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ABSTRACT 

The distribution of insurance claims in a given time period is usually regarded as a random sum. 
This paper sets up a time series model for the value of the claims and combines it with a model for the 
number of claims. Thus past observations can be used to make predictions of future values of the 
random sum, and the overall model ensures that they are discounted appropriately. It is shown that 
explanatory variables can be introduced into the model, and how it can be extended to handle several 
groups. The general approach is based on the recently developed structural time series methodology. 

1. INTRODUCTION 

A fundamental problem in insurance is predicting the distribution of the total 
value of claims in a given time period. Similar problems arise elsewhere. For 
example, we may be interested in the total expenditure on some category of 
consumer durables, such as cars, for a given group of the population. The 
essential feature of such problems is that the quantity of interest is a random sum. 

In order to aid the exposition, it will be assumed that we are working in an 
insurance context. Let Yjt denote the amount of the j-th claim at time t, where 
j=1, . . ., Nt and t=1, . . ., T. The number of time periods for which observations 
are available is T, while the number of claims at time t, Nt, is, like Yjt, a random 
variable. The total value of claims is the random sum 

(1.1) 

If the sizes of claims are mutually independent, and independent of the number of 
claims, the distribution function of St is given by 

(1.2) 

where F(Yt) is the distribution function of the claims, p(Nt) is the probability that 
the number of claims is Nt and the * denotes the convolution of Nt variables. 
Obtaining an analytic expression for F(St) is not usually possible, except in a few 
very special cases. However, the moment generating function (MGF) of St can 
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always be obtained from the MGFs of Yjt and Nt; see Gerber (1979), (5) page 12. 
Furthermore, it is not difficult to show that 

E(St) = E(Nt)·E(Yjt), (1.3) 

as might be expected, while 

Var(St) = Var(Nt)·{E(Yjt)}2+E(Nt)·Var(Yjt). (1.4) 

There is a considerable literature in risk theory concerned with obtaining 
approximations to the distribution of St. 

Estimating the parameters of the distribution of St requires that past data be 
used to estimate the parameters of the distributions of the size and number of 
claims. As a rule it is assumed that these parameters remain constant over time, 
although it has long been recognized that this may not be realistic; see, for 
example, the comments in Beard et al. (1984)(1) Ch. 6. This paper sets out 
methods for constructing and estimating time series models for the size and 
number of claims. Section 3 looks at a single group, while Section 4 extends the 
analysis to several groups. Section 2 reviews recent techniques in time series 
modelling which are appropriate for handling Gaussian and Poisson observa- 
tions. It is these methods which form the basis for the statistical development in 
the later sections. In making these developments it is recognized that the number 
of time periods for which observations are available may be relatively small. 

2. STRUCTURAL TIME SERIES MODELS 

A structural time series model is one which is set up in terms of components of 
interest, such as trends, seasonals and cycles. Models of this kind are related to 
the ARIMA models popularized by Box and Jenkins (1976),(2) but their more 
natural interpretation has a number of advantages and they have now been used 
successfully in a wide range of situations; see, for example, Kitagawa and Gersch 
(1984),(10) Harvey and Durbin (1986)(8) and Harvey (1989).(6) Most of the work 
involving structural models has assumed normally distributed observations. 
However, while normality might be a reasonable assumption for a claims 
distribution, or at least its logarithm, it is not a reasonable assumption for the 
number of claims when such numbers are typically rather small. Recent work by 
Harvey and Fernandes (1989),(7) however, shows that the methodology of 
structural time series modelling can be extended to handle Poisson observations 
with a time-varying mean. 

As Sections 3 and 4 will show, the structural time series models for Gaussian 
and Poisson observations can be used as the basis for modelling random sums. 

2.1 Stochastic Trends 
The simplest structural time series models consist of a stochastic trend 

component, µt, plus an irregular random disturbance term, ε t. 
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The random walk plus noise or local level model is 
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(2.la) 

(2.1b) 

where, as the notation indicates, the are normally and independently 
distributed with mean zero and variance and has a similar distribution with 
variance Furthermore and are mutually independent. Only the are 
observed; the trend, like the irregular term, is unobservable. However, the model, 
as it stands, is in state space form and as a result the Kalman filter can be used as 
the basis for computing optimal estimators of within the sample and for 
making predictions. Furthermore, it enables maximum likelihood (ML) esti- 
mators of the unknown hyperparameters, and to be computed via the 
prediction error decomposition. All of this is well documented in the references 
already cited. Note that an important feature in motivating the random walk plus 
noise model is that the predictions are essentially formed as an exponentially 
weighted moving average (EWMA). The smoothing constant depends on 
the signal-noise ratio, q = 

In the local linear trend model, (2.1b) is replaced by 

(2.2) 

where is the stochastic slope. The forecasts from this model correspond to 
those obtained from the non-seasonal Holt-Winters recursions with suitably 
chosen smoothing constants. 

The components µt, in (2.1b) and (2.2) are known as stochastic trends. 
Deterministic trends emerge as a special case. Thus if, in (2.2), then 
the model reduces to the linear time trend 

(2.3) 

where µ0 and are unknown intercept and slope parameters. Similarly if = 0 in 
(2.1b), the observations are simply distributed about a constant mean. 

Models of the above kind may be extended by adding other stochastic 
components such as seasonals and cycles. 

2.2 Time Series Models for Poisson Observations 
A model for Poisson observations which allows the mean, to change 

stochastically over time can be constructed by analogy with (2.1). Let the 
observation at time t be drawn from a Poisson distribution, 

(2.4) 

This corresponds to the measurement equation of (2.1a). However, rather than 
trying to formulate a transition equation analogous to (2.1b), we look to the 
properties of natural conjugate distributions of the type used in Bayesian 
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statistics. This approach was originated by Smith (1979)(15) but in the further 
development carried out by Harvey and Fernandes (1989)(7) the procedure is put 
within a classical framework by constructing a likelihood function and 
suggesting various diagnostic test statistics. 

The conjugate prior for a Poisson distribution is the gamma distribution. Let 
p denote the PDF of conditional on the information at time t–1, 
namely the values of the first t–1 observations, denoted as Nt–1. Suppose that 
this distribution is gamma, that is Nt (a,b), with PDF 

(2.5) 

with a = at–1 and b = bt–1 where at–1 and bt–1 are computed from the 
first t – 1 observations. In model (2.1) with normally distributed observations, 

at time t–1 implies that at time t – 1. 
In other words the mean of is the same as that of but the 
variance increases. The same effect can be induced in the gamma distribution by 
multiplying a and b by a factor less than one. We therefore suppose that 

follows a gamma distribution with parameters and such 
that 

where is a constant in the range Then 

(2.6a) 

(2.6b) 

while 

The stochastic mechanism governing the transition of to is therefore 
defined implicitly rather than explicitly. However, it is possible to show that this 
mechanism is formally equivalent to a multiplicative transition equation of the 
form 

where has a beta distribution with parameters at–1 and (1– )at–1; see the 
discussion in Smith and Miller (1986).(16) 

Once the observation Nt becomes available, the posterior distribution, 
is given by a gamma distribution with parameters 

(2.7a) 

(2.7b) 
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The initial prior gamma distribution, that is the distribution of at time t = 0, 
tends to become diffuse, or non-informative, as a, b 0, although it is actually 
degenerate at a = b = 0 with Pr( =0) = 1. However, none of this prevents the 
recursions (2.6) and (2.7) being initialized at t = 0 with a0 = b0 = 0. A proper 
distribution for is then obtained at time t = where is the index of the first 
non-zero observation. It follows that, conditional on N , the joint density of the 
observations N , +1, . . . , N is 

(2.8) 

The predictive PDF’s are given by 

(2.9) 

and for Poisson observations and a gamma prior this operation yields a negative 
binomial distribution 

(2.10) 

where a = a and b = b and 

although since N is an integer, (N+1) = N! Hence the log-likelihood function 
for the unknown hyperparameter is 

(2.11) 

It follows from the properties of the negative binomial that the mean and 
variance of the predictive distribution of N +1 given N are respectively 

(2.12a) 

and 

(2.12b) 

Repeated substitution from (2.3) and (2.4) shows that the forecast function is 

(2.13) 
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This is a weighted mean in which the weights decline exponentially. In large 
samples the denominator of (2.13) is approximately equal to 1/(1– ) when 

< 1 and the forecasts can be obtained recursively by the EWMA scheme 

(2.14) 

where = 0 and = 1– is the smoothing constant. When = 1, the right 
hand side of (2.13), is equal to the sample mean. Regarding this as an estimate of 
I, the choice of zeroes as initial values for a and b in the filter is seen to be justified 
insofar as it yields the classical solution. In Bayesian terms it corresponds to a 
non-informative prior. 

Details of multi-step prediction can be found in Harvey and Fernandes 
(1989).(7) 

2.3 Explanatory Variables 
Observable explanatory variables may be added to structural time series 

models. For a Gaussian model, such as (2.1) the first equation becomes 

(2.15) 

where xt is a k x 1 vector of explanatory variables and is the corresponding k x 1 
vector of unknown parameters. If µt, is removed (2.4) reduces to a classical linear 
regression model. 

In a model with Poisson observations, but no dynamic structure, explanatory 
variables are introduced via a link function; see the discussion of the GLIM 
framework in McCullagh and Nelder (1983). (13) The exponential link function 

(2.16) 

ensures that remains positive. Note that it does not make sense to include a 
lagged dependent variable as an explanatory variable when the observations are 
small and discrete. 

Explanatory variables can be introduced into time series models for count data 
as follows. As in (2.15), the level may be thought of as a component which has a 
separate effect from that of the explanatory variables in xt, none of which is a 
constant. Suppose that 

and that, conditional on the information at time t – 1, 

This level component may be combined multiplicatively with an exponential link 
function for the explanatory variables so that the distribution of Nt, conditional 
on , is Poisson with mean 

(2.17) 
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It follows from the properties of the gamma distribution that, conditional on 
Nt–1, 

where 

and (2.18) 

respectively. 
The log-likelihood of the observations is therefore as in (2.11) with a and 

b replaced by and . This must be maximized with respect to and . 
As regards updating, where and are obtained from 

and via updating equations of the form (2.7). Therefore the posterior 
distribution of is (at,bt), where at and bt are given by 

(2.19a) 

(2.19b) 

Thus the only amendment as compared with the recursions in the previous 
subsection is the replacement of unity by exp( ) in the equation for . 

In the Gaussian case, the computational burden is eased considerably by the 
fact that may be estimated linearly by generalized least squares; see Kohn and 
Ansley (1985).(11) It is unfortunate that this is no longer possible for the Poisson 
model. However, it is sometimes possible to use estimates from the Gaussian 
model as starting values; the difficulty lies in how to handle zero observations 
when logarithms are being taken. 

Another limitation to the Poisson model is that only the level can be allowed to 
be time-varying. Unlike in the Gaussian case, the time trend and seasonals must 
be deterministic, entering the model as explanatory variables. However, it is 
argued in Harvey and Fernandes (1989)(7) that Poisson observations are unlikely 
to contain enough information to enable changes in slope and seasonal effects to 
be picked up. 

3. MODELLING THE SIZE AND NUMBERS OF CLAIMS 

As in the introduction we consider a situation where there is a single group at 
risk and there are Nt claims at time t. It is assumed that the size of each individual 
claim is known. Estimation by maximum likelihood is proposed. 

3.1 Stochastic Trends in Claim Sizes 
Structural time series models for claim sizes may be developed by assuming 

that claims are lognormally distributed. According to Beard et al. (1984) Ch. 3,(l) 
such an assumption has been found to be reasonable in practice and it means that 
we can construct a Gaussian model for log(Yjt) = Yjt. 

The observations satisfy the model 

(3.1) 
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where the jt are mutually and serially uncorrelated disturbances with variance 
and µt is either formulated as a random walk, (2.1b), or, more generally, as a local 
linear trend model, (2.2). As noted in § 2.1, if in the local linear trend 
model, it collapses to a deterministic time trend. This is known as the 
Hachemeister model in the credibility theory literature; see Hachemeister 
(1975).(9) The stochastic generalization to the local linear trend model is a natural 
one. It has been suggested recently by Ledolter, Klugman and Lee (1989)(12) for 
credibility models, although the modelling framework within which they use it is 
somewhat different. 

The model in (3.1) can be extended to include other stochastic components, 
such as seasonals, and explanatory variables. Handling these extensions poses no 
problems, and so attention is focused on (3.1). Indeed matters can be simplified 
further by restricting attention to the case where µt follows a random walk. The 
full model can be written as 

(3.2a) 

(3.2b) 

where i is an Nt x 1 vector of ones. This is a special case of a dynamic factor 
model; see Fernández Macho et al. (1987)(4) and Harvey (1989)(6) Ch. 8. As such it 
can be handled by the Kalman filter and the exact likelihood function 
constructed. However, the special form of the state space model in (3.2a) means 
that (a) only a univariate Kalman filter need be run; and (b) numerical 
optimization only need be carried out with respect to a single parameter, the 
relative variance . 

The univariate Kalman filter is based on the averages in each time period. Thus 
(3.2a) implies 

(3.3) 

The fact that the Kalman filter applied to the full set of disaggregated 
observations does indeed reduce to a Kalman filter applied to (3.3) and (3.2b) can 
be shown as follows. Let denote the variance of µt conditional on the 
information at time t. The Kalman filter for (3.2) can be written simply as 

(3.4a) 

(3.4b) 

where mt is the minimum mean square estimator of µt based on information at 
time t, 

(3.5) 

and 

(3.6) 
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By a standard matrix inversion lemma 

and so 
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(3.7) 

(3.8) 

This recursion and the corresponding recursion for pt are precisely the 
expressions obtained by writing down the Kalman filter for the univariate 
aggregate model (3.3) and (3.2b). 

The initial conditions for the Kalman filter must be computed from one of the 
observations at time t = 1. This yields 

(3.9) 

where y1* is the value of the selected observation. Since y1* has been used in this 
way it should not be used in the subsequent calculations. Thus N1 will be re- 
defined as the actual number of observations at time t = 1 less one. It can be 
shown that the likelihood function and the estimates of the state are not affected 
by the choice of the initial observation. In more general models with d 
nonstationary elements in the state vector, an estimator of the state vector at t = 0 
may be computed by taking an observation from each of the first d sets of 
observations and making the appropriate amendments to the values of N1, . . ., 
Nd. 

If all the Nt’s are regarded as being fixed, the log-likelihood function of the full 
set of observations on claims can be written as 

where 

and 

(3.10b) 

Thus conditional on q, the ML estimator of is 

(3.10a) 

(3.10c) 

(3.11) 
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However, using (3.7), 

(3.12) 

where 

and is the mean of the The likelihood function may therefore be 
concentrated with respect to leaving the following function to be minimized 
with respect to 9: 

(3.13) 

The simplification in the determinental term arises as a corollary to the matrix 
inversion result in (3.7); see Rosenberg (1973)(14) page 416. 

If and q were known, the Kalman filter would yield the mean and variance of 
the distribution of an observation at T + 1 conditional on the information at time 
T. Thus, 

(3.14) 

This result is approximately true when and q are replaced by their ML 
estimators. 

3.2 Modelling the Number of Claims 
A deterministic Poisson model for the number of claims can be set up within 

the GLIM framework by using the link function, (2.16). In addition to a constant 
term, it would seem sensible for the set of explanatory variables, xt, to at least 
contain log Pt where Pt is the population at risk. If the corresponding δ parameter 
is set equal to unity, then the mean of the Poisson distribution is proportional to 
Pt. Other candidates for explanatory variables might be a time trend, seasonals 
and income; see the discussion in Beard et al. (1984(1) Ch. 6). 

When Nt has a Poisson distribution, the distribution function of the value of 
claims, F(St) in (1.2), is known as a compound Poisson distribution. Unfortuna- 
tely, finding an analytic expression for F(St) is not possible when the size of claims 
follows a lognormal distribution. Nevertheless, using the information available 
at time T, predictions for ST+1 together with any higher order moments, may be 
made by combining predictions from the Poisson count model with predictions 
from the lognormal claims model. 

A stochastic time series model may be set up for the number of claims as 
described in Section 2. Instead of a constant term, the model contains a stochastic 
level and the mean of the distribution of N T+1 at time T is given by (2.13). The 
predictive distribution for the total value of claims is no longer a compound 
Poisson distribution, however, because the predictive distribution of Nt is not 
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Poisson if ω is less than one. As shown in Section 2, it is negative binomial for 
predictions one step ahead. Evaluating the moments of St can be carried out as 
usual, with the mean and variance given by (1.3) and (1.4). That is, the expected 
value of claims in the next time period is: 

with a prediction MSE given by 

(3.15a) 

(3.15b) 

with 

Text 

Text 

(3.16b) 

For lognormal claims, 

and 

(3.17a) 

(3.17b) 

When ω = 1, in the model for the number of claims, F(ST+1) reverts to a 
compound Poisson distribution and because the estimated mean at time T + 1 is 
equal to the variance, (3.15b) simplifies to 

(3.18) 

Maximum likelihood estimation of the parameters in the full random sum 
model can be obtained by first writing down the joint density function for the 
individual claims and the number of claims at time t. Thus if yt is the Nt × 1 vector 
containing 

(3.19) 

As a rule the distribution of Nt will not depend on past values of the claims, in 
which Case y*t–1 can be dropped from the last term in (3.19). In any case, it follows 
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from (3.19) that the log-likelihood function can be written as the sum of the log- 
likelihood for the claims, (3. 10a), and the log-likelihood for the counts, (2.11). If 
the models contain no parameters in common, ML estimation of each can be 
carried out separately. 

4. SEVERAL GROUPS 

Suppose now that there are G groups, and that the number of claims on the gth 
group at time t is Ngt. The total number of claims at time t, that is the sum of the 
Ngts, will be denoted by Nt. The problem now is to predict the total value of claims 
in each group, 

The approach adopted is to let the model for the size of claims in each group 
contain a stochastic trend component which is common to all groups. The 
stochastic model for the number of claims described earlier is then generalized in 
a parallel fashion. 

It is assumed that data on individual claims are available in each group. 

4.1 Size of Claims 
The model for the size of claims 

(4.2) 

where µt is a random walk as in (3.2b) and the µgs, g=2, . . .,G are fixed 
parameters. These parameters are to be interpreted as multiplicative factors for 
the common trend component, as it enters into the model for the size of claims for 
a given group. In other words the level of claims in different groups is not the 
same, but the long-run movements they exhibit follow the same pattern, 
reflecting changes in common influences stemming from changes in unmeasured 
economic and social variables. 

In matrix terms (4.2) is 

(4.3) 

where yt, i and t are Nt × 1, such that µ is a (G – 1) × 1 vector and t is an 
Nt × (G – 1) matrix 

(4.4) 

where ig is an Ngt vector of ones. The model is a special case of the dynamic factor 
model described in Fernández Macho et al. (1987),(4) and various generalizations 
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within this framework might prove to be useful. However, if Tis small, the scope 
for estimating a richer model than the one above may be limited. 

The model may be estimated by applying the Kalman filter described in §3.1. 
The only modification is that this filter is applied to yt and to the columns of 
This enables an estimator of µ to be computed by carrying out a multivariate 
regression of the innovations from yt on the innovations from each of the 
columns of In this way p may be concentrated out of the likelihood function; 
see Kohn and Ansley (1985)(11) or Harvey (1989),(6) Sect. 3.4. A starting value for 
µ0 is obtained from one of the observations in the first group. This is possible 
because the mean of the first group is µt. An alternative way of computing the 
likelihood function is by adapting the more general algorithm given by De Jong 
(1988).(3) 

A somewhat simpler approach enables one to estimate the µjs independently of 
the hyperparameter, q. The mean in each group satisfies 

(4.5) 

and so aggregating over time gives 

(4.6) 

Since µg=0 for g = 1, 

(4.7) 

Thus the term involving the underlying stochastic level has disappeared, 
suggesting the estimator 

(4.8) 

The variance of this estimator is 

(4.9) 

These estimates of the group effects may be subtracted from the observations in 
the corresponding groups. The parameters and q are then estimated using the 
algorithm of §3.1. 

4.2 Number of Claims 
As with the size of claims, it seems reasonable to assume that the stochastic 

movements in the level are common to all the groups. Thus the number of claims 
in each of the g-th groups follow independent Poisson distributions with mean 

(4.10) 

where xgt is a vector of explanatory variables for the g-th group, xt is a vector of 
explanatory variables entering into the common trend component, and δ g and δ 
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are corresponding vectors of unknown parameters. In the simplest case xgt = 1 for 
all g, in which case exp( δ g) is the factor by which the common trend must be 
multiplied for the j-th group. The δ gs play a similar rôle to the µgs in (4.2), and, as 
there, some kind of normalization is required. The most appropriate normaliza- 
tion is to let the sum of the exp( δ g)s be G, since then the mean of the gth group is 
λ exp if δ g = 0. More generally 

(4.11) 

The prediction equations for λ t are given by (2.6), just as in a univariate model. 
The G independent observations can now be used to update and by 
bringing them in one at a time. The net result is two composite updating 
equations, 

(4.12a) 

(4.12b) 

The joint density function of the numbers of claims, conditional on the 
numbers in previous time periods, Nt–1, is 

(4.13) 

Each of these G conditional distributions is negative binomial with parameters 
where 

(4.14) 

and agt and bgt are given by the recursions 

(4.15a) 

(4.15b) 

with starting values and The net effect of (4.15) is of course 
the single set of recursions in (4.12), with at = aGT and bt = bGt. The full likelihood 
function is obtained by summing the conditional densities in (4.13) over all t from 
t=1 to T. 

The main drawback with this model is that estimation must be carried out 
nonlinearly with respect to δ 1,. . ., δ G as well as ω . However, a preliminary 
estimator of ω can be constructed by summing the observations in each time 
period and treating them as a univariate series from a Poisson distribution with 
parameter 

(4.16) 
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The updating recursions are precisely those given in (4.15), except that G is 
replaced by unity in (4.15b). However, there is no reason why (4.15b) should not 
be used. It is interesting to observe that is an EWMA of the average number of 
claims per group in each time period. 

If xgt=(1 log Pgt)’, and if the coefficients of log Pgt are unity and each Pgt is 
roughly constant over time, i.e. preliminary estimates of δ 1, . . ., δ g may 
be obtained by summing the number of claims in each group over time. If the λ ts 
are treated as though they were fixed, the total number of claims per group over 
the full time period, Ng, would have a Poisson distribution with parameter 

(4.17) 

In view of the normalization rule, the distribution of N, the sum of claims over all 
groups, is Poisson with mean exp( ). This suggests the following 
preliminary estimator: 

(4.18) 

5. CONCLUSION AND EXTENSIONS 

This article has set out time series models which can be used for modelling 
claims. The statistical specification of these models invites estimation by 
maximum likelihood and allows tests of model specification to be constructed. 
Such tests, which arc described in Harvey and Durbin (1986)(8) and Harvey 
(1989),(6) could be extended to cover some of the more complex multivariate 
situations described here. 

One practical problem which arises is that the values of individual claims may 
not be available. In the absence of such information predictions of the expected 
value of claims could still be made from the aggregate model, (3.3), provided that 

is observed. The fact that this is the geometric, rather than the 
arithmetic, mean of the individual claims makes its availability unlikely. Rather 
than attempt to work with some kind of approximation, it may be worth 
considering the use of a gamma distribution for the size of claims St, since the sum 
of identically distributed gamma variables is still gamma. We plan to describe the 
implementation of a dynamic model based on gamma distributions in a later 
article. 
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