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1  (i) Define the following terms:   
 

(a) absolute dominance 
(b) first order stochastic dominance 
(c) second order stochastic dominance 
  [4] 

 
Consider four assets which will deliver a one-year return ri on asset i with 
probabilities as set out below:   

 
 P(ri = –5%) 

 
P(ri = –3%) P(ri = 0%) P(ri = +3%) P(ri = +5%) 

Asset 1 0.2 0.2 0.2 0.2 0.2 
Asset 2 0.3 0.2 0.1 0.2 0.2 
Asset 3 0.1 0.3 0.2 0.3 0.1 

 
 (ii) Determine which type of dominance, if any, is exerted by:   
 

(a) asset 2 over asset 3. 
(b) asset 3 over asset 1. 
(c) asset 1 over asset 2. [6] 

    [Total 10] 
 
 

2 (i) Define in the context of mean-variance portfolio theory:  
 

(a) an inefficient portfolio 
(b) an efficient portfolio [2] 

 
 (ii) State the two assumptions about investor behaviour that are needed for the 

existence of efficient portfolios.  [1] 
 
 An investment universe includes two assets, A and B, with expected return on asset i 

of ri and variance vi as set out below: 
 

Asset i 
 

Expected return ri Variance of return vi 

A rA = 0.05 vA = 0.16 
B rB = 0.07 vB = 0.25 

 
The correlation of returns is cAB = –0.2. 

 
 In an efficient portfolio, let a be the proportion which is held in asset A. 
 
 (iii) Express the portfolio variance V in terms of a quadratic function in a, showing 

your workings. [3] 
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 Let R be the expected return on the portfolio. 
 
 (iv) Express the portfolio variance V in terms of a quadratic function in R, using 

your result from part (iii) and showing your workings.  [Your expression 
should not include a.] [3] 

 
 The expression in part (iv) represents the efficient frontier.   

 
 An investor uses a utility function that gives rise to an indifference curve  
 V = 16R – 200R2. 
 

 (v) Determine the two portfolios on the efficient frontier that also lie on the 
investor’s indifference curve.  [4] 

 
 (vi) Comment on the implications for part (v) if short selling is not allowed in the 

market. [2]
 [Total 15] 

 
3 Consider a European call option with price ct written on an underlying non-dividend-

paying security with price St at current time t.   
 
 (i) State whether each of the following changes in underlying factors would 

increase or reduce the price of this option: 
 
  (a) a fall in the price of the underlying security 
  (b) an increase in the strike price of the option 
  (c) an increase in the volatility of the underlying security price 
  (d) a fall in the risk-free rate of interest 

 
  [You should assume that each change occurs on a standalone basis, i.e. all 

other factors are unchanged.] [2] 
 
 (ii) Explain each of your statements in part (i). [4] 
 
 Consider a European put option with price pt written on the same underlying security, 

with the same strike price K and the same maturity T as the call option described 
above.   

 
 The continuously compounded risk-free rate of interest is r. 
 
 (iii) Write down a formula that relates the values of ct and pt.  [1] 
 
 The call option has value £0.50 at time t = 0, and the put option has value £1.00.  Both 

options are written on a security with current value S0 = £5, and both options have 
strike price £6.00 and maturity T = 3 years. 

 
 (iv) Determine the continuously compounded risk-free rate r.  [2]  

 
 (v) Suggest, with justification, how the formula in part (iii) can be rewritten as an 

inequality if both options are American options.  [3]  
   [Total 12] 
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4 Consider a one-period binomial tree model for the stock price process St.   
 
 Let S0 = $100 and assume that in three months’ time the stock price is either $125 or 

$105.  No dividends are payable on this stock. 
 
 Assume also that the continuously compounded risk-free rate is 5% per annum. 
 
 (i) Verify that this market is not arbitrage-free by considering the relationship 

between the risk-free rate and the stock price movements.  [2] 
 
 (ii) (a) Identify a portfolio which would generate an arbitrage profit. 
  (b) Calculate this profit. 
    [4] 

 
 Now assume that the continuously compounded risk-free rate is 20% per annum. 
 Consider a European put option on this stock, expiring in three months’ time and with 

strike price K = $120. 
 
 (iii) Calculate the current price of this put option. [3] 
   [Total 9] 
 
 

5 (i) State the Cameron-Martin-Girsanov theorem. [3] 
 
 (ii) State an important property of the discounted value of a security price process 

under the risk-neutral measure. [1] 
 
 The price process St of a traded security satisfies the following stochastic differential 

equation: 
 
 ,t t t tdS S dt S dW= μ + σ  

 
 where Wt is a standard Brownian motion under the real-world probability measure, 

and μ and σ are constants, with σ > 0. 
 
 Let r > 0	be the continuously compounded risk-free rate of interest. 
 
 (iii) Show, using parts (i) and (ii), that Wt + λt is a Brownian motion under the 

risk-neutral probability measure, if λ = ( ) .rμ −
σ    [3] 

 
 (iv) Calculate the value of λ in the case in which μ = 0.04 + r and σ = 0.4.  [1] 
 
 Another traded asset has a price process satisfying the stochastic differential equation  
 
 (0.06 ) .t t t tdA r A dt A dW= + + γ  

 
 (v) Determine the value of the volatility coefficient γ, using your result from 

part (iv). [2] 
   [Total 10] 
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6 (i) Write down an expression for the price of a derivative in a Black-Scholes 
market in terms of an expectation under the risk-neutral measure, defining any 
additional notation that you use. [3] 

 
 Consider an option on a non-dividend-paying stock when the stock price is £50, the 

exercise price is £49, the continuously compounded risk-free rate of interest is 5% per 
annum, the volatility is 25% per annum, and the time to maturity is six months. 

 
 (ii) Calculate the price of the option using the Black-Scholes formula, if the option 

is a European call. [4] 
 
 (iii) Determine the price of the option if it is an American call. [1]  
 
 (iv) Calculate the price of the option if it is a European put. [2] 
 
 (v) Determine how the prices of the contracts in parts (ii) to (iv) would change in 

the case of a dividend-paying underlying stock.  [Note that you do not have to 
perform any further calculations.] [3] 

   [Total 13] 
 
 
7 (i) State the main potential drawback of the Vasicek model. [1] 
 
 (ii) Discuss the extent to which this drawback may be a problem. [3] 
 
 (iii) Explain how the Cox-Ingersoll-Ross model avoids this drawback. [3]

   
 The Vasicek term structure model is described by the following stochastic differential 

equation:  
 

( ,)t t tdr a b r dt dW= − + σ  

 
 and a, b, σ > 0.   
 
 Under this model, the short rate rt follows a Normal distribution with mean 
 

0( ))  (1at at
tE r r e b e− −= + −  

 

 and variance 
2

2Var (  (1 .
2

) )at
tr e

a
−σ= −  

 
 (iv) Assess, using the information provided above, whether the model generates 

interest rates that are mean reverting and, if so, the value to which they revert. 
 [2] 

 
 (v) Assess, using the information provided above, the relevance of the 

parameter a to any mean reversion. [2] 
[Total 11] 
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8 In a market in which the Arbitrage Pricing Theory (APT) model holds, the expected 
return is given by 

 

0 1 ,1 2 ,2 ,[  ]i i i n i nE R b b b= λ + λ +λ +…+ λ  

 
 (i) Define all the terms in this equation.                     [2]

  
 Let rf denote the risk-free rate of interest. 

  
 (ii) Construct a risk-free portfolio to prove that λ0 = rf . [2] 
 
 Assume that rf = 0.075.  Consider a two-factor model (i.e. n = 2) and two well-

diversified portfolios (P1 and P2) with the following features: 
 

 P1 P2 
 

E[Ri] 0.18 0.15 
bi,1 1.5 0.5 
bi,2 0.5 1.5 

 
 (iii) Determine the values of λ1 and λ2. [3] 
 
 Suppose that in the market there is another portfolio with the following features:  
 

3[ 0.] 16, E R = 3,1 0.75, b = 3,2 0.7.b =  

 
 (iv) Comment on the feasibility of such a portfolio under the APT model 

assumptions. [3] 
  [Total 10] 
 
 

9 Consider the Merton model for credit risk. 
 
 Assume that a firm has issued a zero-coupon bond maturing in five years’ time with 

maturity value €100m, and that the current value of the firm’s assets is €110m.   
 
 Further assume that the estimated volatility of the firm’s assets is 25% per annum and 

the risk-free rate of interest is 2% per annum continuously compounded. 
 
 (i) Show that the current value of the debt of the firm is €76.88m. [5] 
 
 (ii) Calculate the yield to maturity of the debt.                                     [3]  
 
 (iii) Calculate the credit spread on the debt.                                     [2] 
   [Total 10] 

 
END OF PAPER 


