

-The need to quantify uncertainty of mortality experience -Solution 1: Monte Carlo Simulation -Solution 2: Formula Approach -Solution 3: Simplified Formula Approach -Discussion

Quote	
"DEATH comes to e	
The Economist (2 Feb 2	2010) when commenting on longevity

We must quantify uncertainty around mortality	
experience	
Understand Uncertainty	
Manage Risk	
	1
We must quantify uncertainty around mortality	
experience	
Understand Uncertainty Manage Risk The base mortality assumption The base mortality assumption The base mortality assumption	
Expressed as ActualExpected (A/E) Of a life table e.g. PCMA00 E.g. 92% PCMA00	
•But rarely says 92% Plus or Minus What?	
]
We must quantify uncertainty around mortality experience	
Understand Uncertainty	
Manage Risk	
Regulatory Requirements	
Measure Credibility of Experience	

Problems
Froblems
Dullion 4
 Problem 1: How do we measure uncertainty due to small
number of people?
Problems
• Problem 1:
How do we measure uncertainty due to small
number of people?
Problem 2
 How do we measure increased volatility due to concentration of pension amount on a small number
of people?
Problems
. residing
Problem 1:
Problem 1: How do we measure uncertainty due to small
number of people?
• •
Problem 2
 How do we measure increased volatility due to
concentration of pension amount on a small number
of people?
Problem 3
How to use the solutions in practice?

We want to quantify uncertainty

	Number of 85 year-olds at the start of the year	Number of deaths expected in the year according to a life table which says that mortality rates of age 85 is 10%	Number of deaths actually observed in the year	Ratio of Actual over Expected (A/E)
Big 10K	10,000	1,000	1,000	100%
Small 1K	1,000	100	100	100%

Intuitively, the result of Big 10K should be more certain than Small 1K. But, how do we measure the uncertainty?

We want to quantify uncertainty

	Number of 85 year-olds at the start of the year	Number of deaths expected in the year according to a life table which says that mortality rates of age 85 is 10%	Number of deaths actually observed in the year	Ratio of Actual over Expected (A/E)	95% confidence intervals of A/E ? This is what we try to find out
Big 10K	10,000	1,000	1000	100%	Missing?? 90-110%??
Small 1K	1,000	100	100	100%	Missing??

Solution 1: Monte Carlo Simulation

- •Name coined in the 1940s after the Monte Carlo Casino
- •Method involves computers to solve questions relating to random events
- •Used in
 •Physics
 •Finance
 •Epidemiology/Medicine

Solution 1: Monte Carlo simulation

Strength

- This method has the advantage of using the full information in the data including age profile, exact pension amount of each pensioner directly
- So, it reflects uncertainty around the population's own mortality experience
- Would satisfy regulatory requirements

Solution 1: Monte Carlo simulation

Strength

- This method has the advantage of using the full information in the data including age profile, exact pension amount of each pensioner directly
- So, it reflects uncertainty around the population's own mortality experience
- Would satisfy regulatory requirements

Limitation

- Doesn't reflect weather hot summer, cold winter, flu
- flu
 Need further
 adjustment for late
 reported deaths and
 mortality
 improvement
 Relatively intensive
 on computing power

Solution 2: Formula to reflect results of Monte Carlo simulation Formula to reflect results of Monte Carlo simulation		7
Solution 2: Formula to reflect results of Monte Carlo simulation Further deads to the relaxed in	Solution 1: Monte Carlo simulation	
Solution 2: Formula to reflect results of Monte Carlo simulation Further datals to be relicated in - Submit of Confidence Information for Mortally Table Agustments' - By A Karner and Jul (2010) Longwity Science on the Web Issue 2 - set of Confidence Information (Information of the Web Issue 2) - set of Confidence Information (Information of the Web Issue 2) - set of Confidence Information (Information of the Web Issue 2) - set of Confidence Information (Information of the Web Issue 2) - set of Confidence Information (Information of the Web Issue 2) - set of Confidence Information (Information of the Web Issue 2) - set of Confidence Information (Information of the Web Issue 2) - set of Confidence Information (Information of the Web Issue 2) - set of Confidence Information (Information of the Web Issue 2) - set of Confidence Information (Information of the Web Issue 2) - set of Confidence Information (Information of the Web Issue 2) - set of Confidence Information (Information of the Web Issue 2) - set of Confidence Information (Information of the Web Issue 2) - set of Confidence Information (Information of the Web Issue 2) - set of Confidence Information (Information of the Web Issue 2) - set of Confidence Information (Information of the Web Issue 2) - set of Confidence Information (Information of the Web Issue 2) - set of Confidence Information (Information of the Web Issue 2) - set of Confidence Information (Information of the Web Issue 2) - set of Confidence Information (Information of the Web Issue 2) - set of Confidence Information (Information of the Web Issue 2) - set of Confidence Information (Information of the Web Issue 2) - set of Confidence Information (Information of the Web Issue 2) - set of Confidence Information (Information of the Web Issue 2) - set of Confidence Information (Information of the Web Issue 2) - set of Confidence Information (Information of the Web Issue 2) - set of Confidence Information (Information of the Web Issue 2) - set of Confidence Informatio		
Further details to be released in - "Estimation of Confidence Intervals for Mortality Table Adjustments' - By A Kanter and Ju (2010) Longevity Science on the Web Issue 2 - we besind detected confised: Solution 2: Formula to reflect results of Monte Carlo simulation - var(A/E lives) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s\$)^2 - var(A/E lives) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s\$)^2 - var(A/E mounts) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s\$)^2 - var(A/E mounts) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s\$)^2 - var(A/E mounts) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s\$)^2 - var(A/E mounts) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s\$)^2 - var(A/E mounts) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s\$)^2 - var(A/E mounts) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s\$)^2 - var(A/E mounts) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s q_s\$) / (\$\mathbb{E} n_s q_s q_s q_s q_s q_s q_s q_s q_s q_s q	Discussion: Is there any less demanding method?	
Further details to be released in - "Estimation of Confidence Intervals for Mortality Table Adjustments' - By A Kanter and Ju (2010) Longevity Science on the Web Issue 2 - we besind detected confised: Solution 2: Formula to reflect results of Monte Carlo simulation - var(A/E lives) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s\$)^2 - var(A/E lives) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s\$)^2 - var(A/E mounts) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s\$)^2 - var(A/E mounts) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s\$)^2 - var(A/E mounts) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s\$)^2 - var(A/E mounts) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s\$)^2 - var(A/E mounts) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s\$)^2 - var(A/E mounts) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s\$)^2 - var(A/E mounts) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s q_s\$) / (\$\mathbb{E} n_s q_s q_s q_s q_s q_s q_s q_s q_s q_s q		
Further details to be released in - "Estimation of Confidence Intervals for Mortality Table Adjustments' - By A Kanter and Ju (2010) Longevity Science on the Web Issue 2 - we besind detected confised: Solution 2: Formula to reflect results of Monte Carlo simulation - var(A/E lives) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s\$)^2 - var(A/E lives) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s\$)^2 - var(A/E mounts) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s\$)^2 - var(A/E mounts) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s\$)^2 - var(A/E mounts) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s\$)^2 - var(A/E mounts) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s\$)^2 - var(A/E mounts) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s\$)^2 - var(A/E mounts) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s\$)^2 - var(A/E mounts) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s q_s\$) / (\$\mathbb{E} n_s q_s q_s q_s q_s q_s q_s q_s q_s q_s q		-
Further details to be released in - "Estimation of Confidence Intervals for Mortality Table Adjustments' - By A Kanter and Ju (2010) Longevity Science on the Web Issue 2 - we besind detected confised: Solution 2: Formula to reflect results of Monte Carlo simulation - var(A/E lives) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s\$)^2 - var(A/E lives) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s\$)^2 - var(A/E mounts) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s\$)^2 - var(A/E mounts) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s\$)^2 - var(A/E mounts) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s\$)^2 - var(A/E mounts) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s\$)^2 - var(A/E mounts) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s\$)^2 - var(A/E mounts) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s\$)^2 - var(A/E mounts) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s q_s\$) / (\$\mathbb{E} n_s q_s q_s q_s q_s q_s q_s q_s q_s q_s q		
Further details to be released in - "Estimation of Confidence Intervals for Mortality Table Adjustments' - By A Kanter and Ju (2010) Longevity Science on the Web Issue 2 - we besind detected confised: Solution 2: Formula to reflect results of Monte Carlo simulation - var(A/E lives) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s\$)^2 - var(A/E lives) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s\$)^2 - var(A/E mounts) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s\$)^2 - var(A/E mounts) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s\$)^2 - var(A/E mounts) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s\$)^2 - var(A/E mounts) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s\$)^2 - var(A/E mounts) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s\$)^2 - var(A/E mounts) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s\$)^2 - var(A/E mounts) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s q_s\$) / (\$\mathbb{E} n_s q_s q_s q_s q_s q_s q_s q_s q_s q_s q		
Further details to be released in - "Estimation of Confidence Intervals for Mortality Table Adjustments' - By A Kanter and Ju (2010) Longevity Science on the Web Issue 2 - we besind detected confised: Solution 2: Formula to reflect results of Monte Carlo simulation - var(A/E lives) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s\$)^2 - var(A/E lives) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s\$)^2 - var(A/E mounts) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s\$)^2 - var(A/E mounts) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s\$)^2 - var(A/E mounts) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s\$)^2 - var(A/E mounts) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s\$)^2 - var(A/E mounts) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s\$)^2 - var(A/E mounts) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s\$)^2 - var(A/E mounts) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s q_s\$) / (\$\mathbb{E} n_s q_s q_s q_s q_s q_s q_s q_s q_s q_s q		
Further details to be released in - "Estimation of Confidence Intervals for Mortality Table Adjustments' - By A Kanter and Ju (2010) Longevity Science on the Web Issue 2 - we basin determined the state of the s		
Further details to be released in - "Estimation of Confidence Intervals for Mortality Table Adjustments' - By A Kanter and Ju (2010) Longevity Science on the Web Issue 2 - we basin determined the state of the s		
Further details to be released in - "Estimation of Confidence Intervals for Mortality Table Adjustments' - By A Kanter and Ju (2010) Longevity Science on the Web Issue 2 - we basin determined the state of the s		
Further details to be released in - "Estimation of Confidence Intervals for Mortality Table Adjustments' - By A Kanter and Ju (2010) Longevity Science on the Web Issue 2 - we besind detected confised: Solution 2: Formula to reflect results of Monte Carlo simulation - var(A/E lives) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s\$)^2 - var(A/E lives) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s\$)^2 - var(A/E mounts) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s\$)^2 - var(A/E mounts) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s\$)^2 - var(A/E mounts) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s\$)^2 - var(A/E mounts) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s\$)^2 - var(A/E mounts) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s\$)^2 - var(A/E mounts) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s\$)^2 - var(A/E mounts) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s q_s\$) / (\$\mathbb{E} n_s q_s q_s q_s q_s q_s q_s q_s q_s q_s q		
Further details to be released in - "Estimation of Confidence Intervals for Mortality Table Adjustments' - By A Kanter and JL u (2010) Longevity Science on the Web Issue 2 - we leader-detection basis Solution 2: Formula to reflect results of Monte Carlo simulation - var(A/E lives) = (\$\mathbb{X} n_s p_s q_s\$) / (\$\mathbb{X} n_s q_s\$)^2 - var(A/E nounts) = (\$\mathbb{Z} n_s p_s q_s\$) / (\$\mathbb{Z} n_s n_s q_s\$)^2 - var(A/E nounts) = (\$\mathbb{Z} n_s p_s q_s\$) / (\$\mathbb{Z} n_s n_s q_s\$)^2 - var(A/E nounts) = (\$\mathbb{Z} n_s n_s n_s q_s\$) / (\$\mathbb{Z} n_s n_s n_s\$) - n = the number of population - q_s = probability of a person age x dying over the year (standard notation) - p_s = 1 - q_s		
Further details to be released in - "Estimation of Confidence Intervals for Mortality Table Adjustments' - By A Kanter and JL u (2010) Longevity Science on the Web Issue 2 - we leader-detection basis Solution 2: Formula to reflect results of Monte Carlo simulation - var(A/E lives) = (\$\mathbb{X} n_s p_s q_s\$) / (\$\mathbb{X} n_s q_s\$)^2 - var(A/E nounts) = (\$\mathbb{Z} n_s p_s q_s\$) / (\$\mathbb{Z} n_s n_s q_s\$)^2 - var(A/E nounts) = (\$\mathbb{Z} n_s p_s q_s\$) / (\$\mathbb{Z} n_s n_s q_s\$)^2 - var(A/E nounts) = (\$\mathbb{Z} n_s n_s n_s q_s\$) / (\$\mathbb{Z} n_s n_s n_s\$) - n = the number of population - q_s = probability of a person age x dying over the year (standard notation) - p_s = 1 - q_s		
Further details to be released in - "Estimation of Confidence Intervals for Mortality Table Adjustments' - By A Kanter and Ju (2010) Longevity Science on the Web Issue 2 - we besind detected confised: Solution 2: Formula to reflect results of Monte Carlo simulation - var(A/E lives) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s\$)^2 - var(A/E lives) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s\$)^2 - var(A/E mounts) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s\$)^2 - var(A/E mounts) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s\$)^2 - var(A/E mounts) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s\$)^2 - var(A/E mounts) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s\$)^2 - var(A/E mounts) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s\$)^2 - var(A/E mounts) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s\$)^2 - var(A/E mounts) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s q_s\$) / (\$\mathbb{E} n_s q_s q_s q_s q_s q_s q_s q_s q_s q_s q		
Further details to be released in - "Estimation of Confidence Intervals for Mortality Table Adjustments' - By A Kanter and Ju (2010) Longevity Science on the Web Issue 2 - we besind detected confised: Solution 2: Formula to reflect results of Monte Carlo simulation - var(A/E lives) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s\$)^2 - var(A/E lives) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s\$)^2 - var(A/E mounts) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s\$)^2 - var(A/E mounts) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s\$)^2 - var(A/E mounts) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s\$)^2 - var(A/E mounts) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s\$)^2 - var(A/E mounts) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s\$)^2 - var(A/E mounts) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s\$)^2 - var(A/E mounts) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s q_s\$) / (\$\mathbb{E} n_s q_s q_s q_s q_s q_s q_s q_s q_s q_s q		_
Further details to be released in - "Estimation of Confidence Intervals for Mortality Table Adjustments' - By A Kanter and Ju (2010) Longevity Science on the Web Issue 2 - we besind detected confised: Solution 2: Formula to reflect results of Monte Carlo simulation - var(A/E lives) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s\$)^2 - var(A/E lives) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s\$)^2 - var(A/E mounts) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s\$)^2 - var(A/E mounts) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s\$)^2 - var(A/E mounts) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s\$)^2 - var(A/E mounts) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s\$)^2 - var(A/E mounts) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s\$)^2 - var(A/E mounts) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s\$)^2 - var(A/E mounts) = (\$\mathbb{E} n_s p_s q_s\$) / (\$\mathbb{E} n_s q_s q_s\$) / (\$\mathbb{E} n_s q_s q_s q_s q_s q_s q_s q_s q_s q_s q		
Estimation of Cortifeence Intervals for Mortality Table Adjustments' By A Kanter and J. Lu (2010). Longevity Science on the Web Issue 2 ***********************************	Solution 2: Formula to reflect results of Monte Carlo simulation	
Solution 2: Formula to reflect results of Monte Carlo simulation var(A E lives) = $(En, p, q_x)/(En, q_y)^2$ var(A E inves) = $(En, p, q_x)/(En, q_y)^2$ var(A E mounts) = $(ESE, p, q_x)/(ESE, q_y)^2$ var(A E mounts) = $(ESE, p, q_x)/(ESE, q_y)^2$ var(A E mounts) = $(ESE, p, q_x)/(ESE, q_y)^2$ var(A E mounts) = $(ESE, p, q_x)/(ESE, q_y)^2$ var(A E mounts) = $(ESE, p, q_x)/(ESE, q_y)^2$ var(A E mounts) = $(ESE, p, q_x)/(ESE, q_y)^2$ var(A E mounts) = $(ESE, p, q_x)/(ESE, q_y)^2$ var(A E mounts) = $(ESE, p, q_x)/(ESE, q_y)^2$ var(A E mounts) = $(ESE, p, q_x)/(ESE, q_y)^2$ var(A E mounts) = $(ESE, p, q_x)/(ESE, q_y)^2$ var(A E mounts) = $(ESE, p, q_x)/(ESE, q_y)^2$		
Solution 2: Formula to reflect results of Monte Carlo simulation • $\text{var}(\text{NE lives}) = (\Sigma n, p, q,) / (\Sigma n, q_0)^2$ • $\text{var}(\text{AE amounts}) = (2\Sigma S_a p, p, q) / (2\Sigma S_a q_0)^2$ • $\text{var}(\text{AE amounts}) = (2\Sigma S_a p, p, q) / (2\Sigma S_a q_0)^2$ • $\text{var}(\text{AE amounts}) = (2\Sigma S_a p, p, q) / (2\Sigma S_a q_0)^2$ • $\text{var}(\text{AE amounts}) = (2\Sigma S_a p, p, q) / (2\Sigma S_a q_0)^2$ • $\text{var}(\text{AE amounts}) = (2\Sigma S_a p, q, q) / (2\Sigma S_a q_0)^2$ • $\text{var}(\text{AE amounts}) = (2\Sigma S_a p, q, q) / (2\Sigma S_a q_0)^2$ • $\text{var}(\text{AE amounts}) = (2\Sigma S_a p, q, q,$	 By A Kanter and J Lu (2010) Longevity Science on the Web Issue 2 	
 var(A/E lives) = (Σ n_x p_x q_x) / (Σ n_x q_x)² var(A/E amounts) = (ΣΣ S_x 2p_xq_x) / (ΣΣ S_xq_x)² x = age exact n = the number of population q_x = probability of a person age x dying over the year (standard notation) p_x = 1 - q_x 		
 var(A/E lives) = (Σ n_x p_x q_x) / (Σ n_x q_x)² var(A/E amounts) = (ΣΣ S_x 2p_xq_x) / (ΣΣ S_xq_x)² x = age exact n = the number of population q_x = probability of a person age x dying over the year (standard notation) p_x = 1 - q_x 		
 var(A/E lives) = (Σ n_x p_x q_x) / (Σ n_x q_x)² var(A/E amounts) = (ΣΣ S_x 2p_xq_x) / (ΣΣ S_xq_x)² x = age exact n = the number of population q_x = probability of a person age x dying over the year (standard notation) p_x = 1 - q_x 		
 var(A/E lives) = (Σ n_x p_x q_x) / (Σ n_x q_x)² var(A/E amounts) = (ΣΣ S_x 2p_xq_x) / (ΣΣ S_xq_x)² x = age exact n = the number of population q_x = probability of a person age x dying over the year (standard notation) p_x = 1 - q_x 		
 var(A/E lives) = (Σ n_x p_x q_x) / (Σ n_x q_x)² var(A/E amounts) = (ΣΣ S_x 2p_xq_x) / (ΣΣ S_xq_x)² x = age exact n = the number of population q_x = probability of a person age x dying over the year (standard notation) p_x = 1 - q_x 		
 var(A/E lives) = (Σ n_x p_x q_x) / (Σ n_x q_x)² var(A/E amounts) = (ΣΣ S_x 2p_x q_x) / (ΣΣ S_x q_y)² x = age exact n = the number of population q_x = probability of a person age x dying over the year (standard notation) p_x = 1 - q_x 		
 var(A/E lives) = (Σ n_x p_x q_x) / (Σ n_x q_x)² var(A/E amounts) = (ΣΣ S_x 2p_x q_x) / (ΣΣ S_x q_y)² x = age exact n = the number of population q_x = probability of a person age x dying over the year (standard notation) p_x = 1 - q_x 		
 var(A/E lives) = (Σ n_x p_x q_x) / (Σ n_x q_x)² var(A/E amounts) = (ΣΣ S_x² p_x q_x) / (ΣΣ S_x q_x)² x = age exact n = the number of population q_x = probability of a person age x dying over the year (standard notation) p_x = 1 - q_x 		
• $\operatorname{var}(A E \operatorname{lives}) = (\Sigma n_x p_x q_x) / (\Sigma n_x q_x)^2$ • $\operatorname{var}(A E \operatorname{amounts}) = (\Sigma \Sigma S_{nx}^2 p_x q_x) / (\Sigma \Sigma S_{nx} q_x)^2$ • $\operatorname{x} = \operatorname{age} \operatorname{exact}$ • $\operatorname{n} = \operatorname{the} \operatorname{number} \operatorname{of} \operatorname{population}$ • $q_x = \operatorname{probability} \operatorname{of} \operatorname{a} \operatorname{person} \operatorname{age} \operatorname{x} \operatorname{dying} \operatorname{over} \operatorname{the} \operatorname{year} \operatorname{(standard} \operatorname{notation)}$ • $p_x = 1 - q_x$		
 var(A/E lives) = (Σ n_x p_x q_x) / (Σ n_x q_x)² var(A/E amounts) = (ΣΣ S_x² p_x q_x) / (ΣΣ S_x q_x)² x = age exact n = the number of population q_x = probability of a person age x dying over the year (standard notation) p_x = 1 - q_x 		
 var(A/E lives) = (Σ n_x p_x q_x) / (Σ n_x q_x)² var(A/E amounts) = (ΣΣ S_x 2p_x q_x) / (ΣΣ S_x q_y)² x = age exact n = the number of population q_x = probability of a person age x dying over the year (standard notation) p_x = 1 - q_x 		
 var(A/E lives) = (Σ n_x p_x q_x) / (Σ n_x q_x)² var(A/E amounts) = (ΣΣ S_x 2p_xq_x) / (ΣΣ S_xq_x)² x = age exact n = the number of population q_x = probability of a person age x dying over the year (standard notation) p_x = 1 - q_x 		
 var(A/E lives) = (Σ n_x p_x q_x) / (Σ n_x q_x)² var(A/E amounts) = (ΣΣ S_x² p_x q_x) / (ΣΣ S_x q_x)² x = age exact n = the number of population q_x = probability of a person age x dying over the year (standard notation) p_x = 1 - q_x 		7
 var(A/E lives) = (Σ n_x p_x q_x) / (Σ n_x q_x)² var(A/E amounts) = (ΣΣ S_x² p_x q_x) / (ΣΣ S_x q_x)² x = age exact n = the number of population q_x = probability of a person age x dying over the year (standard notation) p_x = 1 - q_x 	Solution 2: Formula to reflect results of Monte Carlo simulation	
 var(A/E amounts) = (ΣΣS_{ix}²ρ_xq_x) / (ΣΣS_{ix}q_x)² x = age exact n = the number of population q_x = probability of a person age x dying over the year (standard notation) p_x = 1 - q_x 		
 x = age exact n = the number of population q_x = probability of a person age x dying over the year (standard notation) p_x = 1 - q_x 	• $\operatorname{var}(A/E \text{ lives}) = (\Sigma n_x p_x q_x) / (\Sigma n_x q_x)^2$ • $\operatorname{var}(A/E \text{ amounts}) = (\Sigma \Sigma S, 2n, n) / (\Sigma \Sigma S, n)^2$	-
 n = the number of population q_x = probability of a person age x dying over the year (standard notation) p_x = 1 - q_x 		
• $p_x = 1 - q_x$	 n = the number of population 	
• o _j = rension amount 0i pelsoti i	• $p_x = 1 - q_x$	
	• S _i = Pension amount or person I	

Compa	re 95% confid	lanca intarv	rals of Monte	Carlo
	on with Formula			
Monte Carlo		(-)	,	,
Males		Three	e year investigation period	
	A/E (lives)		A/E (amounts) for different	
Sample size 200	64% - 147%	Low 55% - 161%	Med 34% - 203%	High 23% - 24
1000	83% - 120%	78% - 127%	63% - 143%	39% - 16
5000 25000	92% - 109% 97% - 103%	89% - 111% 96% - 105%	82% - 119% 92% - 108%	
125000	99% - 102%	98% - 102%	97% - 103%	
Formula (bi	old represents within 1% difference	from above) Three	e year investigation period	
	A/E (lives)		A/E (amounts) for different in	equality levels
Sample size		Low	Med	High
200	60% - 143%	49% - 156%	21% - 192%	-4% - 227%
1000	82% - 119%	76% - 125%	61% - 142%	31% - 178%
5000	92% - 168%	89% - 111%	82% - 119%	69% - 133%
25000 125000	96% - 104% 98% - 102%	95% - 105% 98% - 102%	92% - 108% 96% - 104%	85% - 116% 91% - 109%
125000	98% - 102%	98% - 102%	96% - 104%	91% - 109%
	are 95% confi			
	ion with Formula	(1-year morta	anty investigation	on period)
Monte Carlo	Simulation			
Males	A/E (lives)		estigation period A/E (amounts) for different inequality lev	els
Sample size		Low	Med Med	High
200	43% - 184%	31% - 221%	12% - 281%	9% - 373%
1000 5000	71% - 136% 86% - 115%	62% - 148% 82% - 120%	41% - 177% 69% - 133%	29% - 208% 50% - 153%
25000	94% - 107%	92% - 109%	86% - 114%	73% - 125%
Formula (bo	97% - 103% old represents within 1%	96% - 104% difference from above	94% - 106%	85% - 113%
Males (DC			investigation period	
	A/E (lives)		A/E (amounts) for different inequality le	evels
Sample size		Low	Med	High
200	28% - 172%	5% - 195%	-51% - 251%	-106% - 306%
1000	68% - 132%	57% - 143%	29% - 171%	-20% - 220%
25000	86% - 114% 94% - 106%	81% - 119% 91% - 109%	68% - 132% 86% - 114%	46% - 154% 74% - 126%
125000	97% - 103%	96% - 104%	94% - 106%	85% - 115%
How t	o use the Fo	ormula an	proach?	
What	if we want a	simpler a	pproach?	

How to use the Formula approach? What if we want a simpler approach?

- Just need a few inputs:
 - Number of annuitants
 - Average Age
 - Concentration of pension, e.g. 10% of people own 45% of pension
 - Number of years of data
 - Base table

Solution 3: A 'Simplified Formula' Approach

Variance = 1/(number of people x Observed A/E) x

Base Variances x Inequality multiplier x

Adj factor (number of years) x

Adj factor (number of years)

Base table adjustment

Avg age	Male	Female	Top 10% own	Coeff. of var	Gini	Inequal
65	50.35	67.97	30%	0.88	0.41	
66	45.68	60.30	35%	1.12	0.48	
67	41.18	53.24	40%	1.37	0.53	
68	36.94	46.87	45%	1.69	0.59	
69	32.98	41.13	50%	2.04	0.63	
70	29.33	36.08	55%	2.51	0.68	
71	26.00	31.63	60%	3.06	0.72	
72	23.00	27.75	65%	3.91	0.76	
73	20.30	24.36	70%	5.05	0.80	
74	17.91	21.40				
75	15.78	18.83				

m	Adj factor	Table	n
1	1.000	PCXA00	•
2	0.478	PCXL00	•
3	0.304	PEXA00	~
4	0.218	PEXL00	•
5	0.166	PXA92	~
6	0.131	PNXA00	ŀ
7	0.107	PNXL00	~
8	0.088	PPXV00	ŀ
9	0.074	RXV00	~
10	0.063	SPXA03	~
		SPXL03	~

Compare 95% confidence intervals of Solutions 2 and 3 (3-year mortality investigation period)

Males		Three year investigation period							
	A/E (lives)	A/E (amounts) for different inequality levels							
Sample size		Low	Med	High					
200	60% - 143%	49% - 156%	21% - 192%	-4% - 227%					
1000	82% - 119%	76% - 125%	61% - 142%	31% - 178%					
5000	92% - 108%	89% - 111%	82% - 119%	69% - 133%					
25000	96% - 104%	95% - 105%	92% - 108%	85% - 116%					
125000	98% - 102%	98% - 102%	96% - 104%	91% - 109%					

Simplified Formula (Solution 3)

Males		Three year i	nvestigation period				
	A/E (lives)		A/E (amounts) for different inequality levels				
Sample size		Low	Med	High			
200	61% - 139%	48% - 152%	12% - 188%	-101% - 301%			
1000	83% - 117%	75% - 125%	58% - 142%	22% - 178%			
5000	92% - 108%	90% - 110%	82% - 118%	60% - 140%			
25000	97% - 103%	95% - 105%	92% - 108%	82% - 118%			
125000	98% - 102%	98% - 102%	96% - 104%	92% - 108%			

ear mortal	lity investigatio	n period)									
Formula (Solution 2) (bold represent consistency with Solution 1)											
Males One year investigation period											
	A/E (lives)		A/E (amounts) for different ineq	nality levels							
Sample size		Low	Med	High							
200	28% - 172%	5% - 195%	-51% - 251%	-106% - 306%							
1000	68% - 132%	57% - 143%	29% - 171%	-20% - 220%							
5000	86% - 114%	81% - 119%	68% - 132%	46% - 154%							
25000	94% - 106%	91% - 109%	86% - 114%	74% - 126%							
125000	97% - 103%	96% - 104%	94% - 106%	85% - 115%							
Simplified For	mula (Solution 3)	Simple									
Males		One year	investigation period	enough I	for key fig						
	A/E (lives)		A/E (amounts) for different inequalit	y levels	_						
Sample size		Low	Med	High							
200	29% - 171%	6% - 194%	-60% - 260%	-264% - 464%							
1000	68% - 132%	58% - 142%	28% - 172%	-63% - 263%							
5000	86% - 114%	81% - 119%	68% - 132%	27% - 173%							
:5000	94% - 106%	91% - 108%	86% - 114%	74% - 126%							
25000	97% - 103%	96% - 104%	94% - 106%	85% - 115%							

Conclusion

- Problem 1: How do we measure uncertainty due to small number of people?
- Problem 2: How do we measure increased volatility due to concentration of pension amount on a small number of people?
- Problem 3: How to use the solutions in practice?

U	О	n	CI	us	10	n

- Answer:
 - Use one of the 3 methods
 - But we welcome suggestions of any other methods

Acknowledgment

- We thank the Longevity Science Advisory Panel
 (http://www.longevitypanel.co.uk/index.html) for their comments on the methodology
 Sir Derek Wanless

 - Sir John Pattison
 - Professor Colin Blakemore
 - Professor Klim McPherson
 - Professor Steven Haberman

Note:

The Longevity Science Advisory Panel is independent and is not responsible for the views and methods discussed in the presentation.

Questions for Discussion

- In your capacity, what are the benefits of understanding the uncertainty around Base Mortality?
- What would be your preferred method in practice?

