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W E use the term ' central' to indicate that the formulae considered are under-
stood to be applied so that the centre of each segment interpolated is the same
as the centre of the data from which it is calculated. This is of course the normal
use of formulae for subdivision of intervals, whether expressed in terms of
central differences or written in some other form. When, in the course of a
proof, it is necessary to mention a formula that is not applied centrally, this will
be indicated by the text.

The formulae of different types that have been devised for subdivision of
intervals have invariably been symmetrical in the sense that they yield the same
numerical results if the order of the series is reversed, and this symmetry is
normally a necessary result of the basis of the formula. Using the letter a for
the central point of any given segment of the data, we take as one illustration the
ordinary formula, correct to fifth differences, for filling the space between

 and  from given values of

The process ascertains a polynomial curve of the fifth order which will pass
through six given points and, since there is only one such curve, the interpolated
numbers must be the same whether we work from left to right along the series
or from right to left. In the same way, for Sprague's formula there are six
conditions to satisfy from six given values, so that there is only one curve which
will satisfy the conditions, and we must get the same result from working in
either direction. Again, in formulae that have been deduced for minimizing
the summed squares of an order of differences the conditions to be met are the
same if the order of the series is reversed. In each case there is a unique solution
and the same symmetrical property exists. The direction which we treat as
negative is arbitrary, and in all these cases reversing it cannot alter the
result.

Admittedly, it is mathematically possible to construct an unsymmetrical
polynomial central formula, but no one appears to have found reason for doing
so. It can be done only if the order of the polynomial stipulated is higher than
can be fully determined by the data, so that there is a multiplicity of solutions.
In that case a reversal of order can bring us from one solution to another. Apart
from this theoretical proviso the symmetrical case covers the field.

We propose to show that certain properties, usually attributed to particular
formulae, are in fact general, and can be deduced directly from the principle of
symmetry.

PROPOSITION I

(a) The sum of the terms interpolated centrally, from values of u given at 2n
equidistant points, by a symmetric formula correct to (2n — 2) differences, is the
same for all formulae.
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(b) The term interpolated at the centre is the same for all formulae.

Assume that we are given 2n values of «, at the points (a - n + .5), (a - n +1.5),
etc., up to (a + n - .5); let va+x denote the term interpolated at the point (a + x)
by any given formula of the type described; and let wa+x denote the term
interpolated by another such formula.

Two interpolations, each correct to {2n - 2) differences, can vary from one
another only by some compound of differences of order {2n - 1); and in this
case there is only one difference of that order in the range of the data, namely,
δ2n-1ua (where δ indicates a central difference).

Therefore we can write

( 1 )

where f(x) is a polynomial.
The coefficients and degree of f(x) will depend on the particular formulae

that have been given, but for any pair of formulae f(x) is a determinate function.
Now, if we reverse the direction of working, by hypothesis va+x and wa+x will

not alter; but the sign of δ2n-1 will change, and its coefficient will become
f(- x). It follows that we can also write

( 2 )

Hence f(x) must equal -f(-x) (for all values of x); and it follows that f(x)
cannot contain a constant. Therefore /(o) must vanish; and, putting x = 0 in
equation (1), we find va = wa. This proves (b).

Now if any number of equidistant terms are interpolated centrally by the
given formulae, say between ua-.5 and ua+.5, the values of f(x) to right and left of
f(0) cancel out in pairs, and the sum of f(x) over the segment is zero. From (1) it
follows that the sum of va+x is the same as that of wa+x. If a continuous curve is
interpolated, the same statement applies to the definite integral. This proves (a).

RIDER

The sum of the terms interpolated must equal the mean sum of corresponding
terms obtained, by two ordinary interpolations correct to (2n - 2) differences, from
(2n - 1) of the given values centring at (a — ½) and (a + ½) respectively.

This is really a particular case of the Proposition. The two ordinary formulae
are off-centre to the same extent in opposite directions; and their mean
constitutes a single symmetric formula, correct to (2n - 2) differences, centring
in a. The main Proposition therefore establishes this Rider.

(This Proposition and Rider do not apply to formulae based on an odd
number of points, because an even order of differences does not change sign
when the direction is reversed.)

PARTICULAR APPLICATIONS

To take a simple illustration, Proposition I shows that, if say u-1, u0 , u1 and u2

are given, and the gap between u0 and u1 is filled (1) by ordinary third-difference
interpolation, (2) by King's formula, (3) by second-difference interpolation
from u_1, u0 and u1, and (4) by second-difference interpolation from u0 ,u1 and
u2, then the sums of the terms interpolated by (1) and by (2) (and by any other
symmetric formula correct to second differences) will be the same, and will
equal the mean sum of the terms interpolated by (3) and (4). The Rider shows
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that the same equality must apply to the interpolated value of the individual
term u.5.

For further illustration, among six-term formulae we have ordinary fifth-
difference interpolation, Sprague's formula (which has second-order oscula-
tion), Shovelton's formula (first-order osculation), any minimizing formula
correct to fourth differences—in fact, any formula of special type that may be
devised, provided it is symmetric and correct to fourth differences. The sum of
the terms interpolated by each of them is the same, and equals the mean sum of
the terms derived by two ordinary fourth-difference interpolations such as
described.

The centre term will be the same in every case, so that in halving an interval
it would be futile to use a formula of special type.

PROPOSITION II
An n-term interpolation, by a formula with osculation of the rth order, correct

to (n — 2) differences, centring at a, must at the point {a -.5) have r derivatives in
common with an ordinary interpolation correct to (n - 2) differences, centring at
(a - .5); and must have a similar property at point (a + .5).

We write 1(a - .5, x + .5) to denote the value for ua+x , as interpolated by the
ordinary formula, correct to (n - 2) differences, centring at (a — .5); and
1(a + .5, x - .5) for ua+x, as interpolated by the similar formula centring at
(a +.5).

The  value  of ua+x ,  interpolated by  an y given osculatory formula such as
described,  can (from  previous  reasoning) be  written as

where g(x) is a polynomial as before.
In the reverse direction. this becomes

(3)

(4)
(The sign here will be plus if n is odd, minus if n is even.)

The principle of an osculatory formula is, of course, to interpolate the
segment of values between the points (a - .5) and (a + .5) from data centring
at a. The adjoining segment to the left, from (a - 1.5) to (a - .5), is interpolated
from data centring at (a - 1). At the junction-point of the two segments, that
is, at point (a - .5), the two segments must meet and have r derivatives in
common. Similar conditions must of course hold on the right-hand side, but
it is sufficient to examine one side since the other follows from symmetry.

An expression for ua+x, as it would be calculated for the left-hand segment,
can be obtained from (4) by substituting (a - 1) for a, and (x+1) for x. This
gives

Subtracting (5) from (3), we get
(5)

(6)
Expression (6) and r derivatives thereof must vanish at the point (a - .5);

this can hold, for all series, only if both terms of (6) vanish (because the two terms
involve different u's). Therefore g(x) and its first r derivatives must vanish at
the junction-point (a - .5).

From (3) it follows at once that at the left-hand junction-point the term
interpolated by our given osculatory formula and its first r derivatives must be
the same as for I(a - .5, x + .5). This establishes the Proposition.
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SPRAGUE'S FORMULA

Writers have distinguished between the ' classical' and more recent osculat-
ory formulae on the ground that the fundamental principle of the former was
that derivatives at the junction-points should have certain predetermined values,
and that this restriction was later abandoned. This is a false distinction, since
for every formula there is a definite value for such derivatives. The line of
approach to a formula by the original research worker is of historic interest,
but should not affect the classification of the formula at the present time.

The first osculatory formula devised (that of Sprague in J.I.A., 22, 270) was
deduced without regard to correctness to any order of differences. The object
was in effect to interpolate, between u0 and u1, a polynomial of the fifth order,
calculated from given values of u_2, u_1, u0 , u1, u2 and u3, in such manner that at
the points 0 and 1 the first and second derivatives should equal those of
adjoining segments interpolated in the same way. As the simplest way of
securing this Sprague made two derivatives at each end of a segment of inter-
polated values the same as those of an ordinary fourth-difference formula
centring at that point. The resulting formula, written in terms of advancing
differences, is

Written as above, it is obvious that the formula is in fact correct to fourth
differences; but the formula was written in the original paper in a form that did
not make this evident.

Sprague's formula could equally well have been deduced simply as an
osculatory formula correct to fourth differences. g{x) in equation (3) is in this
case a polynomial of the fifth order, and so involves six coefficients which must
be fixed to meet six conditions, namely, that at each end the curve should meet
the adjoining segment and have two derivatives in common with it. Therefore
there is only one possible formula, correct to fourth differences, of the specified
range, degree and order of osculation. Proposition II shows that the derivatives
of such a formula must have the values stipulated by Sprague. Further, it is of
course known that there is only one formula answering to the conditions
imposed by Sprague. The same formula must therefore emerge from the above
approach and from Sprague's.

One authority has remarked that Sprague's selection of the predetermined
values seems rather arbitrary, but the above shows that they are the only values
consistent with correctness to fourth differences; so that, on retrospective
examination, there is good reason for the values chosen.

The most appropriate classification of Sprague's formula would be simply
as the six-term formula, of fifth degree, correct to fourth differences, with
osculation of the second order.

The usual derivation of the formula taught to students seems to be to start
with 'fixed' or 'predetermined' values for derivatives at the ends of the
segment and so deduce the formula, which is then found to be correct to fourth
differences as it were by accident. It is suggested that a sounder course would
be to describe the basis of the formula on the lines of the last preceding para-
graph. If it is desired to use the end-values in the proof, it should first be shown
that they are a necessary consequence of correctness to fourth differences.



Symmetry in Central Polynomial Interpolation 67

SHOVELTON'S FORMULA

It has been stated as a distinctive feature of Shovelton's formula that the
average value of the terms interpolated equals the average of the mean of two
ordinary fourth-difference interpolations. Proposition I, however, shows that
this is not peculiar to this one formula, but is also a property of Sprague's
formula and others.

Shovelton's formula (J.I.A., 47, 284) was designed to secure one continuous
derivative (in lieu of Sprague's two), and hence the polynomial interpolated
could be made a degree lower than in Sprague's case. The formula can be
written

There is a peculiarity in Shovelton's formula in that it is specified as of the
fourth degree (and could not be of lower degree since it is correct to fourth
differences). This, without other proviso, would have left five coefficients to
determine with only four conditions to satisfy, namely, that the curve should
pass through two given points and have one predetermined derivative at each
such point. For this reason no doubt, in order to make the formula determinate
Shovelton added the condition of average value. It should be made clear,
however, that this does not make the formula different from others; on the
contrary, it puts it on the same basis. Proposition I shows that Shovelton's
extra condition is in fact equivalent merely to stipulating that the formula must
be symmetrical; and it will be found that, if the requirement of symmetry is
substituted for that of average value, Shovelton's formula will still emerge as
the sole solution.

With regard to predetermined values of the first derivative similar remarks
to those made on Sprague's formula apply to this case.

Shovelton's formula should therefore be classed as the only symmetrical
six-term formula, of the fourth degree, correct to fourth differences, with
osculation of the first order.

KING'S (OR KARUP'S) FORMULA

Similar remarks to those on Sprague's formula apply to this, which is a
four-term formula, of the third degree, correct to second differences, with
osculation of the first order.

To illustrate the use of symmetry in abbreviating a proof, the derivation of
this formula will now be considered, the data being taken as u_1 u0, u1, u2 .

The ordinary advancing difference formula correct to third differences is

and the only modification we can make to this is to add an expression of the
form h(x) 3u_1, where h(x) is a polynomial of the third degree.

From Proposition I(b), h(x) must vanish when x = 0, 1 or .5, and so must be
of the form Ax(x - 1) (2x - 1). Now the d.c. of the required curve when x = 0
must (from Proposition II) be that of the ordinary second-difference formula
represented by the first three terms in the above expansion. Hence when x = 0
the d.c. of {Ax(x-1)(2x-1) + (x+1)x(x-1)/6} must be zero. This d.c. is

5- 2
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simply the coefficient of x in the expression, so we can at once write
The adjustment therefore is

agreeing with the result reached at the end of para. 25, Mathematics for
Actuarial Students, 2, 150.

MORE RECENT OSCULATORY FORMULAE

The orders of difference to which the formulae of Sprague, Shovelton and
Karup are correct, coupled with the degree of the polynomial stipulated,
leave only one solution in each case. The relaxation of condition which enables
further formulae to be produced does not consist in abandoning a principle of
predetermined values for the d.c.'s. The actual relaxation has been in accepting
correctness to a lower order of differences, which leaves a multiplicity of
solutions from which simple forms can be selected. For example, the earlier
formula of Jenkins, quoted in Mathematics for Actuarial Students, 2, 153, is
correct to third differences as compared with fourth differences for Sprague.

By increasing the order of the polynomial permitted, further coefficients can
be put at disposal so that an infinite number of solutions are possible, and in the
same way the order of contact can be made as high as desired.

A further relaxation, of course, occurs in some formulae of Jenkins, where
the curve does not pass ,through the given points and an element of
graduation is thereby introduced.




