

What is a medical test?

- Definition: A medical test is a kind of medical procedure performed to detect, diagnose, or evaluate disease, disease processes, susceptibility, and determine a course of treatment
- Screening
- Diagnostic
- Evaluation

What is screening?

- Screening is a strategy used in a population to detect a disease in individuals without any signs or symptoms of that disease
- The intention is to identify disease early, thus enabling earlier intervention to reduce mortality and suffering from a disease

Screening starts before birth..-."		
	Screening-Test	Disease
Unborn	Nuchal fold	Down-Syndrome
Newborn	Heel stick test Hearing test	Metabolic disorders Congenital deafness
Nursling	Ultrasound of hip	Hip dysplasia
Female > 20 years	PAP-smear	Cervical cancer
Female > 40-50 years	Mammogram	Breast cancer
Male > 50 years	PSA-test	Prostate cancer
> 55 years	Colonoscopy	Colon cancer
?	Resting/Exercise-ECG	Coronary artery disease
?	Carotid intima thickness	Arteriosclerosis/Stroke
?	Blood tests	Kidney disease, diabetes, liver diseases
Under evaluation	Cardiac CT scan Biomarkers Thoracic CT scan	Coronary artery disease Heart failure, Alzheimer Lung cancer

Screening tests in U/W - an example

- 35 years old female applicant; broker $\rightarrow £ 5 \mathrm{~m}$ life cover
- Ht :1.65cm Wt: 65kg, non-smoker, no family history
- No history of any significant disease, no cardiovascular risk factors
- As a result of the non-medical life limits, the following tests are required:
-APS
- MER (BP, pulse, full physical exam => heart, lungs, abdomen etc.)
- ECG
- Exercise-ECG
- Fasting blood sugar or HbA1c
- Erythrocyte sedimentation rate
- Lipids (Fasting Cholesterol, Trigs, HDL, LDL)
- Liver function tests (GGT, AST, ALT etc.)
- Kidney function tests (creatinine, BUN)
- Urine analysis (hematuria, proteinuria etc.)
- HIV-test
- sometimes CXR, Hepatitis B/C-serology, new biomarkers etc.

Screening tests in U/W

- Companies spend enormous resources on blood profiles, the attending physician's statement (APS), stress-tests etc. to determine every disease or diagnosis that can be attached to the applicant now or in the future
- But why do companies spend so many efforts in screening tests ?
- risk control: the more money is at risk the more screening tests are applied

But are they right?

How to approach screening test results?

- Most people think, the test result is the most important information:
-A test result can be positive for the target condition = disease is present
-A test result can be negative for the target condition = disease is not present
- This sounds quite logic and most U/W's trust that approach
\rightarrow Unfortunately, this costs the insurance industry a lot of money...

Possible results of a screening test

Parameters of quality

Sensitivity	Percentage of diseased persons who get a positive test "How many diseased applicants can we detect by the test?"
Specificity	Percentage of healthy persons who get a negative test "How many healthy applicants will falsly be classified as diseased by the test" (1 - specificity)

Sensitivity and Specificity

Sensitivity and Specificity

Sensitivity $=\frac{A}{A+C} \quad$ Specificity $=\frac{D}{B+D}$

How to remember - Sensitivity and Specificity

- Sensitivity: „I know my applicant has the impairment. What is the chance that the test result will show that my applicant actually has the impairment?"
- Specificity: „I know my applicant does not have the impairment. What is the chance that the test result will show that my applicant does not have the impairment?"

Sensitivity and Specificity are properties of the test you are using

Changing the population tested

Prevalence

Prevalence	Number of applicants per 100 000 population who have the disease at a given time Often depends on factors like age, gender, region, race, income ... Is also characterised as „ pretest - probability "

Derived parameters

$\left.\begin{array}{|l|l|}\hline \begin{array}{l}\text { Positive } \\ \text { predictive value } \\ \text { (PPV) }\end{array} & \begin{array}{l}\text { Percentage of persons with a positive test result who in fact } \\ \text { have the disease }\end{array} \\ \text { "If the patient has a positive test, how likely is he/she to have the } \\ \text { disease?" } \\ \text { Formula: True positive test results / all positive test results }\end{array}\right\}$

Positive predictive and negative predictive value

	Disease +	Disease -	PPV $=$	
Test +	A True positive	B False positive		$\frac{A}{A+B}$
Test -	C False negative	D True negative	NPV =	$\frac{D}{C+D}$

How to remember - PPV and NPV

- PPV: „I got a positive test result. What is the chance that my applicant actually has the disease?"
- NPV: „I got a negative test result. What is the chance that my applicant actually does not have the disease?"

PPV and NPV are properties of both the test you are using and the population you are testing

Changing the population tested....

Effects of prevalence

Sensitivity=95\%	Specificity=95\%
Population's prevalence	Predicitive value of a positive test
0,1\%	$\longrightarrow \quad 1,9 \%$
1,0\%	$\rightarrow \quad 16,1 \%$
2,0\%	\longrightarrow 27,9\%
5,0\%	$\rightarrow 50 \%$
50\%	$\longrightarrow 95 \%$

What is the problem of incorrect test results......

Why do I lose money with the false positives?

- Need for costly and time consuming confirmatory tests
- Slows down the U/W process significantly
- Applicant may receive a risk loading or is even declined for insurance cover
- Bad reputation for insurance company and migration of applicants to competitors

Screening tests in U/W - an example

- 35 years old female applicant; broker $\rightarrow £ 5 \mathrm{~m}$ life cover
- Ht :1.65cm Wt: 65kg, non-smoker, no family history
- No history of any significant disease, no cardiovascular risk factors
- As a result of the non-medical life limits, the following tests are required:
- APS
- MER (BP, pulse, full physical exam => heart, lungs, abdomen etc.)
- ECG
- Exercise-ECG
- Fasting blood sugar or HbA1c
- Erythrocyte sedimentation rate
- Lipids (Fasting Cholesterol, Trigs, HDL, LDL)
- Liver function tests (GGT, AST, ALT etc.)
- Kidney function tests (creatinine, BUN)
- Urine analysis (hematuria, proteinuria etc.)
- HIV-test
- sometimes CXR, Hepatitis B/C-serology, new biomarkers etc.

Examples

Age	Nonanginal pain		Atypical angina		Typical angina	
	Men women	Men	Women	Men	Women	
$30-$ 39	4	2	34	12	76	26
$40-$ 49	13	3	51	22	87	55
$50-$ 59	20	7	65	31	93	73
$60-$ 69	27	14	72	51	94	86

Exercise - ECG

Prevalence 1\% Sensitivity 60\% Specificity 90\%

Test +	Disease +	Disease -	$\operatorname{PPV}=\frac{A}{A+B}=\frac{6}{105}=6 \%$
	6 True positive	99 False positive	
Test -	4 False negative	891 True negative	$N P V=\frac{D}{C+D}=\frac{891}{895}=99,5 \%$
	10	990	

PPV: 12/111 $=6 \% \rightarrow$ False positive rate: 94%

Screening tests in U/W - an example

- 35 years old female applicant; broker $\rightarrow £ 5$ m life cover
- Ht :1.65cm Wt: 65kg, non-smoker, no family history
- No history of any significant disease, no cardiovascular risk factors
- As a result of the non-medical life limits, the following tests are required:
- APS
- MER (BP, pulse, full physical exam => heart, lungs, abdomen etc.)
- ECG
- Exercise-ECG
- Fasting blood sugar or HbA1c
- Erythrocyte sedimentation rate
- Lipids (Fasting Cholesterol, Trigs, HDL, LDL)
- Liver function tests (GGT, AST, ALT etc.)
- Kidney function tests (creatinine, BUN)
- Urine analysis (hematuria, proteinuria etc.)
- HIV-test
- sometimes CXR, Hepatitis B/C-serology, new biomarkers etc.

Solutions

- general aspect -

Solutions

- Increasing sensitivity and specificity is just possible by the use of either more costly and time-consuming or more dangerous diagnostic tests \Rightarrow not reasonable
- The only possible solution is:
- use the correct test (in terms of costs and accuracy) in
- the right group of applicants (pre-test probability) for
- a target condition that is relevant for your losses with
- the optimal sum threshold (cost-benefit-analysis)

Protective value study

-Calculation to quantify the real value of a screening device

- Value of information as result of protection from future loss
-Basic requirement: savings > costs
-Savings increase with insured sum => sum threshold (savings=costs)

Decision tree prototype for cost benefit analysis

Cost-benefit analysis: HIV-Screening Test in India

Understanding medical tests and how to use them

Thank you very much for your attention!!

