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CT8 A2014–2 

1 Outline the key findings in behavioural finance. [10] 
 

2 (i) State the expression for the return on a security, i, in the single-index model, 
defining all terms used.  [2] 

 
 (ii) Explain the difference between the single-index model and the Capital Asset 

Pricing Model.  [1] 
 
 Suppose the market has expected return 6% and standard deviation 10%.  Two 

securities have expected returns 8% and 10%, and standard deviations 15% and 20%.  
The correlation between these two securities and the market is 0.25 and 0.4 
respectively.  Assume the single-index model described in (i) holds. 

 
 (iii) Calculate the constant parameters in the expression for the return of these two 

securities.  [5] 
 
 (iv) Explain how a multi-index model would be expected to perform relative to the 

single-index model in terms of fitting data and predicting future security price 
moves.  [2] 

   [Total 10] 
 
 
3 Let W be a standard Brownian motion. 
 

(i) State the continuous-time log-normal model of a security price S, defining all 
the terms used. [2] 

 
Let f  be a function of t and 2

tW . 
 

 (ii) (a)  Find a function f such that 2( , )tf t W  is a Ft-martingale, with F the 
Brownian filtration. 

 
   Hint: 2( )t sE W ⏐F  = 2

sW t s+ −  for all t ≥ s. 
 
  (b)  Use Ito’s lemma to show that 2( , )tf t W  is a process with zero drift. 
    [4]  
  
 Let  X be the process defined as .t tX t W β

α=  
 
 (iii) Derive the values of and  α β for which tX  defines a standard Brownian 

motion.  [6] 
   [Total 12] 
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4 Consider the following long position in European and American call options written 
on a stock, with strikes and times to expiry as set out in the table below.   

 
Option 
 

European/American Strike price Time to expiry 

A American 400 3 years 
B American 400 2 years 
C American 420 3 years 
D European 400 3 years 
E European 400 2 years 

  
 Rank these options in order of value to the extent that this is possible.  [5] 

 
 

5 Consider the following model for the short-rate r: 
 
   t t tdr r dt dZ= μ +σ  
 
 where μ  and σ  are fixed parameters and Z is a standard Brownian motion. 
 
 (i) Comment on the suitability of this model for the short-rate.  [4] 
 
 An alternative model for the short-rate is the Vasicek model: 
 
  ( )  .t t tdr a r dt dZ= μ − +σ    
 
 (ii) Derive an expression for ( )T

t r u du∫ . [6] 
 
 (iii) State the distribution of ( )T

t r u du∫ . [1] 
   [Total 11] 
 
 
6 (i)  State the equation for the capital market line in the Capital Asset Pricing 

Model (CAPM), defining all the terms used. [3] 
 
 In a market where the CAPM is assumed to hold, the expected annual return on the 

market portfolio is 12%, the variance is 4%% and the effective risk-free annual rate is 
4%.  An Agent wants an expected annual return of 18% on a portfolio worth 
£1,200,000. 
 

 (ii) Calculate the standard deviation of the return on the corresponding efficient 
portfolio.  [2] 

 
 (iii) Calculate the amount of money invested in each component of the Agent’s 

portfolio. [3] 
    [Total 8] 
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7 In a Black-Scholes market, let S be the price of a stock and D be the price of a 
derivative written on S, with maturity T, where Dt = g(t, St) for any t < T and  

 g(T, x) = f(x). 
 
 (i)  Write down the partial differential equation (PDE) that g must satisfy, 

including the boundary condition for time T. [3] 
 
 Suppose that the derivative pays ST

n / S0
n−1 at time T, where n is an integer greater 

than 1. 
 
 (ii)  Show, using (i), that the price of the derivative at time t is given by  
  Dt = (St

n / S0
n−1)eμ(T−t) for some μ which you should determine. [6] 

   [Total 9] 
 
 

8 (i)  State and prove the put-call parity for a stock paying no dividends. [5] 
         

 In a Black-Scholes market, a European call option on the dividend-free stock, with 
strike price $120 and expiry T = 1 year is priced at $10.09.  The continuously 
compounded risk-free rate is 2% p.a. and the stock is currently priced at $110.  

 
 (ii)  Estimate the implied volatility of the stock to the nearest 1%. [4] 
 
 A European put option on the same stock has strike price $121 and the same maturity.  

An investor holds a portfolio which is long one call and short one put. 
 
 (iii) Sketch a graph of the payoff at maturity of the portfolio against the stock price  

 [2] 
 
 (iv) (a)  Determine an upper and a lower bound on the value of the portfolio at 

maturity. 
 

  (b) Deduce bounds for the current put price.  [3] 
  
 (v)  Determine the fair price of the put. [2] 
    [Total 16] 

 
 
9 Outline the evidence against normality assumptions in models of market returns. [8]
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10 A company has two zero-coupon bonds in issue.  Bond A redeems in 1 year and the 
current price of £100 nominal is £92.50.  Bond C redeems in 2 years and the current 
price of £100 nominal is £74.72. 

 
 The continuously compounded risk-free rate is 2.5% p.a. for the next two years. 
 
 (i) Write down the formula for the general zero-coupon bond price in the two-

state model for credit ratings, defining all the terms used. [2]
  

 (ii)  Determine the implied risk-neutral probability of default for bond A, assuming 
this model holds, and a recovery rate of 50% for bond A. [3] 

 
 If bond A defaults then bond C automatically defaults with a recovery rate of zero, 

whereas if bond A does not default then bond C may still default in the second year, 
but with a recovery rate of 50%. 

 
 (iii) Modify your answer to (i) to give a formula for the current price of bond C.  
    [3] 
 
 (iv) Calculate the risk-neutral probability of default for bond C. [3] 
   [Total 11] 

 
 

END OF PAPER 








