exp 0.976036128
ln1.20665

B⎡ ⎤−⎛ ⎞ =⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
      

 
  B = 3.797*10−7.         
 
 (iii) In this example, only two observations are provided so there is an analytical 

solution to the Gompertz model.     
 
  This is unrealistic as in general a graduation process would be used to provide 

a fit to a set of crude rates.    
   
  This could be done by weighted least squares or maximum likelihood. 
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  The more general graduation process allows the fitting of more complex 
models from the Gompertz-Makeham family which have the form 

 
  xμ = polynomial(1) + exp(polynomial(2))     
 
  the parameters of which cannot always so easily be estimated by the method 

used in part (ii).       
 
 
10 (i) (a) ( ) Pr[ ]x xS t T t= >         
 
  (b) EITHER 
 

   Since Pr[ ]Pr[ ] Pr[ | ]
Pr[ ]x

T x tT t T x t T x
T x
> +

> = > + > =
>

   

 
   and ( ) Pr[ ]S t T t= > ,        
 

   then ( )( )
( )x

S x tS t
S x
+

= .        

 
   OR 
 

Since ( )x t xS t p= , then using the consistency principle 

0 0.x t t x xp p p+ =         
 

   Therefore 0

0
( ) x t

t x x
x

pp S t
p

+= = =
( )

( )
S x t

S x
+ .     

             
 (ii) EITHER 
 

1 [Pr( )]
Pr[ ]x t x

x

d T t
T t dt+μ = − >

>
      

 
OR 
 

( )
0

1lim Pr[ |x t x x
h

T t h T t
h++

→
μ = ≤ + >        

  
 (iii) EITHER 
 

If the density function of Tx  is ( )xf t , then we can write 
 

  ( ) ( ) ( )x x x t x
df t S t S t
dt+= μ = −        
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  Therefore 1 ( )
( )x t x

x

d S t
S t dt+μ = −        

 
  If   ( )( ) exp ( )xS t t β= − λ , therefore, we have 

 

  
( ) ( )1 exp ( )

exp ( )
x t

d t
dtt

β
+ β

μ = − − λ
− λ

     

  

  
( ) ( )( )( )1 11 exp ( )

exp ( )
x t t t t

t
β β β− β β−

+ β
μ = − − λ −λ β = λ β

− λ
   

 
  OR 
 

  
0

( ) exp exp ( )
t

x x sS t ds t β
+

⎡ ⎤
⎡ ⎤⎢ ⎥= − μ = − λ⎣ ⎦⎢ ⎥⎣ ⎦

∫ .     

 
  So 
 

  
0

( )
t

x s x t
d dds t
dt dt

β
+ +

⎡ ⎤
⎡ ⎤⎢ ⎥μ = μ = λ⎣ ⎦⎢ ⎥⎣ ⎦

∫ ,       

 
  and hence 
 
  1

x t tβ β−
+μ = βλ .  

 
 

(iv) 
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11 (i) Condition on the state occupied at t.       
 
  We have 
 
  12 11 12 12 22

t dt x t x dt x t t x dt x tp p p p p+ + += + .       
 
  since it is impossible to leave states 3 and 4 once entered. 
  
  Also, 22

dt x tp +  = 1,        
  
  since state 2 is an absorbing state.     
   
  We now assume that, for small dt, 
 
  12 12 ( )dt x t x tp dt o dt+ += μ +         
 
  where o(dt) is the probability that a life makes two or more transitions in the 

time interval dt, and  
 

  
0

( )lim 0
dt

o dt
dt→

= .         

 
  Substituting for 12

dt x tp + gives 
 
  12 12 11 12 ( )t dt x x t t x t xp p dt p o dt+ += μ + +                  
    
  Thus 
 
  12 12 12 11 ( )t dt x t x x t t xp p p dt o dt+ +− = μ +        
 
  and 
  

  
12 12

12 12 11

0
lim t dt x t x

t x x t t x
dt

p pp p
t dt+

+
+

→

−∂
= = μ

∂
      

 
 (ii) (a) Suppose we observe d12 deaths from heart disease, d13 deaths from 

cancer and d14 deaths from other causes.      
    

   Suppose also that we observe the waiting time for each life, and that 
the total observed waiting time is V, being the sum of the waiting times 
for each life.           

 



Subject CT4 — Models Core Technical — April 2009 — Examiners’ Report 
 

Page 16 

   Then the likelihood of the data is given by 
 

   ( ) 12 13 1412 13 14 12 13 14exp ( ) ( ) ( ) .d d dL V⎡ ⎤∝ − μ +μ +μ μ μ μ
⎣ ⎦    

  (b) The maximum likelihood estimator of 12μ  is obtained by 

differentiating this expression (or its logarithm) with respect to 12μ  
and setting the derivative equal to zero.    
  

   Taking logarithms produces 
 
   12 13 14 12 12 13 13 14 14log ( ) log log logL V d d d K= − μ +μ +μ + μ + μ + μ +  
 
   (where K is a constant )       
  
   Partially differentiating this with respect to 12μ  leads to 
 

   
12

12 12
log L dV∂

= − +
∂μ μ

,        

 
   and setting the partial derivative equal to zero leads to the solution 
 

   
12

12ˆ .d
V

μ =          

 

   Since 
2 12

12 2 12 2
log

( ) ( )
L d∂
= −

∂μ μ
, the second derivative is always negative 

and so we have a maximum.    
 
 (iii) (a)  The maximum likelihood estimate of the force of mortality from heart 

disease is 34/1,065 = 0.0319249     
       

  (b) The variance of the maximum likelihood estimator of 12μ is 

asymptotically 
12

[ ]E V
μ , where E[V] is the expected waiting time in the 

state “alive” and 12μ  is the “true” population value of the force of 
mortality from heart disease.      
  

   This may be approximated by using the observed force of mortality 
and the observed waiting time, so that an estimate of the variance is 
    

   0.0319249 0.000029976
1,065

= .      
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   The estimated standard error is therefore 
 
   0.000029976 0.00547507= .      
 
   The 95% confidence interval is therefore 
  

   
0.0319249 (1.96)0.00547507 0.0319249 0.0107311

(0.0212,0.0427).
± = ±

=
  

          
 (iv) Using the four state model, the lives in the investigation would have to be 

stratified according to the risk factors and the transition intensities estimated 
separately for each stratum.   

 
  This is likely to run into problems of small numbers.  
   
  Using a Cox regression model with death from heart disease as the event of 

interest and the risk factors as covariates would avoid this problem.  
        

  Lives who died from other causes could be treated as censored at the durations 
when they died.     

 
 
12 (i)  The probability of making the relevant number of claims is: 
 
  P[0 claims] = exp(−0.3) = 0.740818       
  P[1 claim] = 0.3exp(−0.3) = 0.222245      
 
  So P[2 or more claims] = 1 − 0.740818 − 0.222245 = 0.036936  
 
  Therefore the transition matrix P is given by: 
 

  

0.259182 0.740818 0 0
0.259182 0 0.740818 0
0.036936 0.222245 0 0.740818

0 0.036936 0.222245 0.740818

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

    

 
 (ii)  Pπ = π          
  
  1 1 2 30.259182 0.259182 0.036936π = π + π + π  (1) 
  2 1 3 40.740818 0.222245 0.036936π = π + π + π  (2) 
  3 2 40.740818 0.222245π = π + π    (3) 
  4 3 40.740818 0.740818π = π + π    (4)   
  1 2 3 4 1π + π + π + π =         
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  Using (4)  
 
  3 4 4[(1 0.740818) / 0.740818]* 0.349859π = − π = π . 
   

In (3) 
 
  2 4 4[(0.349859 0.222245) / 0.740818]* 0.17226π = − π = π . 
 
  Then in (2) 
 
  1 4 4[(0.17226 0.036936 0.222245*0.349859) / 0.740818]* 0.07771π = − − π = π
             
  So 
 
  4 1/π = (1+0.349859+0.17226+0.07771)=0.625067 
  3 0.218685π =  
  2 0.107674π =  
  1 0.048574π =           
 
 (iii)  Average discount = 
 
  60%*0.625067+50%*0.218685+25%*0.107674 = 51.13%   
   
 (iv)  The total number of policyholders shown is 130,200. 
 

Number of 
claims 

Probability Expected 
Number 

Observed (O − E)2/E 

0 0.740818221 96454.53 96632 0.327 
1 0.222245466 28936.35 28648 2.873 
2 0.03333682   4340.45 4400 0.817 
3 0.003333682     434.05 476 4.054 
4 0.000250026       32.55 36 0.366 
5 1.50016E−05         1.95 8 18.771 

                      
Null hypothesis: the data come from a source where the underlying 
distribution of number of claims follows a Poisson distribution with mean 
0.30.      

 
  The test statistic z = 2( )i i

ii
O E E−∑  is distributed as chi-square    

  with (6 − 1(parameter) − 5 degrees of freedom under the null hypothesis.  
 
This is a one-tailed test, and the upper 5% point of the chi-squared distribution 
with 5 degrees of freedom is 11.07.       
 

  The observed value of the test statistic is 27.2.    
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  As 27.2 > 11.07 we reject the null hypothesis.      
   
         (v)  As the goodness of test fails, the discount level calculated assuming the 

Poisson distribution may be incorrect.     
  

  The goodness-of-fit test fails due to a larger number of multiple  
  claims than expected.         
 
  Conversely a higher number of policyholders make  no claims than expected 

(within the mean of 0.30), so the average discount level may be understated.
     

  The average discount level calculated from the data could usefully be 
compared with that estimated using the Poisson distribution.  
       

 
END OF EXAMINERS’ REPORT 


