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Abstract

In this paper we model the transfers of value between the various generations in a

funded pension scheme (pension fund). Value-based generational accounting is used

as framework of analysis. We define a setting like in the Netherlands, where pension

benefits and contributions may depend on the funding ratio (the ratio of assets to

liabilities of the fund). Furthermore, we define explicit risk allocation rules, specifying

which stakeholders, when, and to what extent bear the risk. A pension deal may

lead to substantial transfers of wealth between young and old generations, depending

on the asset returns and the exact risk allocation scheme. Using contingent claims

valuation methods, we calculate these transfers and the distribution of value across

generations. A pension deal is recognized as a zero-sum game in value-terms, however

it is potentially a positive-sum game in welfare-terms. Pension schemes that provide

safer and smoother consumption streams are ranked higher in utility terms. A smoother

consumption stream can be achieved by allowing risk shifting over time, using benefit

indexation instruments, contribution instruments or a combination of these two type of

instruments. Our results show that intergenerational risk sharing is welfare-enhancing

compared with pure individual pension schemes. Even initially under-funded collective

funds may still provide higher utilities than the individual benchmark.
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1 Introduction

Funding decisions in pension funds in the past have been dominated by the traditional ac-

tuarial approach. The main goal of this approach is to arrive at stability in the contribution

rate and the funding ratio over time. The approach is typically grounded on rules of thumb

as to valuation and accounting issues. The actuarial approach recently has been heavily crit-

icized (see for example Exley et al. 1997, Bader and Gold 2002, Chapman et al. 2001). The

approach contrasts sharply with the worldwide trend in accounting standards towards more

transparency through market-based reporting based on fair value. The fair value approach

is based on economic principles. The application of economic principles makes possible to

restate funding issues of pension funds in terms of ‘economic value’. Economic value implies

risk-adjusted valuation of future outcomes. This paper applies the value-based approach

for pension fund issues, in particular regarding the issue of intergenerational transfers of

value.

Chapman et al. (2001) employ the value-based approach to strategic decision making

within a company pension fund. They model the fund not as a self-contained entity but

simultaneously with the company. The stakes of the various parties aggregate to 100% of

the assets of the company, including the assets of the pension scheme. Strategic decisions as

to the investments, contribution rate and indexation have no impact on the total economic

value of the combined stakes of the stakeholders. However, these decisions may well lead to

transfers of value between the stakeholders. How and to what extent will depend on rules

concerning the allocation of a funding shortage or funding surplus. Chapman et al. (2001)

investigate different allocation rules and make clear that the pension fund must be seen as a

zero-sum game in value terms. The value-based approach clarifies who gains and who loses

from changes in strategic policy variables.

We combine the value-based approach with the method of generational accounting

(Ponds 2003). Public finance has developed generational accounting for investigating in-

tergenerational distributional effects of fiscal policy (Auerbach et al. 1999). Generational

accounting is based on the intertemporal budget constraint, which requires that either the

current or the future generations pay for the government spending by taxes. Generational

accounting reveals the zero-sum feature of the intertemporal budget constraint of govern-

ment finance: what some generations receive as an increase in net-life-time income will have

to be paid by some other generations who will experience a decrease in net-life-time income.

Planned increase or decrease can be used for tax smoothing in time in order to realize a

sustainable fiscal policy.

Equally, the method of generational accounting may be of use to evaluate the policy

of pension funds covering current and future participants. Two similarities with public

finance can be discerned. Pension funds also face an intertemporal budget constraint as the
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development of the net liabilities over time has to be matched by the development of assets

over time being the sum of contributions, investment results and paid-out benefits. Secondly,

as the government uses the tax instrument to close the budget over time, adjustments in

contribution and indexation rates are the instruments of pension funds to close the balance

of assets and liabilities (funding ratio) over time.

We employ the value-based approach for a pension fund based on intergenerational risk-

sharing. This kind of risk-sharing can be found in public sector pension funds and industry

pension funds in countries like the UK, USA, Canada and the Netherlands. We present

a framework to model the transfers of value between the various generations in a pension

fund. This model builds on previous contributions in this field, such as Bader & Gold

(1992), Blake (1998), Chapman et al. (2001), Ponds (2003), and De Jong (2003). Members

of the fund pay contributions during their working life and receive defined pension benefits

after retirement. Pension benefits and contributions may depend on the funding ratio (the

ratio of assets to liabilities of the fund). We define explicit risk allocation rules, specifying

who of the stakeholders, when, and to what extent is taking part in risk-bearing. Such a

pension deal may lead to substantial transfers of wealth between young and old generations,

depending on the asset returns and the exact risk allocation scheme. The model for the

returns on assets and liabilities implies a deflator that can be used to value future cash flows

such as contributions, benefits and net asset transfers. Using contingent claims valuation

methods, we calculate the transfers and the distribution of value across generations for

alternative sets of risk-allocation. In total, we distinguish four stylized, distinct variants in

funded plans based on collective risk-bearing. The ’real life’ pension deals as performed by

pension funds can be composed of components of these stylized variants. The alternative

pension deals have no impact on the total economic value of the combined stakes of the

stakeholders, however they will lead to different outcomes with respect to the distribution

of total value amongst the stakeholders.

The value-based approach is applied also to individual plans. First of all we model

a standard defined contribution plan (DC) with a fixed contribution rate. At retirement

the capital is converted into a stream of fixed real or nominal annuities. Results may be

improved by allowing flexibility in the contribution rate and the stream of benefits (variable

annuity). We study three variants of individual plans with flexibility.

We also perform welfare analysis. Pension deals with safer and smoother consumption

streams are ranked higher in utility terms. The smoother consumption stream can be

achieved by allowing risk shifting over time via flexibility in contributions and benefits.

The results show that in utility terms a pension fund as a risk-sharing arrangement is

generally more useful than an individual pension saving program without risk-sharing.

The results indicate that intergenerational transfers are potentially useful and valuable

in welfare terms. The private market fails to provide insurance products based on inter-
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generational risk-sharing, although its usefulness has been clarified by Gordon and Varian

(1988), Merton (1983), and Shiller (1999). Indeed, a funded defined benefit scheme with

mandatory participation may be seen as an appropriate instrument for organizing intergen-

erational risk-sharing.

The recognition of the welfare aspects of risk-sharing within pension funds is important.

An analysis in terms of only economic value may easily lead to the spurious conclusion that

a pension fund is not relevant (Exley 2004). The pitfall in the argument is that a pension

fund being a zero-sum game in value terms only imply transfers between the stakeholders

where these transfers do not have any role. However, adding a welfare analysis clarifies that

intergenerational transfers between stakeholders is potentially welfare-enhancing. Indeed, a

pension fund is always a zero-sum game in value-terms, however it is potentially a positive-

sum game in welfare terms.

Under the mandatory participation and no labor mobility assumption, our analyses take

the labor supply (hours worked, retirement decision) and the wage profile as exogenously

given. This simplification helps to distinguish the effect of intergenerational risk sharing,

but it ignores the interplay of risk sharing arrangements and the labor / leisure choice. The

welfare gain or loss due to the labor / leisure choice will be a subject of future research.

This paper is organized as follows: Section 2 introduces the basic setup of the model

using individual pension arrangements. Section 3 then introduces collective pension arrange-

ments (pension funds) that allow for intergenerational risk sharing. Section 4 presents the

results of the valuations, and Section 5 concludes. The economic environment is spelled out

in the Appendix A. Appendix B sets out the two methods of valuation of pension deals, this

is first the analysis in economic value terms (deflator method) and secondly the analysis in

welfare terms (utility function).

2 Generational accounts

For simplicity, we assume each cohort consists of identical individuals. The assumptions on

the life cycle pattern of income and mortality are quite simple. Working life starts at 25

and lasts until 65, when there is mandatory retirement. To simplify the calculations, we

assume the agents die at 80.1 The individual has a flat salary path and earns 30000 per

year during his career (from age 25 to 65). Everything is in real euro’s, where it is assumed

that wage inflation is identical to price inflation. There is an annual state pension of 10000

(euro, in real terms) available after retirement. The notional pension buildup percentage

is assumed to be 2.25% per year over the pensionable salary, this is salary minus the state

1This assumption is not restrictive as long as the pension fund is big enough to diversify longevity risk

internally, or is able to annuitize the wealth for the cohort in the market using a full menu of fairly priced

indexed or equity linked annuities.
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pension income. The target annual real pension income b is determined by

b =

Z R

0
(salt − statepensiont) dt · 2.25% (1)

where t = 0 denotes age 25, and t = R denotes age 65, when the individual retires. This

gives b = 18, 000 euro. The annual real cost price contribution rate p is solved from the

following present value budget constraint:

p

Z R

0
exp(−rt)dt = b

Z T

R
exp(−rt)dt (2)

This gives p = 3, 807 euro per year (or 12.87% of pensionable salary), assuming r = 2%.

Throughout the paper, we assume that the only savings of the consumer are in the pension

plan. All the variables are in real terms, i.e. compensated for inflation.

An important tool of analysis in our paper is the value of the assets (or surplus) that

the individual generation leaves behind at the end of its lifetime. These remaining surpluses

summarize the intergenerational transfers. To see this, write the dynamics of the individual

account’s surplus as

dSt = (Pt − p)dt− (Bt − b)dt+ (Rt − r)Atdt (3)

where Pt and Bt are the actual premiums and benefits, and p and b the target premiums

and benefits; At denotes the value of the assets and Rt−r the excess return on these assets.
Working out this equation gives the remaining surplus at the end of the individual’s lifetime

ST = S0 +

Z R

0
(Pt − p)dt−

Z T

R
(Bt − b)dt+

Z T

0
(Rt − r)Atdt (4)

Assuming each generation starts out with a zero surplus, S0 = 0, the present value of the

final surplus equals2

PV (ST ) = PV

µZ R

0
(Pt − p)dt

¶
− PV

µZ T

R
(Bt − b)dt

¶
(5)

When PV (ST ) is positive, the generation will pay more contribution than they receive

benefits. A negative outcome for PV (ST ) will result when benefits received are in excess of

contributions paid.

We analyze a variety of pension arrangements. One popular individual pension arrange-

ment found in market is the conventional Defined Contribution (DC) plan. The individual

contribute a fixed premium Pt = p every year and invests this in a portfolio of assets with

real return Rt (the return generating process is specified in Appendix A). At retirement,

the accumulated asset is converted into a conventional (real or nominal) annuity, using

2Here we used that in an efficient market, the investment in any asset is a fair deal, i.e. has zero net

present value.
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the market prevailing annuity factor aRT 3. The pension benefit level is determined by the

asset value AR and the annuity factor aRT at the retirement date, i.e. Bt = ARaRT for

R < t < T .

The DC plan may be seen as the modeling of the standard product available in the

annuity market.4 A disadvantage of this strategy is that in between adjustments in the

contribution rate and the stream of benefits are not possible. This flexibility may contribute

to an improvement of the risk management process.

One variant of the conventional DC policy is the Individual Drawdown (IDD) pension

plan. In that plan, the individual contributes a fixed premium Pt = p every year and invests

this in a portfolio of assets with real return Rt. It is assumed that the asset mix remains

unchanged over the life cycle. After retirement, the individual draws down the flexible

annuity value atTAt of the assets, where

atT =

½Z T

t
exp(−r(s− t)ds

¾−1
(6)

is the annuity factor. The asset dynamics before and after retirement then are

dAt = (RtAt + p)dt, 0 < t < R

dAt = (Rt − atT )Atdt, R < t < T

The main difference with the DC plan is that in the IDD plan, the original asset mix is

maintained, whereas in the DC plan, the full capital at retirement is invested in either real

(i.e. inflation indexed) bonds or nominal bonds.

Another pension scheme is the Target Benefit scheme. Here, the aim is to provide

a fixed benefit b after retirement. The premium to be paid before retirement is flexible:

depending on the returns on the investment portfolio, a higher or lower premium is paid

every year. The premium policy is such that at age R (retirement), the capital is sufficient

to cover the fixed benefits. The capital is converted into portfolio of index-linked bonds at

retirement date. To find a reasonable premium policy, we need to define the pension liability

3The real annuity factor at the retirement date R is:

aRT =
T

R

exp(−r(s−R)ds

−1

The nominal annuity factor at the retirement date R is:

aRT =
T

R

P (R, s)ds

−1

where P (R, s) is the zero coupon bond prices at time R.
4Actually the modeled DC plan is a very good deal compared with what individuals in real life can get

from the annuity market. In many countries, this market is plagued by adverse selection problems, high

costs (administration and investment fees) and incompleteness (equity linked and index linked annuities are

not available in most countries).
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ABOt, which is the present value of future benefits, minus the yet to be paid premiums:

ABOind
t = b

Z T

R
e−r(s−t)ds− p

Z R

t
e−r(s−t)ds, 0 < t < R (7)

= b

Z T

t
e−r(s−t)ds, R < t < T (8)

The dynamics of ABOind
t can be described by

dABOind
t = r ·ABOind

t + pdt, 0 < t < R

= r ·ABOind
t − bdt, R < t < T

The surplus in the individual’s account is then the difference between assets and liabil-

ities

St = At −ABOt (9)

A premium policy that guarantees that at age R the surplus is zero can be formulated as

follows

Pt = p− atRSt, 0 < t < R (10)

The drawback of such a scheme is that it leads to potentially large fluctuations in premiums

just before retirement, when atR increases fast. A more sensible policy is to smooth the

surplus over the full remaining lifetime. We call this policy the Life Cycle (LC) policy. Of

course, the benefit after retirement can then be different from the target benefit b. The

premium and benefit policy for this scheme is

Pt = p− atTSt, 0 < t < R

Bt = b+ atTSt, R < t < T

All these policies can be seen as particular versions of more general linear premium and

benefit strategies of the form

Pt = p− αSt (11)

Bt = b+ βSt (12)

where Pt and Bt are the actual premiums and benefits, and p and b are the target values

as defined before. The policy parameters α and β characterize the type of pension deal.

Substituting the expressions for St, At and ABOt, the dynamics of the surplus can be

written simply as

dSt = (Rt − r)Atdt+ (r − α)Stdt, 0 < t < R (13)

= (Rt − r)Atdt+ (r − β)Stdt, R < t < T (14)
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where Rt is the real return on the asset portfolio and r is the real interest rate.5

Figure 1 displays the relationship between the relevant variables with the actual surplus

at the end of each period. A variable defined contribution scheme can be modeled as fixed

premium (α = 0) and a flexible benefit (β > 0); the case β = atT corresponds to the

individual cohort IDD policy, where Bt = atTAt. A defined benefit scheme, on the other

hand, is characterized by fixed benefits (α > 0) and flexible premiums (β = 0). The Target

Benefit policy can be interpreted as the individual counterpart of a typical DB scheme. The

TB plan has adjustment parameter α = atR, and the cohort account at the retirement date

R will always be exactly sufficient to pay out the riskless benefit b after retirement(β = 0).

3 Steady state pension fund and hybrid pension schemes

In the previous section, the assets and surplus were defined for a (notional) account per

cohort. In practice, policy rules of pension funds are not based on the surplus or deficits

in the individual cohort’s accounts, but rather in the aggregate surplus of the fund. In this

section, we will model the steady state behavior of an aggregate pension fund.

For the scheme where benefits are fixed but premiums adjustable, the situation is simple.

The surplus in the fund is defined as

St = At −ABOt (15)

where ABOt denotes collective the accrued benefit obligations, which equal the present

value of accrued benefits summed over all cohorts (ages) u. In the stationary case6 with

fixed target premium and benefits, ABOt is constant over time and equals

ABO∗ =
Z T

0
ABOind

t dt (16)

where ABOind
t is the individual cohort liability given in equation (7).

3.1 Linear policies

The collective counterpart of the Target Benefit plan is the traditional Defined Benefit plan,

where the benefits are fixed at Bt = b, whereas the premium policy is flexible and can be

formulated as

Pt = p− αSt (17)

5To get stability over time (i.e., non-explosive surplus values), we need to assume that either α > r or

β > r.
6 In a stationary scheme, the inflow and outflow of member guarantee a stable composition of members as

to age and sex. In case of an aging scheme, one could take the (expected) future ageing into account when

setting the cost-price contribution.
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with r < α < 1. A natural choice for the parameter α is the inverse of the average "age" of

the fund, i.e. the inverse of the average duration of the liabilities, 1/D, (≈ 1
20). This makes

the results most comparable to the individual Target Benefit case.

The collective counterpart of the Defined Contribution scheme (α = 0) is slightly more

involved. The fund starts out at t = 0 in a stationary situation with surplus

S0 = A0 −ABO0 (18)

with ABO0 = ABO∗. The pension fund has the possibility to adjust the liabilities (and

hence future benefits) if the financial situation of the funds calls for that. This is modeled

in the form of an additional indexation it. Then every period, the (real) ABO is adjusted

with the additional indexation

dABOt = itABOtdt (19)

The risk in the funding process is borne by all members with accrued benefits by a suitable

adjustment in the offered indexation. The additional indexation rate is needed to close

(partly) the balance of the fund at the end of the period. The additional indexation rate it

can be solved from the expression below:

it = β

µ
St

ABOt

¶
(20)

Note that the additional indexation rate applies only to the accrued benefits.

The dynamics of the surplus in the collective schemes can be described by:

dSt = [(Pt − p)− (Bt − b) +RtAt − (r + it)ABOt]dt (21)

This equation is very intuitive: the change in the fund’s surplus is determined by the

difference between expected and actual cash flows, the asset returns, minus the increase

in the accrued benefits due to the additional indexation and the cost of capital (the real

interest rate).

3.2 Hybrid schemes

Now we turn to two hybrid variants as these variants are composed of components of the

collective DB scheme and the collective DC scheme.

The first variant offers a nominal guarantee on the benefits. Of course, this nominal

guarantee is costly and is financed by limiting the indexation when surpluses are high.

Figure 2 shows the main characteristics of such a plan being named a Collective Hybrid

Defined Benefit (CHDB). It is assumed here that the maximum indexation is equal to two

times the actual inflation rate. When the funding residual falls below the lower bound or

exceeds the upper bound, then current workers absorb this part of the residual.
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The risk allocation in the CHDB plan is according to the set of rules below. The

indexation of the benefits form the initial buffer for shocks in the surplus. In that sense,

this deal is comparable to the collective DC system. However, the actual indexation is

bounded between zero and twice the actual inflation πt, hence the additional indexation is

between −πt and πt. The premiums absorb the more extreme shocks (both positive and

negative).

[1] when
St

ABOt
< −πt then

it = −πt
Pt = p− St − πtABOt

[2] when− πt ≤ St
ABOt

≤ πt then

it =
St

ABOt

Pt = p

[3] when
St

ABOt
> πt then

it = πt

Pt = p− St + πtABOt

Alternatively, the premiums can be the initial buffer, within limits, and the extreme risks can

be allocated to current and future benefits, providing a more stable stream of contributions.

Suppose the workers accept a maximum contribution equal to 2p. They buy this protection

by giving up the possibility that in good times the contribution rate may fall below zero.

When the surplus falls below the lower bound or exceeds the upper bound, then current

retirees absorb this part of the surplus by accepting indexation risk. The risk allocation is

then according to the following set of rules:

[1] when St < −p then
it =

St + p

ABOt

Pt = 2p

[2] when− p ≤ St ≤ p then

it = 0

Pt = p− St

[3] when St > p then

it =
St − p

ABOt

Pt = 0

9



Notice that in these hybrid schemes there is no smoothing of either premiums or additional

indexation, i.e. the parameters α and β are implicitly put equal to 1. A more general

structure where the premiums absorb the extreme shocks

[1] when β
St

ABOt
< −πt then

it = −πt
Pt = p− α(St + πtABOt/β)

[2] when− πt ≤ β
St

ABOt
≤ πt then

it = β
St

ABOt

Pt = p

[3] when β
St

ABOt
> πt then

it = πt

Pt = p− α(St − πtABOt/β)

A similar adjustment can be made to the second structure:

[1] when αSt < −p then
it = β

St + p/α

ABOt

Pt = 2p

[2] when− p ≤ αSt ≤ p then

it = 0

Pt = p− αSt

[3] when αSt > p then

it = β
St − p/α

ABOt

Pt = 0

Again, a natural choice for the smoothing parameters α and β seems the inverse of the

average duration of the liabilities (1/D).

Table 1 summarizes the individual and collective pension deals that we analyze in the

remainder of the paper.

10



4 Results

In this section, we make cross-deal comparisons in terms of present values and expected

utilities. We distinguish two financial market settings to which the pension fund have

access. In section 4.1, the pension fund invests the assets into stocks and Index Linked

Bonds (which realizes the risk-free return in the portfolio). In section 4.2, we will replace

the ILB with nominal bonds.

Recall that in the collective pension deals, the conditional contribution and indexation

rules are based on the surplus of the collective account. Within the collective setting, we

also run a generational accounting, which tracks the asset development of an individual or

cohort within the collective account. The individual accounts are only artificial accounts

however, because the contribution and indexation rules are defined by the collective effects.

4.1 Valuation of the pension deals with ILB and equity

Table 3 and 4 show the valuation of pension deals outlined before, including four collective

plans and four individual plans. The top, middle and bottom panels of Table 3 display

the results of the collective plans when the fund is initially fully funded, over-funded and

under-funded respectively. The results of the individual plans are listed in Table 4. The

results are expressed in real terms, as multiples of annual salary, which is easier to read and

to interpret. For each deal, we assume three different asset mixes: 100% ILB; 50% ILB and

50% Equity; and 100% Equity7.

Collective deals

Table 3 shows a number of interesting characteristics of the pension deals. First, the

table provides an estimate of the present value of the actual contributions made to the fund

and the actual benefits received from the fund over the lifetime. In several of the collective

deals the value of the actual contributions may deviate from the cost-price contribution, and

the actual benefits may differ from the targeted level of real benefits, which corresponds to

the nominal case with the unconditional indexation. The table further provides in column

(7) the present value of the net transfer to the individual member, that is the present value

of actual benefits minus the present value of actual contributions. This number can also

7This paper pays no attention to an age-dependent asset mix for the individual plans. This strategy,

known in the literature as life-cycle investment strategy, prescribes a risky investment mix when the young

individual starts saving for retirement and the risk is decreased gradually when the individual is getting

older. The risk-exposure is at a minimum during the retirement period. For a fair comparison of individual

and collective plans, we strife for a ’level playing field’ which implies the exclusion of the shrinking horizon

aspect of individual plans. However, the individual DC plan, deal 1, actually will differ with respect to the

mix before and after retirement as the built-up capital during the working period is converted at retirement

in a fixed annuity offered by the market. The implied rate of return then is the rate of interest the insurance

company is using when converting pension capital into a stream of fixed annuities.
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be seen as the net present value (for the individual) of joining the pension deal. To gain

more insight in the potential size of the transfer, we split the net transfer into positive

and negative parts, that is, max(transfer, 0) and min(transfer,0), which are the value of

a call and a put option respectively. In most of the cases, the value of the option is very

large, indicating a substantial amount of transfers. The call and put option can be regarded

as contracts written between current generation and all other generations. The current

generation holds a call option from the other generations, and writes a put option to the

other generations. When the value of call equals the value of put, the pension deal is a fair

deal in value terms ex ante.

Let’s first focus on the fully funded situation (i.e. funding rate is 100%). For the

collective deals CDB and CDC, the present values of the net transfers (and also the call

and put value) are exactly zero for the 100% Index Linked Bond investment case. This

is no surprise, as with this investment strategy the cost price contribution is exactly the

right price to guarantee the benefits. Also, since the growth of the assets exactly tracks the

liabilities (inflation), there is no real risk. With 50% or 100% equity, the picture changes.

First, the call and put values indicate the size of potential intergenerational transfers. These

transfers will be higher the more risk is taken in the investment policy. Second, the call

and put values are higher in the CDB case than in the CDC case. So fixing the benefit

during retirement calls for large redistribution of value between the generations. Third,

let’s take a look at the size and distribution of the actual contributions. Figure 3 (b) plots

the quantiles of the normalized actual contributions of three collective plans (CDB, CHDB

and CHDC) with adjustable contributions. The distribution of CDB actual contribution is

skewed, however, the present values of the actual contribution in CDB equals the cost-price

contribution. This is due to the equity premium: due to the high average return on equity,

contribution reductions are more frequent (and also larger) than contribution increases.

However, this does not add value to the pension deal: the lower contributions occur in

scenarios where the equity returns are high, but the deflators in such scenarios are low.

The analysis of the two hybrid deals (CHDB and CHDC) is more complex. Recall that

in CHDB, the additional benefits are adjusted up to limits, and the additional contributions

pick up the extreme (high and low) returns. In CHDC it is the other way around: contri-

butions can be adjusted up to limits, and the benefits pick up the extremes. Perhaps not

surprisingly, the dispersion of actual contributions in CHDB is still large (Figure 3(b)). One

special observation is that the 80% and 50% quantiles of the actual contributions in CHDB

coincide with each other. It means that most of the funding deficits can be absorbed by

first reducing indexations (to zero), and therefore additional contributions are not required

in many cases.

In present value terms, the limits on indexation and contributions now have a substan-

tial impact. For CHDB, having larger portion of the assets in equity leads to lower present
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value of the contributions. However, the value of the actual benefits (that pick up the bad

returns!) is also lower. The net transfer is relatively small, however. In many ways, CHDC

is the mirror image of CHDB: actual contributions are higher with more equity, but the

value of the benefits is correspondingly higher too. Again, the net present value of the deal

is relatively small. The sizes of the potential transfers of the two hybrid plans (indicated

by calls and puts) lie in between that of the cases CDB and CDC.

The cases with initial over- and underfunded deserve some attention. We assume that

the fund has a surplus at the collective level. However, it is hard to attribute this surplus to

the individual generations and therefore we start off the account for an individual generation

at zero. With initial overfunding, then, the average premiums will typically be below the

target premiums (in the DB scheme), and the benefits will be above the target benefits (in

the collective DC scheme), or both (in the hybrid schemes). This is translated into larger

positive transfers and smaller negative transfers to this generation. Hence, the value of the

"call" is larger than in the fully funded case and the value of the "put" is smaller. For the

initially underfunded case the result is exactly the opposite. Notice that this calculation

ignores the transfer of the initial surplus, on which we assume the generation has no direct

claim. The impact of the initial fund surplus is only indirect via lower premiums and higher

benefits.

Individual deals

For the four individual deals (DC, TB, IDD and LC), in Table 4, the actual contribu-

tions and benefits are always equal. That is, what an individual can draw out of the pot

is what he has saved into the pot. Furthermore, there is no remaining asset in the individ-

ual account, hence no intergenerational transfer taking place. Figure 3 (a) compares the

level and distribution of the actual contributions of TB, LC and the collective counterpart

CDB, where in the contributions are adjustable. One distinct feature of TB is that the

actual contributions are extremely dispersed before the retirement, because an individual

has limited time period to smooth out funding shocks. One year before the retirement,

in our discrete model, the annuity factor increases quickly up to one. The full amount of

the funding surplus must be absorbed at once. The LC plan provides much less dispersed

actual contributions, because the individual can smooth out funding surplus in the whole

life time.

Figure 4 compares the level and distribution of the actual benefits of IDD (LC) and

their collective counterpart CDC (CHDC), where in benefits vary depending on asset levels.

Three observations are clear: The conventional DC benefit fully depends on the asset value

at retirement date, while the IDD and LC benefits have the potential of growth. IDD and

CDC provide very similar benefit profiles, while LC and CHDC provide very similar benefit

profiles; The probability mass of the benefit distributions are higher than b, but the present

value of the actual benefits all equals the targeted value. This is because the deflators
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weight the low-return states much higher than the states of high returns.

4.2 Valuation of the pension deals with nominal bonds and equity

In a market setting where ILB is not available, investing in nominal bonds is an obvious

alternative. Inflation risks are not perfectly hedged by this portfolio. But replacing ILB with

nominal bonds in the asset mix does not change the overall picture of the above stories. To

approximate the returns on an actively managed bond portfolio, which may include various

coupon-bonds with different term-to-maturity and different coupon rates, we use the return

process of a zero-coupon bond, with term-to-maturity equals the (modified) duration of the

bond portfolio. Here we assume that the duration of the bond portfolio is 7 years. The

results8 are very comparable with the results shown in Table 3. Since there is no risk-free

asset in this case, the calls and puts are nonzero for 100% nominal bonds investment in the

collective deals, although they are relatively small comparing with the more risky asset of

equities. The intuitions from section 4.1 hold.

4.3 Welfare analysis

This section compares the pension deals in utility terms, with special attention to the order

of preferences regarding the different deals and different asset mix from a newly-entry-

cohort’s point of view. The specification of the utility functions are given in Appendix

B. The results presented in the paper are calculated based on CARA utility function9.

The bar charts of the certainty equivalent consumption levels are shown in Figure 5 (left:

ILB/Equity; right: Nominal Bond/Equity) for different value of risk aversion. For a given

value of risk aversion parameter, the deals that are able to provide smoother and higher

level of consumption streams are ranked higher in the bar chart.

First we look at the individual pension deals. As we have noted before, the DC plan may

be seen as the standard product available in the annuity market: saving up till retirement

and then converting the capital into a stream of fixed real or nominal annuities. We use

this conventional DC plan as a benchmark for the cross-deal comparison. The three other

individual plans allow for flexibility in contributions and benefits with the aim to improve

the results. Two observations are clear. First, allowing flexibility indeed may improve

the outcome. The IDD and the LC plans provides higher utility than the standard DC

plan. The best result is achieved with the LC plan. This is due to the fact that LC plan

smooths funding shocks out over a long period. The TB plan ranks the lowest, primarily

because it leads to potentially large fluctuations in contributions just before retirement.

8Results are available upon request.
9CARA utility function can accommodate the possible negative consumptions, which happens in TB plan.

For other deals, the certainty equivalent consumption calculated using CARA and CRRA utility function,

are very much the same. The results are available upon request.
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The second observation is that holding 100% nominal bonds is preferred over holding only

ILB. This result is due to two effects: notice that when nominal bonds are in the portfolio,

the fluctuations in the consumption stream is increased, hence the utility will be lower;

on the other hand, the average level of the consumption stream is increased due to the

risk premium in the nominal bonds, hence the utility will be increased. The second effect

dominates, given our current set of model specifications.

Let’s then look at the collective deals. Several interesting things are observed. In many

cases the size of potential intergenerational transfers is large, especially for portfolio with

100% equities. However what seems interesting is that, the potential significant transfer

does not necessarily decrease the expected utility level. In most cases (expect for CDC with

A=8), the consumer prefers a high equity stake (how much depends on his risk aversion).

This is the effect of the high equity premium: although the equity premium doesn’t add

anything in market value terms, in utility terms, equity investments seem to be a good deal.

From the comparison between CDB and CDC, it is clear that CDB is preferred over

CDC for most asset mixes and risk aversion profiles. Remember that pension fund can

shift risk over time and absorb funding shocks gradually, hence it smooths consumptions

greatly. In CDB, contributions are greatly smoothed and pension benefits are fully indexed.

Furthermore, the contributions are more often reduced rather than increased due to the risk

premiums. In CDC, real contributions are fixed, benefits are gradually adjusted. Therefore,

the (relatively long) working period consumptions are higher in CDB on average; the (rel-

atively short) retirement period consumptions are higher in CDC. Due to the discounting

effect in the utility calculation, where utilities from the near future are weighted more than

the utilities from the far future, CDB gives higher utility than CDC.

Next, the two collective hybrid plans (CHDB and CHDC) show additional interesting

points. First, in most cases, the hybrid collective deals provides higher utilities over the

benchmark (DC), how much depending on degrees of risk aversion and asset allocation.

Other DC variants like IDD and LC come close to the collective schemes, however they

are hard to implement. This result shows the advantage of collective risk sharing of a

pension fund over the individual schemes. Second, the hybrid DB is preferred over the pure

CDB; the hybrid DC is preferred over the pure CDC, which shows the advantage of using

both risk absorbing instruments. Third, CHDB provides the highest utility in all cross-

deal comparisons. The reason can be found from Figure 3 (b): Both hybrid deals utilize

two risk absorbing instruments. When the indexation rule is first exercised as in CHDB,

a large part of funding deficits are absorbed by cutting indexations, leaving contributions

unchanged for most of the times (especially during bad years with low returns!). Therefore

the 80% and 50% quantiles of the actual contributions of CHDB overlap. The unabsorbed

funding surpluses leads to lower contribution and benefit than CHDC (Figure 3(c)). In

CHDC, the contribution rule is exercised first. The unabsorbed funding surpluses push
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the benefits upwards (higher than CHDB benefits), and hence require higher contributions.

CHDB leads to higher working period consumption, and a relatively lower retirement period

consumption. Due to the discounting effect in the utility calculations, CHDB gives higher

utilities level.

Finally, let’s look at the initially over-funded and under-funded situations for the col-

lective deals. The present values of contributions, benefits and transfers are summarized in

Table 3. Clearly, a larger scale of intergenerational transfers take place in these situations.

A new-entry cohort joining an over-funded pension fund will definitely benefit from the

initial funding surplus. The older generations transfers wealth to this current young. A

new-entry cohort joining an under-funded fund will obviously share the funding deficits, by

transfer wealth to older generations. Figure 6 (right panel) shows that a new cohort joining

an under-funded collective scheme is not necessarily worse-off compared with the alterna-

tives of individual DC and IDD plans, especially for risk averse investors. Within certain

range of the funding ratio, it is possible for well-structured collective pension schemes to

absorb funding deficits by intergenerational risk sharing and meanwhile enhance the welfare

for her participants.

How does the risk premium affect the utility outcome? Figure 7 show some additional

results with risk premiums lowered to half of the default values ([λE = 0.1, λπ = −0.1, λu =
−0.1] ). In present value terms, the results are exactly the same as in Table 3, since the
level of risk premiums has no impact on the present values. From Figure 7 we see that the

levels of CEC are lowered due to the lower risk premiums, but the order is not changed

comparing to the default setup.

Another remark is on the smoothing parameters (α, β) implemented by the collective

pension deals. We also observed the results when using the maximum smoothing parameters

(α = r, β = r), the CEC outcomes are lower than the cases with (α = 1/D, β = 1/D). It

means that shifting risk into infinite future is not optimal.

5 Conclusion

In this paper, we have employed the method of value-based generational accounting as a

formal framework to model the transfers of value between generations in a pension fund

based on intergenerational risk-sharing. The institutional setting of public sector pension

funds or industry pension funds based on intergenerational risk-sharing is used, where pen-

sion benefits and contributions may depend on the funding ratio (the ratio of assets to

liabilities of the fund). Explicit risk allocation rules have been defined, specifying who of

the stakeholders, when, and to what extent is taking part in risk-bearing. Using contingent

claims valuation methods (deflators), we have calculated these transfers and the distribution

of value across generations for alternative sets of risk-allocation. The alternative pension
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deals have no impact on the total economic value of the combined stakes of the stakeholders,

however they will imply different distribution of the value amongst the stakeholders. Apart

from risk allocation rules, choices with respect to the asset mix also will have impact on the

value distribution. An investment strategy with 100% index linked bond guarantee a full

match between the assets and the value of indexed liabilities. No transfers of value between

generations will occur. Any other asset allocation will lead to substantial transfers, where

the risk allocation rules determine who, when and to what extent is bearing the risk.

Utility analysis is added to the valuation framework with the aim to highlight the welfare

aspect of intergenerational risk-sharing within the construct of a pension fund. We have

evaluated generational risk-sharing for alternative settings with respect to risk-allocation

and to the asset mix. Deals which rely on risk absorption by a combination of adjustments

in both indexation and contribution instruments are preferred over deals which rely on risk

absorption by only one of these two instruments.

Furthermore we make clear intergenerational risk sharing within collective plans is

welfare-enhancing compared with a standard defined contribution plan (DC). This standard

DC plan is designed as saving a fixed contribution rate up till retirement and then converting

the acquired capital into a stream of fixed benefits (real or nominal annuities). The collective

schemes are superior to this standard DC product offered by the market. The results of the

standard DC plan may be improved by allowing for flexibility in contributions and benefits.

Ideal DC variants like the Life Cycle variant will come close to collective schemes, however

they are hard to implement because of problems in the annuity market.

Even initially under-funded collective funds may still provide higher utilities than the

individual benchmark. It means that young participants joining an under-funded collective

scheme are not necessarily worse-off. Within certain range, it is possible for well-structured

collective pension schemes to absorb funding risks by intergenerational risk sharing and

meanwhile enhance the welfare for her participants. Hence the results indicate that inter-

generational transfers are potentially useful and valuable in welfare terms. Indeed, a pension

fund may be a zero-sum game in value-terms, however it is potentially a positive-sum game

in welfare-terms.

The individual makes a trade-off between the level and the degree of riskiness of the

consumption stream over the life time. The results suggest that individuals generally prefer

risk-taking above a riskless position in index-linked bonds. It turns out that the increase

in utility because of higher consumption level over the life cycle more than outweigh the

decrease in utility because of extra risk. The consumer prefers a positive equity stake (how

much depends on his risk aversion): although the equity premium doesn’t add anything in

market value terms, in utility terms, equity investments seem to be a good deal.

17



A Economic and Financial Risk factors

In this section we describe the economic environment and model the returns on investment

assets and the evolution of the liabilities. We adopt the structure of the economy in Brennan

and Xia (2002). Their model has four underlying risk factors: stock returns, expected

inflation, unexpected inflation, and real interest rate shocks. For simplicity, we assume for

now that real interest rates are non-stochastic. Real stock (equity) prices follow a geometric

Brownian motion with drift:

dEt/Et = µEdt+ σEdZE,t (22)

The real Sharpe ratio of the investment portfolio equals

λE =
µE − r

σE
(23)

Inflation is modeled as the sum of expected inflation πet and an independent unexpected

inflation shock. Expected inflation follows a mean reverting process

dπet = a(π̄ − πet )dt+ σπdZπ,t (24)

The price level changes according to

dΠt/Πt = πetdt+ σudZu,t (25)

where the last term is the unexpected inflation. The corresponding Brownian motions are

summarized in
h
ZE,t Zπ,t Zu,t

i
with correlation matrix

ρ ≡
h
1, ρE,π, 0; ρE,π, 1, 0; 0, 0, 1

i
. (26)

The solution for the price level is

Πt = Π0 exp

½Z t

0
πesds−

1

2
σ2ut+

Z t

0
σudZu,s

¾
(27)

where Z t

0
πesds = π(t−B(t)) +B(t)πe0 + σπ

Z t

0
B(s)dZπ,s (28)

with B(t) = 1
a [1− e−at].

The default investment portfolios are a mix of equity and index linked bonds, with

portfolio weight w for equities. The real value dynamics of this asset portfolio are given by

dAt/At = [r + wσEλE ]dt+ wσEdZt (29)

In shorthand, we will sometimes denote the real asset price dynamics as dAt = RtAt, where

Rt is the right hand side of equation (29). Both the expected real return and the volatility

increase linearly with the fraction w invested in equities.
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As an alternative investment, we also consider portfolios of equities and nominal bonds.

The time t price for a nominal bond with term-to-maturity τ is given by

Pt(τ) = exp {A(τ)−B(τ)πet} (30)

where A(τ) = B(τ)π − (π + r − σuλu)τ +
1
2σ
2
π

R τ
0 B2(s)ds. The real return on the nominal

bonds are given by

dPt(τ)/Pt(τ) = [r −B(τ)σπλπ − σuλu]−B(τ)σπdZπ − σudZu (31)

The return on portfolio’s of nominal bonds and equities follows the same logic as before

dAt/At = [r +wσEλE + (1− w)(−B(τ)σπλπ − σuλu)]dt

+ wσEdZt − (1− w)B(τ)σπdZπ − (1− w)σudZu (32)

Table 2 shows the default values for the model parameters to be used in the calculations.

The parameters are partly based on estimates reported in Brennan and Xia (2002), but some

values are superseded to numbers of our own preference. For example, we set the average

inflation at 2%, in line with the informal ECB target for the euro area. We also assume the

real interest rate is constant and equals 2%. Finally, the expected real return on equity is

assumed to be 6%, implying an equity premium of 4%, which is in line with the long run

estimates in Fama and French (2002).

B Valuation of the pension deals

Important step in the analysis of the pension deals is the valuation exercise. We make use

of value analysis and welfare analysis (utility).

Value analysis

We look at all the cash flows generated by the pension deals and value these using the

deflator method. This assumes all the risks are tradable. For an individual member this

may be difficult once he stepped into a pension contract, but a market valuation is useful

ex-ante, when deciding which pension offer to accept, or when transferring pensions from

one fund to another. From the point of view of the fund member, the value of the pension

deal is the value of the actual benefits minus the premiums. For a member with retirement

date R and life expectancy T , this can be modeled as

PV = E
·
−
Z R

0
MtPtdt+

Z T

R
MtBtdt

¸
(33)

where Pt andBt are the actual premiums paid and benefits received. The stochastic discount

factorMt is the deflator for (real) risky cash flows, which in our model evolves according to

dMt/Mt = −rdt− κEdZt − κπdZπ,t − κudZu,t (34)
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where κt ≡ [κE , κπ, κu]0 = ρ−1λ and λ is the vector of real market prices of risk.

Welfare analysis

For the welfare analysis, utility is defined as the expectation of the discounted sum of

the utility of consumption in every period. Consumption before retirement equals labor

income minus pension contributions, ct = Yt−Pt, and after retirement consumption equals

benefits plus the fixed state pension, ct = bstatepension + Bt. Since people prefer smoother

consumption patterns, for a given average level of consumption, the larger the volatility of

the consumption stream, the lower the utility is. Formally, the utility function takes the

form:

U = E0

·Z T

0
exp(−rt)u(ct)dt

¸
(35)

The utility function is either CRRA, which is the usual choice in this literature and takes

the form

u(ct) = c
(1−γ)
t /(1− γ) (36)

or CARA with absolute risk aversion parameter A with10:

u(ct) = − exp(−Act). (37)

For ease of comparison, we translate the utility levels into certainty equivalent consumption

levels (cCE), designed to be constant over time. The cCE can be easily backed out from the

following equality

U =

Z T

0
exp(−rt)u(cCE)dt (38)

10When consumption streams remain positive in all the scenarios, the CRRA utility function becomes

applicable. If there are scenario’s with negative consumption, only CARA utility can be applied.
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Table 1: Pension deals
Deal α β name Code

1 0 aRT Defined Contribution DC

2 0 atT Individual Drawdown IDD

3 atR 0 Target Benefit TB

4 atT atT Life Cycle LC

5 1/D 0 Collective Defined Benefit CDB

6 0 1/D Collective Defined Contribution CDC

7 1/D 1/D Collective Defined Benefit (hybrid) CHDB

8 1/D 1/D Collective Defined Contribution (hybrid) CHDC

Table 2: Default parameters for the stochastic models

parameter value

µ 0.06

r 0.02

π̄ 0.02

a 0.2

σ 0.20

σπ 0.01

σu 0.01

λπ -0.2

λu -0.2

ρEπ -0.05
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Table 3: Valuation of intergenerational transfers in terms of gross salary of 30000 euro (the

cost-price contribution is 3.53)

Collective Deals
Equity act. Contrib act. Benefit pos. transfer neg. transfer net transfer

funding Ratio as % ( 3 ) ( 4 ) ( 5 ) ( 6 ) ( 7 ) =( 5 ) - ( 6 )
100% CDB 0% 3.53 3.53 0.00 0.00 0.00

50% 3.53 3.53 0.65 0.65 0.00
100% 3.53 3.53 1.38 1.38 -0.01

CDC 0% 3.53 3.53 0.00 0.00 0.00
50% 3.53 3.53 0.43 0.43 0.00
100% 3.53 3.54 0.85 0.85 0.00

CHDB 0% 3.44 3.52 0.01 0.08 -0.07
50% 3.40 3.46 0.51 0.57 -0.06
100% 3.19 3.21 1.13 1.16 -0.03

CHDC 0% 3.53 3.53 0.00 0.00 0.00
50% 3.70 3.81 0.59 0.69 -0.11
100% 4.19 4.23 1.16 1.20 -0.03

funding Ratio
110% CDB 0% 3.10 3.53 0.43 0.00 0.43

50% 3.10 3.53 0.89 0.47 0.43
100% 3.10 3.53 1.62 1.19 0.43

CDC 0% 3.53 3.80 0.27 0.00 0.27
50% 3.53 3.80 0.60 0.33 0.27
100% 3.53 3.81 1.05 0.77 0.28

CHDB 0% 3.37 3.75 0.38 0.00 0.38
50% 3.22 3.62 0.79 0.41 0.38
100% 2.92 3.31 1.40 1.02 0.39

CHDC 0% 3.10 3.53 0.43 0.00 0.43
50% 3.37 3.91 0.95 0.52 0.43
100% 3.98 4.40 1.43 0.99 0.44

funding Ratio
90% CDB 0% 3.96 3.53 0.00 0.43 -0.43

50% 3.96 3.53 0.45 0.88 -0.43
100% 3.97 3.53 1.13 1.59 -0.45

CDC 0% 3.53 3.26 0.00 0.27 -0.27
50% 3.53 3.25 0.29 0.56 -0.27
100% 3.53 3.25 0.67 0.95 -0.29

CHDB 0% 3.53 3.29 0.00 0.25 -0.25
50% 3.58 3.29 0.42 0.67 -0.25
100% 3.47 3.10 1.02 1.29 -0.27

CHDC 0% 3.96 3.53 0.00 0.43 -0.43
50% 4.07 3.73 0.37 0.81 -0.43
100% 4.43 4.06 0.89 1.34 -0.45

Table 4: Valuation of individual deals in terms of gross salary

Individual Deals
Equity act. Contrib act. Benefit

DC 0% 3.53 3.53
50% 3.53 3.53
100% 3.53 3.53

TB 0% 3.53 3.53
50% 3.53 3.53
100% 3.52 3.53

IDD 0% 3.53 3.53
50% 3.53 3.53
100% 3.53 3.54

LC 0% 3.53 3.53
50% 3.53 3.53
100% 3.53 3.53
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Figure 1: Linear premium policies
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Figure 3: Quantile plot of the normalized actual contribution (ILB / Equity)
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Figure 5: Certainty equivalent consumptions, when funding ratio is 100%
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Figure 6: Certainty equivalent consumptions, when the initial funding ratio is 110% (left

panel) and 90% (right panel) respectively
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Figure 7: Certainty equivalent consumptions, in an economy with relatively lower risk

premiums [λE, λπ, λu] = [0.1,−0.1,−0.1] (for funding ratio of 100%)

.
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