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1. INTRODUCTION 

THE discussion on Maturity Guarantees, as applied to unit linked life assurance 
policies, has followed two quite distinct paths-the conventional or mainstream 
approach, as exemplified by Benjamin (1976) and endorsed by the Maturity 
Guarantees Working Party (MGWP 1980) on the one hand, and those who seek 
to reduce the risks associated with maturity guarantees by using an immuniza- 
tion strategy on the other (Brennan & Schwartz, 1976). 

The solution proposed by Benjamin and others is to determine the minimum 
level of reserves required based on some acceptable ‘probability of ruin’. ‘Ruin’, 
however, seems a somewhat exaggerated term since, even if the insurance 
company were technically insolvent, it might continue to be a ‘going concern’. In 
this case, additional equity is likely to be raised from the capital market. The 
premium for the maturity guarantee, or investment performance guarantee, for 
that is what it is, would then reflect the cost of servicing these reserves, and their 
subsequent movements. 

Of course, implicit in these calculations are some assumptions about the long 
term behaviour of the unit price. Protagonists of this approach have long since 
discarded the simple random walk model of equity prices, in favour of two 
component models where dividends are assumed to follow a random walk with 
upward drift, and yields are assumed to fluctuate about a fixed level (MGWP 
1980). But if these models should prove incorrect, or equity prices in the future no 
longer behave as they did in the past then calculations of this kind will be wrong 
and estimated reserves may prove excessive (and therefore costly) or inadequate 
to prevent ‘ruin’. 

As described by Collins (1982) the alternative strategy of immunization draws 
upon option pricing theory to calculate appropriate reserve levels. In the 
remaining sections we describe briefly the principles of the strategy, and provide 

numerical examples of the premia for investment performance guarantees based 
on the de Zoete stock index. 

2. MATURITY GUARANTEES AS AN OPTION 

Brennan & Schwartz (1976) have pointed out that asset value guarantees may 
be priced on the basis of contingent claims theory. Consider the investor who 
seeks an asset value guarantee of g with respect to a maturity date T. The value of 
a reference portfolio at time T is denoted by x(T) and its current value by x(o). 
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Thus, an investment of x(o) at the present time will be worth x(T) on the 
maturity date. The investor hopes that x(T) will be greater than g, i.e. on 
maturity the value of his investment will be worth more than the guaranteed 
amount. To insure himself (or any intermediary that acts on his behalf) against 
the prospect of x(T) falling below g he may buy a put option which has an 
exercise price equal tog. This option will be exercised only if x (T) falls below g, in 
which case the exercise profit is equal to g-x(T). 

Thus, at time T the pay-off to the investor is equal to the value of his 
investment in the reference portfolio plus the exercise profit: 

V(T) = x(T) + max (g - x(T), o) (1) 

If x(T) > g the put option is not exercised and the investor has surpassed the 
target value of g. If x(T) < g the put option will be exercised, and the exercise 
profit will offset pound for pound the shortfall in the value of the reference 
portfolio with respect to g. In this case V(T) = g regardless of how badly the 
reference portfolio performs. The downside risk is completely hedged and the 
maturity value of g is guaranteed. Of course, V(T) may be greater than g: 
investors naturally have no objection to upside risks. 

How much should an investor pay for such a maturity guarantee? The nature 
of the solution is suggested by equation (1). The premium essentially consists of 
two elements. First, it consists of the value of the reference portfolio at the 
present time, x(o). Secondly. it consists of the price of a put option on the 
reference portfolio with maturity date T and exercise price g. Thus 

V(o) = x(o) + P(x(o), g, T) (2) 

is the equilibrium premium where P denotes the price of the put. 
Since x(o) is known. it remains to determine the put price in order to calculate 

the fair premium for the maturity guarantee. By fair, we mean that risk is 
efficiently managed and that sellers of maturity guarantees earn competitive and 
therefore normal profits. Under the assumptions used below to calculate P any 
other premium would imply either that customers were not getting value for 
money, or that suppliers were offering maturity guarantees too cheaply. Thus 
V(o) provides an important benchmark for maturity guarantee pricing. 

Although it did not explore this approach to maturity guarantee pricing, the 
Report of the Maturity Guarantees Working Party (1980) concluded that it was a 
subject which merits further investigation. This paper partly reflects this interest. 

3. PUT PRICING 

The put in equation (2) is a ‘European’ rather than ‘American’ option since 
early exercise before time T is ruled out. This is convenient because closed-form 
formulae for put prices only exist in the ‘European’ case, see e.g. Parkinson 
(1977). Thus, the put may be priced on the basis of the put-call parity condition 
according to which 
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P = C - x(o) + ge-rT 
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(3) 

where 

C = C(x(o), g, T) 

is the price of the corresponding ‘European’ call option and r denotes the 
instantaneous default free rate of interest on a bond which is due to mature at 
time T. 

Black and Scholes (1973) argue that C is determined according to equation (4). 

C = x(o) N(d1) - ge-rT N(d2) (4) 

where 

d2 = 

a = instantaneous standard deviation of the rate of return on the reference 
portfolio. 

N(·) = cumulative probability for a unit normal variable, e.g. N( – ∞) = 0, 
N(0) = 0·5, N( ∞ ) = 1·0. 

Equation (4) assumes that the price of the reference portfolio may be described 
by a geometric Brownian motion process 

where 

µ = instantaneous expected rate of return (it measures the drift in the 
Random Walk through time, dt) 

dz = a Wiener process with properties dz² = dt, dzdt = 0 and E(dz) = 0 

Equation (4) further assumes that 

(i) r is deterministic as well as default free, 
(ii) a hedge portfolio which is long on one unit of the reference portfolio and 

short on N(d1)-¹ of call options is continuously rebalanced to ensure that 
there are no arbitrage profits. This implies that the return on the hedge 
portfolio is equal to the default free rate of interest, 

(iii) the transactions implied by this rebalancing are costless. 

Over relatively short periods of time it may be safe to assume that r is constant 
and deterministic. Brennan and Schwartz (1976, 1979) make this assumption. 
However, over the long time spans of maturity guarantees it might be more 
sensible to assume that interest rates are stochastic and variable, rather than 
deterministic and constant. Merton (1973) has suggested that under these 
assumptions equation (4) becomes 
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(6) 

σ ²(r) = instantaneous variance of interest rates. 

σ (x,r) = instantaneous covariance between the returns on the reference portfolio 
and interest rates. 

Thus, to calculate the competitive price of a maturity guarantee equation (6) or 
(4) may be substituted into equation (3) and the result substituted into equation 

(2). 

4. CAVEATS 

This methodology is as robust as the assumptions upon which it is based. 
Beenstock (1982) argues that the continuous time assumption is not vital and 
that the discrete time case with which in practice we have to deal poses no 
problems. Of greater importance is the assumptions of equation (5). Inevitably, 
different stochastic processes generate different results. Indeed, one of the 
criticisms of the immunization strategy is that equity prices do not follow a 
Wiener process. However, Beenstock reports that in most cases equation (4) 
provides broadly similar results although it may go seriously wrong if the price of 
the reference portfolio jumps discretely and the option is ‘in the money’. But even 
here the problem is not insoluble and Cox & Ross (1976) have demonstrated how 
the Black-Scholes formula may be adapted to accommodate jump processes. If 
the stochastic process has been mis-specified then the investment performance 
guarantee will be incorrectly priced. But this is not a criticism of the 
immunization strategy alone. The same requirement is made of the conventional 
approach-a wrongly specified stock price model will lead to inadequate/costly 
reserves. 

Abstraction from transactions costs is inevitably a short-coming of the 
methodology, The true cost of the maturity guarantee is the solution to equation 
(2) plus the present value of transactions costs incurred through rebalancing the 
hedge portfolio. Brennan and Schwartz (1979) report that if transactions costs 
are 2% of the value of the reference portfolio transacted equation (2) understates 
the true cost of a ten year maturity guarantee on a single-premium contract by 
about 3%. If these estimates are representative it most probably means that in 
practice the solutions from equation (2) lie within the margin of error. 
Alternatively, it would be necessary to add approximately 3% to the solutions 
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implied by equation (2). Thus, equation (4) provides a reasonable starting-point 
in relation to its assumptions about transactions costs, although it is worthwhile 
noting that in practice life offices in the United Kingdom are currently 
constrained by the valuation regulations from rebalancing their hedge portfolios 
since they are required to hold 100% of their reference portfolios at all times. 

5. THE DATA 

Because maturity guarantees extend over decades it seems sensible to obtain 
parameter estimates for σ etc. that are estimated over relatively long time 
periods. Brennan and Schwartz (1976) use a 5 year estimation period with respect 
to Canadian data which seems rather brief. However, in their subsequent work 
on United States of America data their observation period is 1926-1974. 

Our own estimates of σ are based upon the de Zoete rolled-up index over the 
period 1919-1979 provided in the Report of the Maturity Guarantees Working 
Party (J.I.A. 107, 154). However, we have carried out all our analysis in real 
terms. Thus x refers to the real price of the reference portfolio and is defined as 

de Zoete index 
x = 

consumer price index 

This reflects our view that individuals are interested in real maturity 
guarantees rather than nominal ones and that equation (5) may be applied on this 
basis. Indeed, an investment performance guarantee in nominal terms would 
provide no practical guarantee at all. A real guarantee implies that the holder of a 
portfolio buys not only the right to sell the reference portfolio for a given 
amount, but also the right to use the proceeds from that investment to buy goods 
at a particular price. 

We proxy r by the gross redemption yield on index linked gilts of similar 
maturity to the asset value guarantee. Thus, r is defined in real terms as is 
appropriate for our analysis. As is well known, gross redemption yields on index 
linked gilts depend on the rate of inflation. This is unsatisfactory, but we assume 
for purposes of illustration that the rate of inflation remains constant at 5% per 
year. In any case, it turns out that the price of the maturity guarantee is hardly 
sensitive to the errors in r that are generated by uncertainty about inflation. 

Because index linked stocks are recent developments we do not have sufficient 
time series data to estimate σ (r) and σ (r,x). Instead, we proxy σ (r) and σ (r,x) by 
using the ex post real returns on Treasury Bills. Strictly speaking, we should have 
performed these calculations by taking account of the fact that over the life-time 
of the option the maturity date of the default free bond shortens. In other words, 
the correct concept is a real gross redemption yield on a maturing basis. Thus, at 
t = 0 the variance is for a T period bond; at t = 1 the variance is for a t - 1 period 
bond, etc. etc. Since the variance of gross redemption yields tends to vary 
inversely with the term to maturity this approach would have implied that σ (r) 
was not constant. In this case equation (6) cannot be applied. 
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By using Treasury Bill rates to estimate σ (r) we are therefore overstating the 
volatility of interest rates. However, below we perform sensitivity analyses with 
respect to a(r). Happily, it turns out that the maturity guarantee price is not 
greatly affected by alternative estimates of σ (r). An alternative proxy, the ex post 
real rate on Consols was considered but again this was not strictly correct for our 
purposes and made little difference to the results. 

A further detail is that in equations (3), (4) and (6) it is assumed that bonds 
have zero coupons i.e. they are deep discount bonds. This is necessary so that the 
bonds do not generate any cash flows before the option matures. Coupons would 
have to be invested at uncertain returns and this would complicate the analysis. 
Index linked gilts have positive coupons. However, the difference between the 
gross redemption yields of actual stocks and hypothetical deep discount stocks is 
likely to be small. In any case, as has already been stated, it turns out that 
maturity guarantee prices are insensitive to even fairly large changes in gross 
redemption yields. 

Finally, we consider only the single premium case, not the more usual regular 
premium contract, to emphasize the basic principles involved. It turns out that 
the option pricing solution for a regular premium contract is the same as that 
obtained by Merton (1973) for the value of an option which pays a regular 
dividend only now the dividend takes a negative sign. The numerical solution is 
complex but involves no new theoretical principles. 

In Figures 1 and 2 we show the time paths of the real rolled-up value of the de 
Zoete index and our proxy for the real risk free interest rate. 

Figure 1. Annual real returns on the de Zoete index 
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Figure 2. Real Treasury Bill rate 1919-1979 

6. PARAMETER ESTIMATES 

The Black-Scholes option pricing formula assumes that the return to the 
reference portfolio can be decomposed into a trend, or expected mean rate of 
return plus a random component that is both serially uncorrelated and of 
constant variance. An ordinary least squares regression of the percentage change 
in x on time over different sample periods revealed the following (where t values 
are shown in parentheses and Qx is the Box-Pierce statistic which tests for 
randomness in the correlogram of residuals). 

(I) 1919-79 

(II) 1919-49 

(III) 1950-79 
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For the whole sample period and the postwar period the trend coefficient is not 
significantly different from zero, in other words the real returns on the de Zoete 
index are stationary. Moreover, the errors meet the Box-Pierce criterion for non- 
autocorrelation (the critical Q value at 95% significance level is 15.51) and pass 
the Breusch-Pagan test for heteroskedasticity. Note this is in direct contrast to 
Wilkie (1978) who found significant negative autocorrelation of about – ·3 in the 
second lag of the raw de Zoete series. Using the real value of the rolled-up index 
the significant autocorrelation in the error structure of equation I disappears; the 
value of the AR2 coefficient using data for the whole sample period is – ·1549. 

Over the period 1919-49 there is a significant downward drift or trend in the 
returns to the reference portfolio and the errors are no longer serially 
uncorrelated. 

We therefore concentrate on the whole sample period and the postwar thirty 
year period, which is still sufficiently long for the purpose of estimating realistic 
put prices for maturity guarantees. 

Table 1. Parameter estimates 

σ σ (r) ρ (r,x) σ (r,x) 

1919—79 ·257 ·064 ·2125 ·350 
1950—79 ·320 ·043 ·3305 ·455 

In Table 1 we report some summary statistics for both the rolled-up returns to 
the investment portfolio and interest rates over these two periods. In both 
periods a(r) is significantly lower than σ and the correlation between the two is 
both low and positive. The Black-Scholes formula assumes that the variance of 
returns to the investment portfolio stays constant. The observed increase from 
25·69% to 32·05% although not significant, will raise the value of the call as the 
upside risk increases and this will drag up the put price. 

Indeed, as constant volatility of returns is a crucial assumption in the Black- 
Scholes formula, we divided the whole sample into six periods (covering roughly 
ten years each) and performed a triangular F test on the data to see whether there 
were significant changes in volatility over time. In other words, we compared the 
variance of returns over the period 1919-29 with the variance of returns over the 
period 1919-39 and so on each time adding another ten years of data and testing 
the hypothesis that the two samples were drawn from a population of the same 
variance. The statistics below suggest that we could not reject the hypothesis. Of 
course, the cut-off points for each data sub-sample is quite arbitrary. Different 
sample sizes and a different analysis of time periods will lead to different results. 
Thus, in a comparison of volatility of returns in the years 1970-79 with almost 
any other decade we find a significant change occurs. Our discussion of 
immunization strategy is therefore only experimental at this stage. 
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F values for different sample periods and their appropriate critical values. 

7. THE DETERMINISTIC CASE 

We make the following assumptions: 

1. That the real value of the investment or reference portfolio today is £1. 
2. That investors choose both the time to maturity of the option (i.e. the 

period over which the maturity guarantee will run) as well as the desired real 
growth rate in the value of the guarantee. For instance, a high real rate of 
growth of, say, 3% per annum over 20 years implies an exercise or guarantee 
value of £1·822 for each £1 invested in the reference portfolio today. 

In Table 2 we present the put prices, calculated according to equations (4) and 
(3) for different annual growth rates and different number of years to maturity. 
The correct premium for a maturity guarantee is equal to the price of the put plus 
the initial investment in the reference portfolio. Thus, an investor who wishes to 
guarantee the real value of his portfolio at £2·226 or 2% p.a. in forty years must 
pay a premium today of 30·54p on top of his £1·00 initial investment in the 
reference portfolio. 

For any given T we see that the put price increases with the real rate of growth 
of the guarantee (see Figure 3). This makes intuitive sense. The larger the sum to 
be guaranteed the higher must be the premium to assure that sum. However, it 
may be argued that few investors would choose to protect their wealth at such a 

Table 2. Deterministic case 
(σ = ·257) 

(put prices in pence) 

Years 0% ½% 1% 2% 3% 
10 13·35 15·03 16·90 21·20 26·40 
20 12·15 14·73 17·71 25·55 36·08 
30 10·64 13·76 17·65 28·57 45·09 
40 9·03 12·40 16·90 30·54 90·84 
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Figure 3. Deterministic case 

high cost. Rather they would ‘insure’ their investment only to the extent that 
inflation, or possibly disastrous fund management might erode its worth in real 
terms. Realistically, we might expect investors to purchase maturity guarantees 
with a growth rate of perhaps ½% p.a. or less, at a considerably lower cost, in the 
knowledge that the value of most portfolios is likely to grow by more. (Hence we 
include the put price for a 0% rate of growth in real terms.) 

For any given sum assured the further the time to maturity the higher will be 
the price of the put-at least for short-dated options. For long-dated options the 
outcome is a priori, uncertain. This is so because the greater likelihood of a 
favourable outcome (i.e. the profitable exercise of the put) may be more than 
compensated for by the fall in the present value of the exercise price received by 
the put holder. Thus, in the first column of Table 2 the price of the put falls 
continuously from 15·03p over ten years to 12·40p over forty years. 

However, as the time to maturity lengthens so, too, does the absolute sum 
guaranteed and this has the effect of raising the put price. For instance, if the 
maturity guarantee grows at 2% p.a., the put price rises from 21·20p over ten 
years to 30·54p over forty years, and at 3% per annum from 26·40p to 90·84p. At 
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Table 3. Sensitivity analysis 
(deterministic case) 

(put prices in pence) 

σ 

r ·10 ·26 ·32 ·70 

0·02 17·70 43·91 52·58 88·26 
·0359 5·28 25·55* 32·73 62·78 
·05 1·36 75·25 21·01 46·29 

* Base case assumes 2% growth in real 
value of maturity guarantee over 20 

years. 
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rate of interest 

Figure 4. Sensitivity analysis (deterministic case) 

1% p.a. growth the higher sum guaranteed more than compensates for the 
negative effect of time on a 20 year guarantee, but the converse holds for a thirty 
and forty year guarantee. Thus ‘catastrophe’ insurance can be relatively cheap if 
taken out over long periods of time. 

In Table 3 and Figure 4 we examine the sensitivity of the Black–Scholes 
formula to changes in the variance of returns and to different interest rates. Using 
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as our base case a 20 year maturity guarantee of £1·492 (or 2% real growth), we 
re-estimate the put prices for different σ (including the postwar variance) and 
different r. For any given interest rate a rise in the variance of return will always 
raise the put price as the upside risk increases while the downside risk is 
completely hedged. For any given volatility in the stock return the put price falls 
as interest rates rise and vice-versa, reflecting the opportunity cost of the deferred 
right to sell the investment portfolio. Moreover, from the slopes of the loci in 
Figure 4 we see that put prices, unlike call prices, are relatively sensitive to 
interest rate changes, (again for long dated maturity options), particularly in the 
realistic lower end of the range. 

8. STOCHASTIC CASE 

The Black–Scholes formula assumes interest rates are known with certainty, 
but this is clearly not the case. To accommodate stochastic interest rates Merton 
(1973) has adapted the basic option pricing formula (equation 6) and the relevant 
arguments now include both the variances of interest rates and the covariance 
between these rates and the returns to the reference portfolio (see Table 4). A 
priori, we should expect that the additional riskiness introduced by these 
uncertain interest rates will reduce the hedging properties of the investment (the 
‘hedged’ portfolio no longer guarantees a fixed rate of return) and the price of the 
option will fall. The exact effect will depend on the magnitude of σ ²(r) and σ ·,r) 
relative to σ ². 

But the evidence in Table 4 suggests that it makes little difference to the put 
price if interest rates are known or not—at least on the basis of a relatively low 
level of interest rate volatility. Each entry in the table is only marginally lower 
than its deterministic counterpart in Table 2. For instance, the premium on a 
maturity guarantee of £1·822 over 30 years is £1·2857 with interest rates certain, 
and £l·2781 with interest rates uncertain. 

But just how sensitive are these estimates to changes in the variance of interest 
rates and changes in their covariance with portfolio returns? An increase in a(r) 
will automatically raise σ (r,x) unless ρ, the correlation coefficient falls. Similarly, 
an increase in ρ will raise the covariance σ (r,x) unless either σ (r) or σ falls. In the 

Table 4. Stochastic case 

σ = ·257 σ (r) = ·064 σ (r,x) = ·0035 

Real growth 
rate years 0% ½% 1% 2% 3% 

10 12·87 14·52 16·37 20·62 25·77 
20 11·66 14·19 17·17 24·85 35·28 
30 10·18 13·23 17·05 27·81 44·17 
40 8·63 11·92 16·33 29·76 89·66 
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Table 5. Sensitivity 

analysis—stochastic case 

(put prices in pence) 

ρ (x,r) 
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σ (r) ·8 ·2125 –·6 

·01 24·56 25·31 26·31 
·064 19·53 24·85 30·69 
·25 12·95 32·74 46·69 
·40 23·98 44·11 57·11 

sensitivity analysis that follows we again use as our base case a 20 year maturity 
guarantee of £1·492 and hold σ constant at ·26. 

As the correlation coefficient changes from high and positive to low and 
positive and finally negative, so too does the covariance and the price of the put 
rises. The less the covariance between the two series, the greater will be the 
potential for risk diversification and the higher the price of the put for any given 
σ (r). The effect of changes in σ (r) for a given ρ are not, however, clear cut. From 
the nature of equation (6) we see that is determined by σ ² + σ (r)–2 σ (x,r) and 
since changing σ (r) also changes σ (x,r) the total impact on and hence on the 
put price may be positive or negative. 
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9. SUMMARY AND CONCLUSIONS 

We have shown how the theory of option pricing may be effectively applied to 
the pricing of maturity guarantees. The premiums calculated are expensive, not 
least for 0% growth in real value, but this still remains the fair and efficient price 
of such an investment guarantee, irrespective of how small the eventual 
commercial market may prove to be for the contract. 

We have also demonstrated the properties of the pricing structures of these 
guarantees. Briefly these are. ceteris paribus, 

(i) for a given sum assured the longer the time to maturity the lower will be 
the cost of the guarantee, 

(ii) the larger the sum to be guaranteed the higher will be the cost of the 
guarantee, 

(iii) the more volatile the returns to the investment portfolio the higher will be 
the cost of the guarantee, 

(iv) the higher the level of interest rates the lower will be the cost of the 
guarantee, 

(v) the higher the correlation between investment stock returns and interest 
rates (where these are uncertain) the higher will be the cost of the 
guarantee. 

Again we emphasize that our calculations are only valid as long as the 
assumptions underlying equations (3), (4) and (6) hold. Certain caveats have 
already been discussed. and perhaps the most important, the correct measure of 
the volatility of returns to the investment portfolio may yet prove a stumbling 
block for both the conventional approach and the immunization strategy. 
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APPENDIX 

1. Index linked gilt prospective real 

edged stock redemption yields* 

Tr 2 p.c. 96 3·90 

Tr 2½p.c. 03 3·59 

Tr 2½ 11 3·34 

Tr 2½ 20 3·18 

* Assumes 5% inflation: Source F.T. 
17.3.84. 

2. Total final expenditure deflator: C. H. 
Feinstein (1972) and National Income 
and Expenditure. Central Statistical 
Office, 1980. 




