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Abstract 

In this paper, we consider several types of stochastic annuities, for 
which an explicit expression for the distribution function is not avail- 
able. We will construct a random variable with the same mean and 
which is larger in stop-loss order, for which the distribution function 
can be obtained easily. 

1 Introduction 

In several financial-actuarial problems one is faced with the determination of 
the distribution function of non-negative random variables of the form 

where y(r) is a non-negative deterministic function and X(r) denotes some 
stochastic process, such as a Wiener process e.g. The distribution of this 
random variable can be used in finance in order to determine the price of an 
Asian option. It is also of interest in pension mathematics where the random 
variable V can be interpreted as the net present value of the cash flow of a 
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pension scheme, see e.g. Dufresne (1990). The knowledge of the distribution 
function of such a random variable is also necessary for the pricing of modern 
life insurance products in a stochastic interest rate environment. Another 
example is financial reinsurance where one tends to deal with loss reserves 
as stochastic quantities depending on random discount factors. In this case 
the IBNR reserves can be seen as random variables of this form. It is also 
an instrument for dynamic solvency testing. 

The problem of finding the distribution function of V can be transformed 
into a problem consisting in determining the solution of a partial differential 
equation, see e.g. De Schepper et al. (1994) and Goovaerts et al. (1997). 
Another approach consists in the use of stochastic differential equations, 
see e.g. Yor (1992). However, none of the possible approaches provides a 
solution which enables an explicit calculation of the distribution function 
valid for all values of t and for all realistic choices of the function . In 
case of a. Wiener process e.g., the only special cases for which an analytic 
solution for the distribution function of V is known are when 
and . In the latter case denotes the Dirac-delta function. 

In the actuarial literature it is a common feature to replace a risk, i.e. a 
nonnegative random variable, by a less favorable risk, which has a simpler 
structure, making it easier to determine relevant quantities such as premiums. 
In order to clarify what we mean with a less favorable or more dangerous 
risk, we will make use of the stop-loss order, which is defined as follows: 

Definition 1 A risk V is said to precede a risk W in stop-loss order, written 
if their respective stop-loss premiums are ordered uniformly: 

for all retentions d 0. 

A risk W will be said to be less favorable, or more dangerous, than a risk 

In this paper, we will consider some types of random variables V as defined 
above, for which the distribution function cannot be determined explicitely. 
We will construct a new risk W with the same expectation, but which is 
more dangerous in stop-loss order sense, meaning that for each d, the stop- 
loss premium with retention d of the risk V is smaller than or equal to the 
corresponding stop-loss premium of W. The risk W will be constructed in 
such a way that an expression for its distribution function can easily be 
obtained. 
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2 Supermodular Order 

Supermodularity has originally been studied in the applied mathematics and
operations research literature. In recent years, it has received considerable at-
tention in the economics literature. A self-contained and up-to-date overview 
of the related economic theory is Topkis (1998). 

Let ei denote the i-th n-dimensional unit. vector. For 
and an arbitrary function we define 

Definition 2 A function is said to be supermodular if 

holds for all and all 

In order to derive our results, use will be made of the supermodular order, 
which is a partial order between multivariate distribution functions. This 
order has proved to be a usefull order in the applied probability literature. 
For actuarial applications of this order, see Müller (1997) and Bäuerle and 
Müller (1998). 

Definition 3 A random vector is said to be smaller than a 
random vector in the supermodular ordering, written 

for all supermodular functions ƒ such that the expec- 
tations exist. 

Remark that supermodular ordering can only hold if X and Y have the 
same marginals, see Müller (1997). 

In the following theorem we present a relation between supermodular 
order and stop-loss order. 

Theorem 4 Let and be n-dimensional 
random vectors with . Further, let be non-increasing 
non-negative functions. Then 

Proof. Let be an arbitrary non-decreasing convex function and 
define the function 
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From the convexity of g we have that 

for and ß both negative. Now let and and 
By choosing and ß = 

and inserting these expressions in the inequality above 
we find that the function ƒ is supermodular. Because , this implies 

for any non-decreasing convex function g for which the expectations exist. 
This last implication is equivalent with the stop-loss inequality to be proved, 
see e.g. Goovaerts et al. (1986). 

Remark that the case that all the functions , are non-decreasing can be 
found as Theorem 3.2.a in Müller (1997). 

Let be a random vector with marginal distribution 
functions Fl, F2, · · · , Fn, and let U be a random variable which is uni- 
formly distributed on the interval [0, 1]. It is well-known that the random 
vector has the same marginals as the ran- 
dom vector X. 

Definition 5 Let Y = (Y1, · · · , Yn) be a random vector with marginals Fi, 
Then Y is said to be comonotonic if Y has the same distribution 

function as where U is a random variable 
which is uniformly distributed on the interval [0, l] 

The concept of comonotonicity was introduced by Schmeidler (1986) and 
Yaari (1987) and has since then played an important role in economic theories 
of decision under risk and uncertainty For actuarial applications of the 
concept of comonoticity, see e.g. Wang et al. (1998) and Dhaene et al. 
(1998). 

From the following theorem, we see that a comonotonic random vector 
possesses a very strong form of dependence between its components. 

Theorem 6 Let X = (X1, · · · , Xn) be a random vector with marginals 
and let U be a random variable which is uniformly distributed 

on the interval [0, 1], then 



This result is due to Tchen (1980). It states that within the class of 
random vectors with given marginals, the comonotonic random vectors are) 
greater in supermodular order than any other element of this class. 

3 Main Result 

Let X = (X1, · · · , Xn) be a n-dimensional random vector with marginals 
F1, · · · , Fn. Further. let U be a random variable which is uniformly dis- 
tributed on the interval [0, 1]. Finally, let be non-negative and 
non-increasing functions. Assume that. we are faced with a situation where it 
is impossible to determine the distribution function of the risk 

explicitely. In this situation, we could replace the unknown distribu- 
tion function by the distribution function of 
Combining Theorems 4 and 6, we find 

The main advantages of working with instead 
are threefold : 

• In order to compute stop-loss premiums of the random variable in the 
right hand side of the inequality. only one integration has to be carried 
out (the integration over U), while computing the stop-loss premiums of 
the left hand side involves n integrations. This is certainly attractive 
for the stochastic processes we will consider later, where n tends to 
infinity. 

??From the expression of the stop-loss transform of 
the corresponding distribution function is rather easily 

obtained. So we can easily find the distribution function of a random 
variable that is more dangerous in stop-loss order than the original 
random variable 

??Because (X1, · · · , Xn) and have the 
same marginals, one gets that 

have the same mean. As these random variables are 
stop-loss ordered, we have that all moments of 
are smaller than or equal to the moments of 
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In the following theorem, we present an algorithm which allows to deter- 
mine the distribution function of 

Theorem 7 Let X = (X1, · · · , Xn) he a n-dimensional random vector with 
marginals F1, · · · , Fn. Further U is a random variable which is uniformly 
distributed on the interval [0, l] and are non-negative and non- 
increasing ƒunctions. Then 

Proof. The expression for the tail function follows from 

where I(y > x) denotes the indicator function which equals one if y > x and 
0 otherwise. 

Remark that. if is a strictly decreasing and continuous 
function of , then we have 

with determined by 

4 The Distribution Function of Annuities 

4.1 Discrete Annuities 

In the previous sections, we have seen that replacing the distribution function 
of the random variable by the distribution function of the 
random variable is safe in the sense that the mean 
is unchanged, but the stop-loss premiums and as a consequence all higher 
order moments are larger in the latter case. 
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Let us noW look at the special case that the X, are all normally distrib- 
uted. Hence, assume that 

Theorem 8 Consider the annuity 

the risk free interest intensity 
are non-negative real numbers. 

Further, Let U be a random variable which is uniformly distributed on the 
interval [0, 1] and let W be defined by 
Then we have that 

In this case, we have that 

where is the distribution function of a standard normal distributed random 
variable. Let us now assume that the functions are continuous and strictly 
decreasing. Then we find 

Combining the previous results, we find the following theorem for discrete 
temporary annuities. 

The distribution function of W is given by 

where is determined by 

From the Theorem above, we immediately find that the density function 
of Y is given by 

The results above can be used to determine stop-loss more dangerous 
risks (with the same expectation) for the usual discrete annuities, such as 
constant (where and increasing annuities (where V = 
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and the

with define by

where is



4.2 Continuous Annuities 

Let us now consider the continuous temporary annuity V defined by 

where X(r) represents a standard Brownian motion, is the risk free interest 
intensity and a(r) is a non-negative function of r. 

In order to be able to use the previous theory, we first approximate the 
annuity V by 

From our previous results, we find that Vn st Wn with Wn defined by 

with U uniformly distributed on the interval [0, 1] 
The tail function of Wn is given by 

Pr [Wn > x] = 

with Vx defined by 

Taking limits , we find the following result. 

Theorem 9 Consider the annuity where 
X(r) represents a standard Brownian motion, is the risk free interest in- 
tensity and a(r) is a non-negative junction of r. 
Further, let U be a random variable which is uniformly distributed on the in- 
terval [0, 1] and let Y be defined by 
Then we have that 

The distribution function of W is given by 

Pr [W > x] = 

where vx is determined by 
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From the expression for the tail function in the theorem above, we can 
deduce the following expression for the density function of W: 

By choosing a(r) = 1 or a(r) = r, we find expressions for the case of a 
constant or an increasing annuity. 

5 Annuities in the C.I.R.-Model. 

In this paragraph; we consider the C.I.R.-model, see Cox et al. (1985), where 
the instantenous riskless ainterest rate is assumed to satisfy the differential 
equation 

where Xt denotes a standard Wiener process. Performing the substitution 
one obtains the following stochastic differential equation: 

where Xt again denotes a standard Wiener process. 
For application of this process to describe the discounting factors, we have 

to consider exp 

The random variable of interest is Vt which is defined as 

Random variables of this type were also considered by Delbaen (1993) for 
He obtained bounds for the moments , based on a classical 

Kac identity. 
In order to apply supermodular order and stop-loss order to the present 

situation, we have to evaluate the distributions of Ft, at different time points 
t. 

The transition density can be cast into the form of a Feynman-Kac in- 

tegral which is a special case of a more general Feynman-Kac integral pre- 
sented in Vanneste et al. (1994). This integral is related to a non-stationary 
Calogero model, see Goovaerts (1975). 
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The following analytical expression in terms of the modified Bessel func- 
tion can be obtained for the transition probabilities: 

where we introduced the constants g and j, which are defined as 

The interested reader is referred to Vanneste et al. (1994). 
We will derive the distribution function of a random variable Wt which in 

stop-loss order is larger than the original random variable under consideration 
Vt. Our results hold for all values of t. As a byproduct, we obtain bounds for 
al the moments of the finite or infinite time stochastic annuities moments of 

Vt- 
We consider the function f defined by 

It is readily verified that f is a supermodular function. Hence, our gen- 
eral approach of deriving a distribution function which is more dangerous 
in stop-loss order applies and an upperbound for the stop-loss premium of 
the random variable Vt is obtained by considering the comonotonic vector 
instead of and by taking the limit for n such that 

Let us start at F0 = 0, then the transition probabilities can be cast into 
the following form: 

10 
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where use has been made of the definition of the modified Bessel function: 

In order to determine the distribution function of Ft at time t. we consider 
the c.d.f. 

Define by means of 

One gets that the relevant set of comonotonic risks has components deter- 
mined by 

Hence, 

The right hand side can be cast into the following form: 

Then, of course, where the density of Wt is easily determined as 
follows: 

where ks is determined by 
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