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1  An investor measures the utility of her wealth using the utility function U(w) = ln(w) 
for w > 0. 

 
 (i) Derive the absolute and relative risk aversions for this investor’s utility 

function, and the first derivative of each.  [4]
  

 (ii) Comment on what this tells us about the proportion of her assets that this 
investor will invest in risky assets.  [2] 

 
 The investor has £100 available to invest in two possible assets, Asset A and Asset B.  

The future value of Asset A depends on an uncertain future event. 
 

 Every £1 invested in Asset A will be worth £1.30 with probability 0.75 and £0.40 
with probability 0.25. 
 

 Asset B is risk-free, so every £1 invested in Asset B will always be worth £1. 
 
 The investor does not discount future asset values when making investment decisions. 

She decides to invest a proportion a of her wealth in Asset A and the remaining 
proportion 1 – a in Asset B. 

 
 (iii) Express her expected utility of wealth in terms of a. [2] 
 
 (iv)  Determine the amount that she should invest in each of Asset A and B to 

maximise her expected utility, using your result from part (iii).  [5] 
   [Total 13] 
 
 

2 Consider an asset whose return follows the probability density function f(x). 
 
 (i) Write down a formula for the variance of the return on the asset, defining any 

additional notation you use.  [1] 
 
 (ii) Write down a formula for the shortfall probability for the return on the asset 

below a level L.  [1] 
 
 The returns on an asset follow a Normal distribution with mean µ = 6% per annum 

and variance σ2 = 23% per annum.  An investor buys €500 of the asset. 
 
 (iii) Determine the shortfall probability for the value of the asset in one year’s time 

below a value of €480.  [2] 
 
 (iv) Explain what can be deduced about an investor’s utility function if the investor 

makes decisions based on: 
 

(a) the variance of returns.       
 (b)  the shortfall probability of returns. 

   [2]
 [Total 6] 
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3  Consider a market with N securities.  Let xi denote the weight of security i in a 
portfolio, Vi the variance of the return on security i and Cij the covariance between the 
returns on security i and security j. 

 
(i) Write down an expression for V, the variance of the return on the portfolio. [1] 

 
(ii) Describe how an efficient portfolio can be found under mean-variance 

portfolio theory.  [You do not have to include details of the partial derivatives 
and their solutions.] [5] 

 
(iii) Show that investors can diversify away specific risk by investing equal 

amounts in an increasing number of independent securities.  [3] 
 

(iv) Show that the result in part (iii) still holds true when the securities are 
correlated. [3] 

   [Total 12] 
 
 

4 In a market where the assumptions of the Capital Asset Pricing Model (CAPM) hold, 
there are a risk-free asset and two risky assets with the following attributes: 

 
  Rate of return (per annum) 

State 
 

Probability Asset 1 Asset 2 Asset 3 

1 0.2 5.0% 15.0% 26.0% 
2 0.3 5.0% 22.0% 15.0% 
3 0.1 5.0% 10.0% 24.0% 
4 0.4 5.0% 28.0% 7.0% 

      
Market capitalisation  30,000 70,000 

 
 (i) Determine the composition of the market portfolio. [1] 
 
 (ii) Determine the market price of risk. [5] 
 
 (iii) Calculate the beta of each risky asset. [2] 
 
 (iv) State the limitations of the CAPM. [3] 
   [Total 11] 
 
 

5 (i) Define the three forms of the Efficient Markets Hypothesis.  [3] 
 
 (ii) State two reasons why it is hard to test whether any of the three forms hold in 

practice.  [2] 
 [Total 5] 
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6 Suppose that at time t a portfolio (t , t) is held, where t represents the number of 

units of a stock, with price St , held at time t and t is the number of units of a cash 

bond, with price Bt , held at time t.  The processes  and  are previsible.   
 
 Let V(t) = t St + t Bt be the value of the portfolio at time t. 
 
 (i) Explain what it means for this portfolio to be self-financing. [2] 
 
 Consider a stock paying a continuous dividend at a rate δ and denote its price at any 

time t by St.  
 
 Let Ct and Pt be the price at time t of a European call option and European put option 

respectively, written on the stock S, each with strike price K and maturity T ≥ t.  
 
 The instantaneous risk-free rate is denoted by r.  
 
 (ii) Prove put-call parity in this context by constructing two self-financing 

portfolios whose value must be equal by the principle of no arbitrage.  [6] 
  [Total 8] 

 
 
7 Consider a non-dividend-paying share with price St at time t (in years) in a market 

with continuously compounded risk-free rate of interest r.  
 
 (i) Show that the fair price at t = 0 of a forward contract on the share maturing at 

time T is K = S0erT.  [5] 
 
 A share is currently worth S0 = €20.  The continuously compounded risk-free rate of 

interest is 1% per annum.   
 
 (ii) Calculate the fair price at t = 0 of a forward contract written on the share with 

delivery at t = 2.  [1]  
 
 (iii) Give an expression for the value to the investor of the forward contract in part 

(ii) at time t  2, in terms of St , t and r. [2] 
 
 An investor enters into the above forward contract at time t = 0.  At time t = 1 the 

risk-free rate of interest has increased to 4% per annum.  The share price has not 
changed. 

 
 (iv) Calculate the value to the investor of the forward contract at t = 1.  [1]  
 
 (v) Determine each of the following Greeks for the contract value at time t = 1:   
 

 delta 
 theta 
 vega 

  [3] 
  [Total 12]
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8 Consider a three-period binomial tree model for the stock price process St.  
 
 Let S0 = 100 and let the price rise by 10% or fall by 5% at each time step.  
 
 Assume also that the risk-free rate is 4% per time period, continuously compounded. 
 

(i) (a) State the conditions under which the market is arbitrage free. 
 

  (b) Verify that there is no arbitrage in the given market. 
     [2] 
 
 (ii) Calculate the price of a European call option on this stock, with maturity at the 

end of the third period and a strike price of 103. [4] 
 
 A special option, called a European “Paylater” call option, has the following payoff at 

maturity T: 
 

( )   if  T TS K c S K    
 

 and zero otherwise.  K is the strike price and c is the premium paid for the option.  
 
 The premium is paid at maturity, and is only paid if the option expires in-the-money. 
 
 Further, the option premium is set such that the value of the option at time t = 0 is 

zero.   
 
 Assume that K = 103 and the maturity of the contract is at time t = 3. 
 
 (iii) Determine the premium c of this contract. [3] 
   [Total 9] 
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9 (i) Draw a diagram to illustrate the Jarrow-Lando-Turnbull model for credit 
default, defining any notation used.  [4] 

 
 Consider a three-state credit model for a company in discrete time.  The states are 

Healthy (H), Unhealthy (U) or Defaulted (D).  Transition probabilities from state i to 
state j, pij, are constant: 

 
pHU = 0.1 
pUH = 0.05 
pHD = 0.02 
pUD = 0.3 

  pDj = 0 for all j ≠ D 
 
 Denote the probability that the company is in state i at time t (years) as pi(t). 
 
 A company is in the Healthy state at time 0. 
 
 (ii) Calculate pD(2), i.e. the probability that the company is in the Default state at 

time 2.  [2] 
 
 The company issues a zero-coupon bond at time 0, with maturity at time 2 and 

nominal value £100.  The continuously compounded risk-free rate of interest is 4% 
per annum.   

 
 Assume that the bond returns its nominal value at time 2 if the company is not in 

default, or x% of its nominal value at time 2 if the company is in default.   
 
 The fair price of the bond at time 0 is £87.63. 
 
 (iii) Calculate the value of x, the assumed percentage recovery on default.  [2]

  
 (iv) Calculate the credit spread on the bond.  [1] 
 
 (v) Comment on the impact on the current price of the bond if it returned x% of its 

nominal value at the time of default rather than at time 2. [1]
 [Total 10] 
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10 In the Vasicek model, the short rate of interest under the risk-neutral probability 
measure is given by: 
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 where k, ,  > 0 and W is a standard Brownian motion. 
 
 Consider the related process: 
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 (i) Show that tR  has a Normal distribution with mean and variance given by: 
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 Let P(0,t) be the price at time 0 of a zero-coupon bond with redemption date t > 0. 
 
 (ii) Show that, under the Vasicek model: 
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 (iii) Show, by using the results from parts (i) and (ii), that: 
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 (iv) State the main drawback of the above model for the term structure of interest 

rates.  [1]  
   [Total 14] 
 

 

END OF PAPER 


