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Summary

This paper is educational. There has been considerable development of statistical
techniques for predicting claim payments over recent years, which has yet to be
assimilated by the profession and put into practice by practitioners.

We want to spread the knowledge of these techniques, to dispel some of the mystique,
and to give some examples which demonstrate how they work in practice. These
techniques do not replace existing methodologies, but serve to enrich the actuary's tool
box.

So that readers can form a view of the success of existing methods in the past we
include a review of the variance of the actual out-turn from the reserves of some UK
insurance companies over the past ten or so years, to which we add some thoughts on
the factors which may have contributed to the variances.

We would like to encourage a healthy scepticism of "black box" techniques and some
of the pitfalls for the unwary are presented as a warning against using them without an
understanding of the limitations. For example we believe that the use of the term
'Confidence intervals' is to be discouraged since we think it conveys a false impression
of the modelling process, which applies to past data. The circumstances that will apply
in the future can not be known at the moment, so the model is emphatically not a
crystal ball.

A bibliography is included for the reader who has been encouraged to pursue the
subject further.

Terms of Reference

e (Briefly) identify areas of application for the claim reserve variance

¢ Review past reserve variance by company and class using DT] Returns

¢ Review sclected Statistical Reserving Methods

e Compare Methods using real life historic data sets covering medium and long tail
business.

e Health warning! Why methods can fail, with illustrations.

e Provide selected bibliography for further reading evaStatistical Methods

The views expressed in this paper represent the consensus of the members of the

working party in their personal capacity and do not necessarily reflect the views
of their employers or every individual.
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1. Introduction
or

//// I3 / ﬁ /“‘,. /)(7/] e, /..:7

The motivation for this paper is a desire to educate the profession. A number of
statistical techniques have developed over recent years that purport to assist in
determining claim reserves, and we want to bring these to the attention of a wider
audience.

These techniques have slowly been gaining in popularity in recent years. This is mainly
due to the increasing speed and low cost with which microcomputers can handie the
heavy computational load necessary to carry out the calculations.

However, the mathematics is heavy, and this factor alone is enough to put off many
practitioners. We believe that this should not be seen as an obstacle. The paper aims to
pull together the underlying principles to show the factors that these methods have in
common and, by comparing and contrasting their results, to bring out their particular
features.

We hope this paper will give readers a better understanding of how these techniques
work in practice, and give sufficient explanation of their strengths and limitations so
that they may judge when their use may be appropriate.

The title of ‘Claim Variance' has been used somewhat liberally. The paper is concerned
with the difference between actual out-turn of claims and the predictions used to
decide upon reserves before the claims have been paid. The main thrust of the paper
looks at statistical methods which provide a measure of the variance of the estimate
made for the claim reserve. The accountant's use of variance, in the sense of
"difference from expected”, is employed in consideration of the insurance industry's
track record in the field of claim reserving. Section 2 deals with a review of DTI
Returns over the past ten years or so. There is some suspicion that companies may

manipulate their reserves, and one or two popular theories of systematic bias have been
tested.

Section 3 introduces the subject of 'stochastic modelling’. A scientific approach to
statistical claim reserving, in the form of a formal modelling structure and the use of
the statistical diagnostics, is established. This section provides a checklist of essential
statistics for the modeller.

Section 4 briefly considers the value of the claim variance in terms of how it can be
used and applied.
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Section 5 sets out concerns that the doubting actuary may have about using statistical

methods. The reader may care to judge whether the paper adequately addresses these
concerns.

Section 6 starts by posing a real life claim reserving problem in the form of genuine UK
medium and long tail business.

Qutlines are provided of three statistical reserving techniques, within the framework of
Generalized Linear Models (Log-Incremental Payments, Log-Incremental II, and
Operational Time) . Brief details of Generalized Linear Models are given in an
appendix. A statistical "add-on", Bootstrapping, which can be used to provide
information on the variance of all types of reserving methods, is also discussed.

These techniques are then used on the real test data to demonstrate how they cope in
practice. Results are compared with the known outcome (these were not revealed to
the operators in advance of their analysis!). The lessons of the study are then discussed
so that readers may appreciate the differences between the techniques. Included in this
section are some details on the practical limitations of each of the techniques.

Section 7 summarises the particular features of each of the methods.

Section 8 briefly considers the value of the statistical methodology, and why statistical
methods may fail to produce the correct forecast.

Section 9 winds up with an extensive list of further reading which will be of particular
use to readers who wish to have a better understanding of the mathematical bases that
underlie the reserving techniques discussed. References to other methods are also
given.

A glossary of terms used in this paper is given in appendix 2.
This paper will have achieved its objective if the reader is left with a better

understanding of the application of statistical methods to the subject of claim reserving,
and feels sufficiently confident to try out the techniques.
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2. Review of Past Reserving Adequacy
or
Ko Good 4re He?

2.1. Introduction

It would be comforting to feel that more complicated claims reserve modelling is
unnecessary because insurers already reserve accurately. Is this the case?

The main tranche of data available to test the current state of affairs is provided by the
DTI returns. These we have used to examine two aspects of the question:

< Biases: Do the swings and roundabouts balance out? Or is there consistent under
or over reserving? Is there any evidence that reserving practice is influenced by
underwriting result?

< Variahility: How close are initial reserves to ultimate payments? How much does it
vary across different companies? How quickly do estimate ranges settle towards
the ultimate? What difference is there between classes of business?

Needless to say, the data is not ideal. Since this investigation is only to provide a
backdrop to the main work of the report, it has not been possible to do more than
apply a broad brush approach. As such the 'biases' investigation has not distinguished
between classes of business (although the 'variability' analysis has). In both cases there
has been a degree of stratification by size of company as follows:

Total incurred claims in 1991 Number of Companies

< £10 million 9
£10mto £100m 17
£100m to £1000m 16
> £1000 million

It is accepted that much of the data has been aggregated despite considerable
heterogeneity. However the conclusions drawn are very broad in nature, and it is not
felt that they are threatened by the crudity of the approach. Moreover, looking at the

aggregated position is appropriate if management decisions regarding reserve strength
are taken at an overall portfolio level rather than at an individual class level,
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2.7 Biases in Reserving

The main thrust of the investigation has been to test reserve adequacy against
underwriting results. The method has been to postulate a variety of hypotheses (for
instance that surpluses in reserves revealed in Form 23 of the DTI return will be
correlated with the previous year's underwriting result). In general, data has been
plotted in monetary terms for each level of stratification, and the points quartered in
such a way that, if no correlation exists, equal numbers of points would be found in
each quadrant. Statistical significance was tested using a simple contingency table/chi
squared approach.

The significance levels for the chi squared distribution with one degree of freedom are:

Chi squared Value Significance Level

3.84 95%

5.24 97.5%

6.64 99%
10.83 99.9%

The returns for the years 1987 to 1991 inclusive have been used, and each company
has provided a data point for each year. In order to use all the data together for each
approach, scaled versions have been produced by dividing through by Net Premium
Income.

Various hypotheses have been investigated:

2.2.1 Hypothesis - Claims reserves will be boosted in years when underwriting
results are good, and weakened when u/w results are poor.

How Tested: Savings on estimates recorded in year t+1 were plotted against
underwriting results in year t.

Logic: If the overall company underwriting result is healthy, the company will for the
sake of prudence take the opportunity to bolster reserves. As such, when the bulk of

claims comes in - in the next financial year - there will be a higher than usual release of
reserves.
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Chi squareds:

Company size Chi squared For or against hypothesis
< £16wn 7.1 For
£l Omto£100 0.00 Not sig.
£100m to £1000m 1.0 Not sig.
> £1000m 23 Not sig.
All companies 6.6 For

Conclusion: There is a weak level of significance here (given the large number of chi
squareds being carried out), but there seems some evidence to support the hypothesis.

It needs to be noted, however, that if you spend your good underwriting result on
boosting claims reserves, that will in itself worsen the result. That thought process
leads on to testing the hypothesis in a different way.

2.2.2 Hypothesis - Claims reserves will be boosted in years when underwriting
results are good, and weakened when u/w results are poor.

How tested: Savings on estimates recorded in year t+1 were plotted against
underwriting results in year t. The latter were, however, adjusted by the amount of

savings accruing in year t+1. The adjustment comprised simply adding those savings to
the u/w result.

Logic: The underwriting result in year t would have been better if the savings
liquidated in year t+1 had been taken up front. The reserves are boosted in proportion

to the prevailing 'feel good' factor in year t - which is governed by the results prior to
boosting.

There was some discussion in the working party as to whether the add-back to the u/w
result should be limited to the increase in savings over the previous year (which is,
after all, the true distortion to the result). In the end, however, it was felt that the
psychological impetus is applied to senior management through the operation of the
actual incurred losses - leading to the underwriting result. It is then that decisions
might be made to sideline profit into the reserves.

Results: A full set of charts for this approach are attached as Appendix 3, but the
results are summarised below.
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Chi squareds:

Company size Chi squared For or against hypothesis
< £10m 7.1 For
£10mto £100 8.5 For
£100m to £1000m 6.3 For
> £1000m 5.1 For
All companies 36.0 For

Conclusion: For each stratum, and overwhelmingly for all companies taken together,
there appears to be very strong support for the hypothesis.

Effectively we are adding one variable to the other prior to testing for correlation. The
justification for this seemingly dubious procedure is the assumption that the variable
had previously been deducted, by the process of sidelining profit from year t to year
t+1. Thus the data is being corrected rather than distorted. If this assumption is
incorrect, clearly the process builds in correlation, and throws doubt on the validity of
the conclusion above.

2.2.3 Hypothesis - The level of IBNR set up is related to the level of underwriting
profit.

How tested: In this case data in monetary terms was not felt to be appropriate. IBNR
was expressed as a percentage of total claims reserves, and plotted against the
underwriting result in the same year as a percentage of Net Premium Income.

Logic: If a company has a good underwriting result in a particular year, it will feel able
to bolster/rebuild its IBNR reserve. Since it is more easily manoeuvred than case
estimated claims reserves, it will therefore rise as a percentage of total claims reserves.

Chi squareds:
Company size Chi squared For or against hypothesis
< £10m 5.8 Against (1)
£10mto £100 23 Not sig.
£100m to £1000m 1.8 Not sig.
> £1000m 2.9 Not sig.
All companies 0.3 Not sig.
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Conclusion: The perverse result for small companies probably illustrates the problem
that there are two contrary forces acting. On the one hand a big IBNR will reduce the
underwriting result. On the other hand a bad underwriting result reduces the desire for
a large IBNR. Perhaps for small companies the former is a bigger force than the latter.

Overall however it is interesting that there does not seem to be an IBNR effect to
match the Claims Reserve effect. IBNR reserving does not seem to be correlated with
underwriting result.

2.2.4 1t was suggested that work done in America showed some correlation between
reserving levels and changes in underwriting results. Thus, as performance improves
insurers, take the opportunity to boost reserves, and vice versa. Analysis showed some
weak correlation for larger companies, but this did not seem a particularly fruitful line
of approach.

2.3. Variability Of Reserves

Form 33 of the DTI Returns permits an analysis of reserving accuracy over different
accident years.

The form details for each accident year, on a gross basis, paid, outstanding and IBNR
claim amounts over successive financial years.

The data is split by risk-group and it enables claim triangles to be constructed that
show the movement of ultimate claim estimates as the accident year develops.

The analysis has been centred on the seven major composites, i.e. the "over £1,000m
total incurred claims" group.

For each of the seven companies ultimate claim triangles have been produced for each
of the one-year accounting classes, i.e.

- Accident & Health
- Motor

- Property Damage
- Pecuniary Loss

- General Liability

By using the accounting class, the data is split broadly into the different types of
business, which should ensure consistency for all companies. However it is

Variance in Claim Reserving Pagel2
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acknowledged that the differing mix of risk-groups within each class does introduce a
level of heterogeneity.

The graphs shown in Appendix 4 plot the development of the total claim estimate as a
percentage of the 1991 year end value for each company and for accident years 1981-
1986 inclusive.

The line on each graph represents the arithmetic average of all points for each
development year ( NB development year 1 is the year of origin ).

The graphs exhibit the following characteristics :

How close are the initial estimates to the ultimate value?

The General Liability and Pecuniary Loss classes have a large spread in the initial
estimate.

The spread is reduced for the Motor and Accident & Health classes, with the Property
Damage class showing the smallest variability.

In terms of the average, the most noticeable trend is the initial over estimation for the
Property and Pecuniary Loss classes.

How quick is the convergence?

As one would expect, the long-tail classes show the slowest convergence.

The Accident class shows no consistent tendency to either under or over estimate.

The Motor class shows a tendency to under-reserve for development years 2 onwards.
The Property Damage class shows consistent over-reserving for all development years.
The Pecuniary Loss class shows consistent over-reserving for all development years.
The General Liability class shows consistent under-reserving for all development years.
The observed variability does not of course directly reflect the accuracy of actuarial

reserving methods - rather it depends on the nature of the reserves used for the DTI
returns.
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Results for smaller companies

A similar analysis was performed on a selection of smaller "£100 - £1,000m total
incurred” companies.

The results were consistent with the above but, as might be expected, the spread of
estimates tended to be greater.

The exception was the General Liability class, where claims tended to be over-reserved
at early years.

2.4. Final Observations

2.4.1 It is clear that companies do strengthen reserves when they feel they can afford
it, and that they draw them down when they need to. This amounts to the operation of
implicit equalisation reserves, and is obviously prudent business practice. It does,
however, imply that the reserving process is not even aiming at absolute accuracy (or
accuracy plus a margin).

2.4.2 For the majority of reserves we (reserve modellers) are not under scrutiny here.
Most of the claims reserves are still based on case estimating; which could clearly be
improved upon.

2.4.3 It is interesting to note that the IBNR reserves, which are most likely to be
influenced by modelling, are the least distorted by underwriting performance. It may
not be too optimistic to suggest that, whilst they are far from accurate, modelled
approaches are providing unbiased estimates.

2.4.4 Some consistent biases are evident, with the strong implication that reserving
could be improved. These are most pronounced in the consistent over-reserving of the
short-tail Pecuniary Loss and Property Damage accounting classes.
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3. Stochastic Modelling Background
or

Hhal are Stochastic Melhods.?

Most claims reserving methods are based on some assumptions about the underlying
shape of the run-off. The assumptions usually define a mathematical model of the run-
off. The difference between stochastic and non-stochastic methods is that in stochastic
methods the mathematical model is not confined to the underlying pattern: the
variation of the data around the underlying pattern is also modelled. The stochastic
approach offers three main benefits:

()  The influence of each data-point in determining the fitted model should depend
on the amount of random variation in that data-point: figures with large
random components should have relatively little influence.

(b)  The reliability of the fitted model, and the likely magnitude of random variation
in future payments can be estimated. This enables ‘standard errors' indicating

the reliability of predictions to be calculated.

(c) Statistical tests may be applied to the modelling process to verify any
assumptions and gain understanding of the variability of the claims process.

3.1. Types Of Stochastic Models

There are three basic types of stochastic models depending on the data to which they
are applied:

(a) Models that are applied to aggregate data, that is, a run off triangle of amounts
paid or incurred.

(b)  Models that also involve triangles of numbers of claims to enable more accurate
estimation of average costs, frequency and inflation.

(c)  Models that are applied to a database of individual settlement amounts.
Models of types (a) and (b) may be used to derive reserves and standard errors; with
approximate techniques being necessary to estimate the distribution of the aggregate

reserve. Models of type (c) may be able to estimate more accurately the aggregate
reserve distribution.
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3.2. Modelling Results

Models may be used to derive estimates of future cash flows or incremental incurred

claims, total reserves for origin or calendar periods and any associated standard errors
or probability distributions.

Models usually produce a set of fitted values which may be compared with the actual
data to derive residuals of the fitted model. These form a useful basis for testing
modelling assumptions and examining the nature of the claims development process.

3.3. Basis For Stochastic Modelling

Models usually fall into one of two categories:

(a) Ad-hoc models where no assumptions of the underlying process are made, the
data is modelled using any shape and variance structure that happens to fit past
development.

(b) Models derived from an underlying theory of the claims process. These models
start with a set of assumptions that are then refined and calibrated to the data,
or else if not appropriate, alternative models may be suggested.

There are occasions when each of the above approaches is more appropriate.
However, when modelling a small data set, for example less than 10 years of annual
development, there are few data points in the tail to construct a model of the variance.
In these cases, a prior view of the variance structure can be helpful.

3.4. Stochastic Modelling Misconceptions

There are three common misconceptions with regard to statistical approaches, which
should be dispelled.

i) "The 'optimal' statistical model is the best for producing forecasts"
The 'optimal' statistical model may not be the best for producing forecasts. The
‘optimal’ statistical model may tell us that there is instability in trends in more recent

payment years. Judgement about future trends could then be based on analysis of
other data types, e.g. claim numbers closed.
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i) "The model represents explicitly the underlying claims generating process."

There are essentially two approaches to formulating the initial model. It may be
generated because it is believed that the model represents the underlying processes at
work. Alternatively the model may be developed in terms of simple components which
fit the observed experience.

In either case the model should be proved by checking that all assumptions inherent in
the model are supported by the data.

iii) "A stochastic model (as opposed to a deterministic model) is always useful."

A model contains information or assumptions. If the assumptions contained in the
model are not supported by the data then the model is not useful.

3.5. Testing Models - Diagnostics

3.5.1. Residual Plots

For each data point we have an observed and a fitted value. The difference between
these is defined as the residual error. If divided by an amount proportional to the
estimated variance for the point, the residual is known as a standardised residual. If
the residuals are assumed to be normal, then the standardised residual is a normalised
residual.

The model assumes E(r) = 0 and Var(r) = constant

Hence we can plot residuals against origin (or underwriting period), development and
payment (or calendar) periods. If E(r) is not equal to zero, it may show up as a
systematic error in the residuals. If the plot against development period looks non
random, then it is likely that the assumed shape of the run off is inappropriate. If the
plot against origin period looks non random, then it is likely that the assumed level for
some origin year(s) is wrong, and if the plot against calendar period looks non random,
then it is likely that the assumed inflation model is wrong.

However, the above residual plots may still appear reasonable even though there are
systematic errors in the fitted model. These may often be detected by examining the

triangle of residuals, for example, plotting positive residuals in one colour, negative
residuals in another and by setting the brightness in accordance with the magnitude.
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Even if the E(r) is zero, the Var(r) may not be constant. For example, the residuals
may be fanning outwards or inwards with development. In this case, the mode! for the
variance may be wrong. It is important to correct for this as the model for the variance
determines the amount of weight that each point is given in fitting the model and hence
the fitted pattern. If the residuals appear to be fanning in with development, then the
data points in the tail may be given too little weight compared with earlier values.
Conversely, if the residuals are fanning out with development, then the data in the tail
will be given too much weight and predicted variances in the tail will be too low.

If the residuals are standardised rather than normalised, note that they may still be
skew. Where Generalized linear models are being used, this will be allowed for in the
modelling.

When modelling small data sets, for example, 6 years of annual development data,
residual plots have to be used with care since it is easy to see patterns in the residuals
and end up with an over-parameterised model with unrealistically low standard errors.
It is often helpful to gain experience of random residuals by creating triangles of
random normally distributed numbers and examining the plots. Most people will see
patterns in small sets of random residuals!

An example of a residual plot is shown in 6.2.2 as part of the analysis used for the log-
incremental payments technique.

3.5.2. Statistical Tests

The use of F, t and other tests is helpful in deciding on the number of parameters to
use in a model.

One approach is to use the standard "GLIM" type of analysis using F tests. This
approach starts with a possibly over parameterised model and then fits models with
subsets of the original parameters. An F statistic may be constructed and used to check
that the reduction in parameters doesn't introduce significant extra residual variability.

Standard errors of fitted parameters may be checked to test whether the fitted
parameters are significantly different from zero, and hence whether or not the
parameters should be included in the model. They may also check whether parameters

are significantly different from each other (if they represent different levels of the same
parameter set).

Where Kalman filters are used, some sort of parameter counting method is needed to
allow for the dynamic nature of the model.
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Where models are being compared that have a different structure, then statistics such
as the AIC or BIC may be useful.

3.5.3. Validation

It is possible to refit models ignoring the most recent 1, 2 or 3 years data and compare
the results with current estimates. If the estimates are stable then the model may give a
reasonable estimate for future development. If the estimates are unstable compared
with the estimated standard errors, then the model may be unreliable for predicting the
future.

It 1s usually helpful to model different data types (for example paid and incurred) and
to apply different methods. If the answers are similar, then the model are likely to be
more reliable than if they are inconsistent, in which case judgement will be required to
eliminate the inappropriate models.

It is often helpful to examine plots of the actual development together with the fitted

models so that graphs of incremental and cumulative development appear reasonable
for the data set being modelled.

3.6. Modelling Error

Whatever model is used the final outcome will inevitably differ from that estimated.
The standard error can be useful in indicating the size of the likely error of an estimate.
However there are potentially other sources of error.
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Taylor [10] sets out the components of the prediction error as foliows

specification error arising from the initial specification of the model
- typically this will be due to assuming linearity
which does not exist

selection error due to incorrect selection of the predictors

estimation error due to the fact that the estimated parameters are
still only random variables

statistical error reflecting the inherent random noise in the
process

The standard error is the sum of the estimation and statistical errors, i.e. the parameter
uncertainty and the residual variation. Hence the model is still subject to unmeasured

specification and selection error.

This subject is further considered in the section dealing with the concerns of the
Doubting Actuary.
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4. Application of the Claim Variance

or
Wil tse 15 1172

Essentially this can be answered by considering the converse. If we don't know the
claim variability (or at least have a feel for the sensitivity of the reserves established)
how can we form an opinion as to the adequacy of the Claim Reserve? After all, the
requirement for adequacy may carry with it the implication of "with margins for
caution". As the required size of any margins can only be judged by reference to the
variability of the reserve the importance of these statistics should be readily apparent.

Other possible uses include.

(a) Assessment of reserve adequacy may be applied in the context of both absolute
(as above) and also relative terms comparing origin years and lines of business.

(b)  Basis of allocation of capital. Again, both in absolute and relative terms.

(c) Basis for comparing modelling of different data sets, for example,
paid/incurred/average costs and numbers.

(d)  Basis for discussions with the DTI or Inland Revenue. Quantifying the
uncertainty in estimated reserves can be helpful in these circumstances.
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5. What Does the Doubting Actuary Require?
or

Kl value stalistical Techmgues?

5.1. Benchmarks

In order to illustrate the questions we answer in this paper we have constructed a
"Doubting actuary", whose concemns are set out in the rest of this section. The criteria
by which we would like this paper to be judged are our successes at answering the
various issues raised below.

5.2. The "Doubting Actuary"

I am the Doubting Actuary. I am responsible for advising on appropriate levels of
provisions for a wide range of types of general insurance. As well as needing to arrive
at a "best estimate” of claims from business already written - not necessarily an easy
task - I would also like as much information about possible differences between the
eventual out-turns and my current estimates. 1 want this information

(a) for assistance in monitoring my own performance
(b)  so that I can decide whether differences between my estimates and those of my
colleagues are material

(c) so that I can advise on the range of possible outcomes.
In my own mind, I have several ranges which need to be taken into account:-

¢ Range A includes any point estimate and consists of those values which 1
regard as equally valid. If the eventual out-turn is within this range 1 will
regard myself as having been a good predictor, and 1 would be prepared to
support provisions anywhere within the range

¢ Range B surrounds Range A, and consists of estimates which I do not regard
as unreasonable but which I would not myself be prepared to recommend

¢ Range C surrounds Range B and consists of estimates which may be achieved
in practice but which I do not consider as reasonable for current provisions.
If the eventual out-turn is within Range C I shall say "That is not what I
expected but it is not a major surprise”
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. Range D surrounds Range C and consists of results which are possible but
which would be a major surprise

¢ Range E surrounds Range D and consists of results which I currently believe
to be impossible.

These concepts are described in qualitative rather than quantitative language and the
boundaries between the ranges themselves are often intuitive points which I would be
pushed to define other than by saying that they are my subjective impressions.

I would welcome anything upon which I felt able to rely to help me refine these
concepts.

Over time I have had the benefit of various presentations on various statistical methods
which might address the problem. Some of the presenters have had a financial interest
in promoting their methods and some have not.

In general the methods have three components:

(a) a statistical model
(b)  a way of fitting the model to past data - i.e. choosing parameters
(c)  ajustification for the belief that the model will predict future claims experience.

So far as (a) is concerned, 1 can normally follow the work done by others and,
provided it is published, and scrutinised by others with statistical expertise, ] am happy
to take it on trust.

(b) is usually a way of solving a laggenumber of simultaneous equations with the
benefit of a computer. [ learnt how to solve simultaneous equations at the age of ten
so I have no difficulties with this stage and I probably underestimate the effort and skill
which were needed to produce the method of solution.

I do have difficulties with (c). 1 consider that it is my responsibility to determine
whether the model is actually appropriate for making predictions about future claim

payments; and it is the point upon which proponents of various statistical methods
seem weakest.
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Using models for predictions requires:

(a) that the model describes behaviour in the future, whether or not it has done so
in the past.

(b) that the parameters have been correctly determined.

To put this concept into probability terminology, suppose that X is the event that
claims exceed some specified level. Then:

P (X) =P (X/A) p(Ar) + P (X/A: ) P (As) + P (WA3) P(A3) + P (/A P(A)

where: A\ 1s the event that future claims will be in accord with the model and the
parameters have been correctly determined,

A: is the event that future claims will be in accord with the model but the

parameters determined from past experience are not appropriate for the
future.

Ax is the event that the model was correct for past behaviour but is no
longer so

A« is the event that the model was never correct and the apparent fitting
to the past experience is illusory.!

We can probably put a numerical value on P (X/A)) but would anyone have any idea of
the values to be assigned to the other possibilities?

My doubts about the applicability of whatever model is under discussion stem from
several sources:

(a) We know that it is possible to go through the motions and assign values to
parameters but this does not necessarily mean that the model was appropriate
in the past, let alone the future. Far more work seems to have been done
assuming that some model will be appropriate than in assessing whether it is so;
and in demonstrating this fact in a convincing way. Unless supporters of models
can meet me on this matters I am going to be rather unconvinced and unwilling:

1In the language of Taylor [1] Ax.AxA«correspond 10 a belief that the specification error particularly,
and 1o a lessor extent selection error - both of which cannot be measured - are likely 1o be significant
in practice, thereby invalidating the use 6f standard errors as a measure for the reliability of a model.
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to rely upon the results. 1 would also like some information about the
consequences of the model fitting only approximately.

(b) Many models seem to be dependent upon assumptions which are not in fact
true. Usually it is assumed that incremental claims can be described by a
parameter and an error term, the error being independent. In my conception of
the claims process, a fixed but unknown number of claims occur during the
period of exposure and there is then a variable period for each claim until it is
paid (or reported). Since a claim can be paid (or reported) in only one period, |
would expect the error terms to be negatively correlated. When incremental
claims are taken to be log normal, the method ought not to be applied to both
quarterly and annual data. 1 have read that the sum of a log normal
distributions is not log normal and I deduce that quarterly and annual claims
can not both be log normal.

© If an astrologer produced a model based upon the movements of the stars
which "explained" the past claims experience, would | be happy to use his
model for predictions of the future? Surely not! If his predictions always
turned out to be true, would 1 change my mind? Probably, eventually after
some period; it would be perverse not to accept that his model seemed to work
but unless 1 understood the mechanism which turned star movements into
claims I would always be concerned that the predictions would fail at the next
attempt. Clearly one does not have to emulate, or even understand, the
complicated processes which produce claims at various times; they may
combine to fit some straightforward statistical model, but the validity of
assumptions which appear not to be met in practice will need to be explained.

(d) Since I am not an expert on statistics, my opinions of the reliability of proposed
methods will be influenced by my assessment of their proponents. Inaccuracy
on matters which I can check will make me doubtful about things which I can
not. Examples of statements which undermine my confidence are:

) the method will work on all classes and types of business. Look at the
list of classes of business for which I have a responsibility! Is Property
Catastrophe Reinsurance to be treated in the same way as Personal
Motor?

(i)  working on incremental paid claims will give more reliable answers than
incorporating information about outstandings. True perhaps for
personal lines. My aviation account, which is exposed to (compared
with other types of insurance) a relatively small number of large claims,
can be predicted reasonably well by using a chain ladder on incurred
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claims. At short durations little has been paid and it is difficult to draw
useful conclusion. Loss ratios vary wildly from year to year from, say
20% to 300%! For some casualty accounts nothing at all may be paid
for the first couple of years.

(i)  statistics should be adjusted for exposure and inflation. Yes, if it can be
done, What does one do in the case of, say, excess of loss reinsurance
of Employers' Liability?

(iv)  anyone who uses the chain ladder is an idiot. I have a vested interested
here, in that pride won't let me agree to this statement! Anyone who
believes that any responsible actuary is going to use the results of a
naive chain ladder blindly, doesn't know much about what actuaries do.
My own methods would call for an examination of the data, possibly
the removal of large claims, and then, if it seemed the right thing to do,
calculation of the linked ratios implied by the past experience which
would then be adjusted in the light of all collateral information,
including trends in the experience, because my job is to guess what they
will be in the future not to say what they were in the past.

I look forward to reading the rest of the paper in the hope that it will assist me to do
my job better.
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6. Statistical Techniques & Application to Real Data
or

Whal Are These New Melhods and Kow Good Are They?

The statistical techniques presented here are not intended to cover the full range of
possible methods. Rather they should be seen as representative of a range of methods
that are currently attracting considerable interest, as witnessed by the plethora of
papers being produced on the subject (some are given in the bibliography.)

The first three use general linear models to obtain the parameters and should be seen as
frameworks for deriving an ultimate model for the data in the sense that the user must
interpret the results of a particular model and then exercise his judgement, based on the
diagnostics, as to whether the model

a) can be improved by more or fewer parameters,

b) provides a fair representation of past data; and

c) is suitable for the future.
With regard to c) it is vitally important that the actuary considers whether the

parameters fitted to the past data need adjustment in the light of known or predicted
developments in the outside world.

Certain mathematical sections may be skipped without prejudicing understanding of
the principles concerned. These are denoted by an asterisk (#) next to the title, or in
the left hand margin of the section, and apply to the remainder of the section.
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6.1. Data Description

Three classes were prepared for the various reserving techniques, comprising two long
tail classes and one medium. Six sets of data were constructed initially, which is why
here and in the rest of the paper they are referred to as classes one, three and five.

The data for each class was for ten accident years developing quarterly. The data
triangles provided were:

Paid Claims net of salvage and subrogation
Number of Closed Claims

Case Estimates

Number of Open Claims

The salvage and subrogation could have been considered separately, but it was decided
to stick to examining the paid claims net of salvage, as it is more common for data to
be held at this level.

All the data was net of a typical reinsurance program, with no particular features of
merit, that remained pretty much consistent over the period considered. The data is
gross of any special facultative or stop-loss type reinsurance arrangements.

The reserving methods were used to predict ultimate claims and the claims expected to
be paid in the next three years, for each accident year and for the class as a whole,
giving a range one Standard Error either side. Updated triangles were then provided,
giving the position three years down the line. The predictions of payments over the
next three years could then be compared to the actual outcome. The payments over
three years represented up to 80% of the reserve as a whole for the three classes, so
good estimates for this figure should augur well for the reliability of the reserve
estimate.

Class 1 - Long

This class of business is very long tail indeed, with a modest number of claims still
being reported some thirteen years after the original accident year. After ten years
development, for every three claims closed two new claims are reported and of the
total number of claims reported for a given accident year, as many as one in five
hundred are still outstanding ten or more years after the accident year. Around 95% of
claims are paid in the first year, these claims being around one hundredth of the
average loss paid ten years later. This is typical of employer's liability business. The
average payments and case estimates do not change markedly after ten years of
development. It seems likely that the payment and reporting of claims after year ten
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will continue for a considerable time into the future at pretty much the level they are
currently. Modest growth was experienced in the first few years under consideration;
the class was then drastically curtailed. Each of the last five accident years had
approximately half the number of claims of each of the first five; the last five accident
years could therefore be expected to behave somewhat differently and this is evident in
some of the patterns that emerge - for example having a slower reporting pattern.

Initially high inflation of claims payments of 10% or so in the initial calendar years
gradually decreased over the period considered to around 5% in the recent years.

Class 3 - Medium

Whilst certainly not having the long tail features of class one this does still have a few
claims reported some ten years or more after the accident year. For this class though,
for every four claims that are closed after year ten, only around one claim is reported
and only around one in ten thousand of the total claims are still outstanding after ten
years.

Around 80% of claims are paid in the first two years, these claims being around one
tenth of the average loss paid after ten years of development. The payments and case
estimates in the tail are fairly erratic, being distorted by the occasional very large claim.
This is typical of property business.

This class grew markedly in the first two years, growing 50% as measured by the
ultimate number of claims, then gradually declining thereafter to pretty much its'
original level. Most accident years show fairly stable payment and reporting patterns.

Inflation was again at a high level, in excess of 10% initially, then dropped away to low
levels of a few percent before starting to increase again.

Class 5-Long
As for class one, claims are still being paid and reported well into the tail of this class

with around three claims being reported for every five claims closed after year ten and
one in five hundred claims still being open after ten years of development.

Around 80% of claims are paid in the first two years, these claims being around one
hundredth of the average loss paid after year ten. The tail is again erratic with some

very large claims indeed. This is typical of general liability / bodily injury business:

The class grew rapidly, doubling in size in the first five years then contracted rapidly,
reducing by 50% to its' original level. The patterns show the turmoil of these changes
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and exhibit some marked changes in reporting and payment patterns, with speeding up
closely followed by slowing down!

Inflation was more consistent across the years, dipping then rising again, but not
exceeding the ten percent levels experienced by the other classes initially.
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6.2. Regression model based on Log-Incremental payments

6.2.1. Overview of method

The first method presented is the natural extension of the chain-ladder model. Statistics
are introduced by reference to the error term. A mathematically simple structure for
the error terms is assumed, namely that the errors in the logarithms of the incremental
claim payments are independently identically distributed (i.i.d) normal random
variables.

The method in its simplest form is very general, and is likely to suffer the same
problems encountered by the straightforward chain-ladder.

Use of logarithms for the log-Incremental method does have some theoretical
objections but nevertheless has been found to work well in practice [16]

In practice these models are relatively easy to develop. The recommended
methodology set out in Section 3 ensures the modeller tests the validity of the key
error structure assumption, and systematically identifies any problems thrown up by the
data.

The statistical significance of the modelled fit is generally improved by reducing the
number of parameters. To this end simplified models for the pattern of claims run-off
within each accident year (the development year axis) are introduced.

6.2.1.1. Introduction

The method applied in section 6.2.2 fits models to the various sets of data - in this case
the triangles of past claim numbers and payments. This modelling can be viewed at two
levels. At the first level, the models are specific examples of more general types of
model - Generalised Linear Models. At another level, they are an extension and
refinement of a more basic type of model - that is what is sometimes called the
Stochastic Chain Ladder (see [6] for a more in depth comparison with the Chain-
Ladder).

To put the method into context, a brief description of the more general class of
models, and the more basic type of model is given, before the specific method used
is described.
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6.2.1.2. Stochastic Chain-ladder

There is a considerable body of work describing models which are the stochastic
equivalent of the Chain-ladder {6]. These models are broadly the same as the
deterministic (i.e. without a random component) Chain-ladder, except that:

. the model is explicitly defined;

) the parameters of the model are estimated using a statistical technique to
obtain a "best fit", rather than choosing factors "by eye" or by a simple
calculation;

. finally, explicit assumptions are made about the systematic and random

elements of the claims process, so estimates of the variance of the reserve
estimates can be produced, rather than just a point estimate.

The model of the claims process is described as:
Log(Pjj) = a(i)+b()+Ej;

where Pjj are the incremental claim payments in Accident Year i at development period
j, a(i) and b(j) are the parameters fitted by the model and Ejj is an Error term. The Ej;
are assumed to be independent and identically normally distributed with mean zero and
variance 62.

The assumption that the Eij are identically distributed across the whole triangle is an
area of the model open to debate. The payments in the early years of development are
likely to be larger than in the tail, and so one might expect the error term to reflect this.
Conversely however, it is the tail where a few large claims can have a particularly
distorting affect. The simple error structure can be refined, as is the case in some other
models.

For an n x n triangle, there are n parameters a(i) and n-1 parameters b(j) (we set
b(0)=0, so that there is a unique solution for a(i) and b(j)). In total then we have 2n-1
parameters. This has the same number of parameters as the basic Chain-ladder, which
implicitly assumes a "level" for each of the n Accident years, corresponding to the a(i),
and a development year effect, corresponding to the n-1 b(j) parameters the model fits.

For convenience, denote Yij = Log(Pjj) and let Bij = E(PU) Under our assumptions
above, the a(i) and b(j) can be estimated by a simple regression procedure to produce
Maximum Likelihood Estimates of the Yjj, MLE(Yjj), in our Log-space. We then have
to produce estimates back in our payment-space. It can then be shown that the
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Maximum Likelihood Estimate of 6jj. MLE(8jj), back in our payment-space, is given
by:

MLE(Gij) = exp( MLE(Yij) + 2 Var( MLE(Yjj)) )
It can also be shown that the Standard Error, SE, of the estimates of 6jj is given by:
SE(MLE(6;j)) = MLE(8;j) x (exp( Var( MLE(Yij)) -1)"2

Thus, from our simple regression estimates of Yjj in the Log-space, we are able to
back out estimates of the expected values of the actual payments and their standard
error. The practical details of how one may perform the regression using spreadsheet
regression functions, and make the transformation back into the payment space are not
set out in this paper. The interested reader may refer to the I0A Reserving Manual
Volume II [1].

There is a slight hitch in this method of producing estimates of expected payments, in
that the Maximum Likelihood Estimates of Bjj can be shown to be biased - that is:

E (MLE (8j)) > 8}

The MLE of 8jj is asymptotically unbiased, that is, as the sample size gets larger, the
MLE gets closer to the true value of the 6jj . For small sample sizes however, as can be
the case with reserving data, the bias may be significant. Section 6.5.2. gives an

example of how Bootstrapping can be used to quantify the extent of this bias.

Alternatively, a different, unbiased estimate of 8j; can be made. Finney [3] showed that
an unbiased estimate of Gij, say 0jj', can be constructed as follows:

0ij' = exp( MLE(Yjj) ) x gm(Y% s2), where:
o0

gm(t) = 2 mK(m+2k)/(m(m+2)....(m+2k))(m/(m+1))ktk/k!, and:
k=0

s2 =n/(n-1) x Var ( MLE(Yjj) )
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where:
n = the number of data points ; and

the number of degrees of freedom of the model i.e. n less the
number of parameters

3
I

Similar adjustments can be made to produce unbiased estimates for the variance of our
expected payments. In practice, especially if working in a spreadsheet environment, the
extra effort needed to produce unbiased estimates is usually deemed to be
disproportionate to the extra accuracy gained.

One can extend the estimation of variances of payments from one payment to several -
either all the future payments for a given Accident year, say, or the total of all future
payments for all Accident years. This enables one to produce an estimate of the
Standard Esror for the reserve for a given Accident Year, or the Standard Error for the
reserve for all Accident years combined.

The SE's for these combinations of payments are obtained from the standard identity
Var(A+B) = Var(A) + Var(B) + 2 x Cov(A,B). In this context, this translates to:

Var(MLE(G§_§+9k1))=Var(MLE(9ij)) + Var(MLE(Bk})) + 2x Cov(MLE(Gij).MLE(Gk]))

where it can be shown that:
Cov(MLE(ij).MLE(BH))=MLE(8ij) x MLE(6k1) x exp(Cov(MLE(Yjj). MLE(Yk)H)

Whilst some of the algebra above looks daunting, the various calculations for the
expected payments and their variances all boil down to the simple regression estimates
of a(i) and b(j), hence Yij, in our Log-space, which are then suitably transformed to re-
cast them as estimates back in our original payment space.

6.2.1.3. Regression model based on Log-Incremental payments

The model described in 6.2.1.2. is similar to the basic Chain-ladder, with the addition
of a random component, and uses the same number of parameters in defining the
model. There is no reason, however, why the model should slavishly follow the
structure of the basic Chain-ladder model

The basic nxn Chain-ladder may be considered over-parameterised, as it fits 2n-1
parameters t0 a data triangie containing nx(n+1)/2 points. When modelling, one wants
to strike a balance between models that adhere too tightly to the data, by having too
many parameters, and models which over-simplify a complex process with too few
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parameters to accurately reflect elements of the underlying process. One may also want
to use the model to make predictions beyond the range of the data - in this case for
development periods beyond the latest development period in the data. These
considerations lead to refinements of the model, which may describe the data with
fewer parameters, which are more stable with little or no loss to the standard of the
“fit" of the model, and which enable one to make predictions beyond the latest
available development year.

The refinements to the model broadly address two questions. Firstly, whether the
model can equally well be fitted without the use of all n of the a(i) parameters - the
Accident year level parameters. Secondly whether the data exhibits some sort of
pattern which can be fitted by a curve, or combination of curves, to describe the b(j)
parameters, rather than have n-1 separate parameters to describe each development
period. The process of making these two refinements, as it pertains to the actual
Working Party database, is described in 6.2.2. An overview of the nature of the
refinements and how they are implemented is given below.

Considering the first point, there are methods, as indicated by Renshaw [9]. of
"scientifically" partitioning Accident years in some optimal fashion. Again, in practice,
the extra sophistication is often thought not to reap rewards commensurate with the
effort involved. One can, however, visually inspect the data to see if given Accident
years are of a similar "level" of payment. In doing this, one may try and first normalise
the data in some sense - for example, by adjusting the payments by an Exposure
measure, such as the number of claims, or adjusting the data by an inflation index. One
may then find that the accident year levels fall into a small number of groups. For
example, if in a 10x10 triangle, the business written appeared to be of a different nature
in the first five years compared to the last five years, the model for the a(i)'s may be of
the form:

a(i) = A, fori=}2,...5, and,
a() =B, fori=6,7,....10.
A and B are constants, as are C,D.E and F below.

Revisions of the model may be examined by using the simple regression method on the
Yij's, back in our Log-space. This will produce estimates of all the parameters involved
and produce statistics as to the overall fit of the model, as well as to the significance of
the individual parameters. When examining the fit of a model, the Residuals (the
differences between fitted and actual values) are also examined, to observe whether the
model exhibits any unwanted features. For a good model, we would expect that the
Residuals are suitably "random"”, that is they do not exhibit any systematic pattern. The
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Residuals can be examined to see how they vary by Accident Year, Development Year
or Payment Year. Again, the interested reader is referred to the IOA Reserving Manual
(1] for further information on Residuals and their characteristics and the actual process
of fitting a model.

The second, and more fruitful, refinement one may make is to model the development
parameters in Log-space, b(j). by a curve, or a combination of curves. Frequently one
may find that given classes of business have their own particular "shape” in the first
few years of development but adhere closely to a curve, or combination of curves
thereafter. This can be determined by visually examining the data, to see what sort of
families of curve suggest themselves. The same process of fitting the model to the data
by regression, then examining the statistics regarding the fit of the model and the
Residuals is gone through, as indicated above.
Typically, the revised model may take the form of:

bG)=C, forj=1

b(G)=D, forj=2

b(j) = f(§). forj>2
There are a variety of types of curve, f{j). which may be tried. These include:
Exponential

fj) = E x (j-2), for j >2

In Log-space, this is just a straight line, indicating that the claims payments die
away exponentially over time, after year 2.

Power Curve
f(j) = F x log (j-1), forj >2

This assumes that the claims payments decay according to a power curve, after
year 2.
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Hoerl Curve
fG) =E x (§-2) + F x log (j-1), for j > 2

This can be seen to be a combination of the first two curves. It indicates that
the decay of the claims payments is a combination of exponential and power
curve. This curve proves to be an effective fit for a wide variety of classes of
business.

One can extend the range of possible curves by fitting different curves to different
sections of the development - for example an exponential decay with parameter E1 for
2 <j <7 and exponential decay with another parameter, E2, for j > 6. Also, there is no
reason why other curves should not be fitted - if part of the development in Log-space
looks like a quadratic curve, go and see what the fit and the Residuals look like !

A further possible extension is to include a calendar year effect. As an alternative to

stripping out inflation before the model is applied, one can explicitly model inflation.
The basic model would have the additional term:

Log(Pjj) = a(i)+b()*+Y x(i+)+ Ejj

where Y =log (1+u), and;
u = annual rate of inflation across the whole triangle

For all the curves above, it is just a matter of re-formulating the model and using
regression in Log-space to fit different combinations of parameters to the data. The

process of examining different curves and the various statistics for each, for the
Working Party Database is described in 6.2.2.
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6.2.2, Data Analysis

The following gives some general comments about the procedures that were
performed in looking at the three classes. Rather than give a blow by blow account for
each class, various stages of the modelling and diagnostic process will be illustrated for
a sample class, rather than for all three classes. At the end of the section the final

mode! arrived at for each class will be summarised and any particular features of the
modelling as it applied to that class noted.

Looking at the data

We are modelling the logs of incremental payments, so the first step is to look at
graphs of the log-incremental payments. Due to the limits of matrix manipulation
referred to in section 6.2.3, we are restricted to looking at quarterly data at the start of
the development and annual data thereafter, or the matrices that need manipulating
become too unwieldy. The choice here was to look at quarterly data for the first eight
quarters, and a variety of curves thereafter. The graphs to examine were therefore of
the logs of the first eight quarters’ incremental payments and the incremental annual
payments thereafier, an example of which is given below:

Class 1. Long
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We can justify looking at a combination of quarterly and annual payments as the total
payments in each of the first eight quarters are of the same order of magnitude as the
subsequent annual payments, so this does not cause us undue problems with our
assumptions regarding the Residuals being uniform across the triangle - indeed it could
be said to be a positive feature.

Other methods partition the development period (in this case ten years) into different
time periods: this is just doing the same. It should be noted that we are not assuming
anywhere that the sum of four lognormally distributed variables is also lognormal,
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although even if we were, such simplifying assumptions are made in many other areas.
For example in option pricing one assumes that a stock price is lognormally distributed
when applying the Black-Scholes model, and the same model is used when examining a
stock index comprising many stocks. In option pricing models, just as in reserving and
many other models, the model is not "reality”, it is just a useful representation of
reality. As long as one is aware of strengths and weaknesses in the assumptions, one
can happily make simplifying assumptions.

Another advantage of grouping the quarterly payments into annual for later
developments is that it reduces or largely eliminates the problem of negative claims. All
of the classes had negative quarterly payments in the later stages of development, but
none of the annual payments did.

Whilst it would be nice to be able to fit a model with an unlimited number of quarterly
development points, as can be seen from the graph above, this does not present a
severe set-back. For the vast majority of classes, the first eight quarters or so are likely
to have their own particular shape, and any curve that is to be fitted to the data after
that point could equally well be fitted to the annual as the quanerly data. Because the
first eight quarters for the three classes did have their own particular characteristics,
the model for three classes was just a piece-wise linear section for the first eight
quarterly payments followed by different curves. For the example above it can be seen
that these first eight points do have a very consistent shape. The development
thereafter looks suspiciously like two straight lines (because this is a graph of log-
payments, this means the actual payments decay according to two exponential curves),
see the section on Class | for more details.

Fitting the parameters

Having examined the graphs of the log-payments to choose a model, we need to fit the
model to the data using regression. If we have n past data points and p parameters, this
means constructing an nxp matrix defining the model for each data point, along the
lines set out in section 6.2.1.4. This matrix (called the Design matrix) is then our "X"
range when performing regression using a standard spreadsheet package, the "Y"
range being a column of the data points themselves. This process and the various
diagnostic tests mentioned below are further described in the IOA Reserving Manual
Volume 11 [1], so they will not be expounded on in any detail here.

The standard regression output of most spreadsheets then outputs the fitted parameters
and their standard errors (SE's), along with an overall model variance figure and an R-
squared statistic, which gives an indication as to how good the fit of the model is.
Ideally we would like the model variance to be as low as possible, and the R-squared
to be as near to one as possible. One cannot just focus on these numbers however, as
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one does not want to over-parameterise the model and it is important to look at the
Residuals as described subsequently. One can also look at the T-ratio of the various
parameters - the parameter divided by its' SE. If the parameter is significantly different
from zero, we would expect the absolute value of the T-ratio to be bigger than two.

A typical section of regression output from the model is reproduced below:

Class 1: Long Design § - Unigue level first eight quarters,Hoerl curve therafter
Regression Output:

Constant 0
Sid Emof Y Est 0.090
R Squared 0.989
No. of Obsenstions 112
Degrees of Freedom 92

a1 a2 a3 a4 as ag a7 a8
XCoeficient(s) 11.522 11 869 12.045 12090 12034 11435 10940  10.768
Std Em of Coef. 0.095 0.097 0098 0.099 0.098 0.097 0.097 0.097
T-Ratio 120.794 122129 122.675 122.664 122467 117.310 113.227 111.382

Grouping the Accident year levels

The T-ratios for the accident levels (al,...a8 are illustrated above) do not in
themselves mean anything other than that accident year has payments significantly
different from zero - no great surprise !! To see if one can group the accident year
levels, the accident year parameters are visually examined. If some of the parameters
look similar, say we thought a3=a4=a$S above, we could amend the Design matrix so
that instead of separate levels a4 and a$, those accident year levels were described as
a3+C, and a3+D, where C and D are just two constants. The regression could then be
performed again. This time, if the T-ratios for C and D are greater than two, it means
that the accident year parameters for a4 and a5 are significantly different from a3, If
not, then those accident year levels can be taken to have a common level. More
rigorous treatments of this stage of the modelling process can be made (although they
require rather more than a simple spreadsheet and a few minutes of time!) and are
referred to in section 6.2.1.4.

For the classes examined, the most likely grouping appeared to be between some or all
of the first five accident years and some or all of the remaining five accident years.
Various combinations were tried, but the groupings were at best of two accident years
with a tentative level of significance. This is not altogether surprising - the business has
been changing and inflationary forces have been increasing the level of claims
payments.
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To try and increase our chances of reducing the number of accident year parameters,
the data triangles were scaled by one or both of an inflation index across the payment
direction (i.e. the diagonals) and an exposure index in the accident direction (i.e. down
the columns). The inflation index was arrived at by a simple separation-type process -
in practice this could draw on outside knowledge of the classes of business concerned.
The exposure index was taken to be the ultimate number of claims, as determined by a
simple chain ladder method.

For each of the classes, a slightly less parameterised model could now be found, either
by grouping accident year levels for 1923-1926 or 1928-31. Again the significance was
tentative and the overall fit of the model was not drastically improved, or in some cases
worsened. The future payments would have to be adjusted by an estimated future
inflation index adding further uncertainty. Given the marginal improvement in the
model and the additional uncertainty arising from the exposure and inflation indices, it
was decided to leave each of the classes being modelled by ten separate accident year
parameters.

Looking at the Residuals for different curves

The three types of curve outlined in section 6.2.1.4 were examined for each class. The
only variations that suggested themselves were to try a double-exponential curve for
Class 1 with various points at which the two curves joined. For a given curve, various
plots of the Residuals were examined, as well as the various statistics outlined above.
Once the basic Design matrix for a model had been set up, it could easily be applied to
all three classes, so each curve that was looked at for one class was also looked at for
all the other classes too.

Variance in Claim Reserving Paged)

41



The Residuals examined took two basic forms, with variations on each. The first was a
standard scatter plot, showing the distribution of the residuals in the three "directions"
implicit in the triangle - development, accident year and payment. We expect roughly
one in twenty Residuals to be outside the range -2 to +2. We also expect the Residuals
to be suitably random. Any non-randomness may indicate defects in the model, or
suggest refinements to the model. The Residuals for class five and examination of the
data for that class generally suggested refinements to the model other than using the

directly calculated parameters. An example of this type of Residual output is given
below:

Class 3 : Medium
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If one particular point looks way off-beam compared to the surrounding points, its’
effect on the model can be ascertained and if necessary that point can be removed from
the regression in arriving at the model. Care needs to be taken in doing this, so that
salient features of the data are not obliterated without good reason. The author of this
text prefers to give the data "the benefit of the doubt" rather than rush to remove

outlying Residuals wherever they may pop up, unless there are strong reasons to the
contrary.
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A further aid to modelling was the following type of Residual plot:

Class 3 : Medium
Standardized Residuals: Design 4 - Unique level first eight quarters, Exponential therafler
Comparisan of size of residuals
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Another such Residual plot showed the sign of the Residuals, either positive or
negative. This distribution of the size of the Residuals in a "triangular plot" such as that
shown above gives a useful visual summary of the model and can often bring out
features of the fit of the model not instantly obvious from the statistics or scatter plots
of the Residuals.

The other Residual plot showing the sign of the Residuals can also be useful but needs
to be treated with a little more care. One particularly large outlying Residual can "pull”
the parameters towards it, so that all the Residuals along, say, the particular accident
year in which the Residual resides are pulled towards it, producing a row of Residuals
which tend to be of one sign or the other, possibly by only a small margin.

Validation

Once one has arrived at a model one is happy with, one can and should try and see
what the model would have predicted had it been applied a number of years ago and
compare this to the known outcome. Only for class five did this, and other checks, lead
to the model being refined slightly.
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The Tail

One advantage of modelling claim payments by curves is that the curves can be
extended beyond the triangle of data to give an estimate of the tail. As with any
projection beyond known data, this involves something of a leap of faith that the trends
in the first ten years will continue thereafier. For some classes this is clearly not the
case - particularly for business such as that exhibited by class one, where the payments
decay up to a point but then continue at pretty much the same level as claims continue
to be reported at pretty much the same level as they are closed.

A disadvantage of some of the curves used in this type of modelling is that the
exponential component representing claims payments decaying over say years seven to
ten, tends to die away too rapidly thereafter, and the model does not add greatly to the
estimation of the tail. At this stage, one can review the projected tail payments relative
to the known case estimates and the rates at which claims continue to be closed and
reported.

The tail calculation chosen was an extension of the curves in all three cases, but with
the decay parameter modified to reflect, where appropriate, the expected slow down in
the decay of paid claims by reference to the case estimates and rates of closure and
reporting in the later stages of development. The payments were extended by a further
twenty years. The Standard Error of the reserve could only be calculated for the
reserve up to year thirteen. This SE as a percentage was applied to the total reserve
including the tail - because of the extra uncertainty in this area of the calculation, this
SE is likely to be understated.

For classes such as class one, the payments after thirteen years are a few thousand a
year and the reserve may be of the order of twenty times this amount, representing
payments continuing at the same sort of level for several more decades. To put these
problems into perspective, for practical internal purposes such claims are likely to be
discounted, and hence their significance reduced. They may well be included implicitly
in special reserves, not specific to a given class or accident year, held in respect of
latent claims or for claims where the future development at such advanced stages
cannot accurately be quantified with any degree of certainty.
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Class 1 - the model

The initial graph of the log-incremental payments suggested that curves after year two
consisting of two exponential curves (i.e. two straight lines in the log-space) should be
examined. Although providing a good fit, none of these pairs of exponential curves
provided as good a fit as a Hoerl curve.

The Hoerl curve Residuals had a few spiky areas, but these were not felt to be
sufficiently material to alter the basic model. A Power curve with a reduced number of
accident year levels provided equally good fit statistics and higher levels of significance
for the parameters, but the Residuals were clearly unsatisfactory.

The tail calculation is a weakness for this type of model, as for later accident years the
tail is many times greater than the reserve up to development year thirteen to which the
model was extended (practical considerations again limited the number of years one
could extend the analysis in a spreadsheet). The total tail calculated is of the same
order as the rest of the total reserve for this class.

The final model, to year thirteen, consisted of twenty parameters:

al-al0 Ten Accident year level parameters
bl-b8 Eight initial quarterly payment parameters in the first two years
AB Two Hoerl curve parameters for development after year two

A further parameter was the adjustment to the decay rate in the tail.

This compares to, say, the forty-nine parameters one would have used in the basic
chain-ladder for such a ten by forty triangle.

This model had a very low Standard Error and a high R-squared of 0.989. This reflects
the very consistent incremental payments over the bulk of the triangle, and we would
expect to be able to make good predictions of the overall payments in the forthcoming
years for such a model. The model may not fare so well when considering the tail of
the distribution.

Class 3 - the model
Both the Exponential and the Hoerl curve provided good levels of fit to this data, but

not all the Hoerl curve parameters were significant and so the Exponential curve was
preferred.
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The final model had nineteen parameters:

al-al0 Ten Accident year level parameters
bi-b8 Eight initial quarterly payment parameters in the first two years
s One Exponential parameter for development after year two

A further parameter was the adjustment to the decay rate in the tail.

This model had a fairly low Standard Error and an R-squared of 0.987. Again this
reflects fairly consistent incremental payments over the bulk of the triangle. Some of
the tail projections for the older accident years only projected payments slightly above
or below the case estimates. This feature was left in the final reserve estimates as the
total Incurred (paid plus case estimates) position showed little or no development in
the final years. From the follow up data three years on, two of the last four accident
years in fact showed a decline in the total Incurred position over this period.

Class 5 - the model

This class proved the hardest to fit. Whereas classes one and three showed either rapid
growth then gradual decline or gradual growth then sharp decline, this class exhibited
both rapid growth and decline and accompanying mayhem in the payment, closure and
reporting of claims. The class, even if stable, is of a volatile nature being long tail and
the subject of some very large claims indeed.

This Hoerl family of curves is the only one that seemed to fit the class adequately. This
led to the potential model with the lowest number of parameters, as several accident
year levels and a group of the first eight quarterly, payment parameters were amenable
to being grouped together leaving an eleven parameter model. This had some slightly
unsatisfactory Residuals and seemed too few a number of parameters to describe a
large number of data points.

The twenty parameter model based on the Hoerl curve was chosen, but with slight
refinements to the two Hoerl parameters to reflect the apparent change in payment
patterns. The initial parameters, fitted by reference to the entire triangle, produced
payments that came through too quickly in the forthcoming years then died away too
rapidly, as inferred from the ebbs and flows of the payment and reporting patterns
across the accident years. The final model still probably suffers from the drawbacks
described in class one as to the too rapid decaying of the payments in the tail.

The final model had the same number of parameters as class one.
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Revisiting the models in three years time

For each class the original model was re-fitted to the updated data. Depending on the
difference between experience and expectation, and the fit to the latest data, the
original parameters were kept or the new ones adopted, in formulating a revised
estimate of the ultimate claims.

Class 1

Overall the predicted payments were very close to the actual payments. Although the
band for predicted payments was only 2.5% either side, the total payments were within
this band. The later accident years actual payments were on the higher sides of
expectation however, as suspected. The re-fitted model was very similar to the initial
model, but boosting the payments slightly. These new parameters were adopted, with a
slightly "thickened" tail decay parameter. This was the only class where the revised
estimate of ultimate claims was slightly higher than previously.

Class 3

Again overall the actual total payments were in the middle of the predicted payments
band. The model parameters were virtually unchanged from the original model and the
slightly revised parameters were adopted. The tail calculation was now changed to a
default of the case estimates if greater for the last few accident years - there are clearly
a few large claims outstanding and the best estimate of these seems to be the case
estimates themselves. The Incurred position for the older accident years had remained
at or about the same level as three years previously, and in some cases decreased, so
this seemed a satisfactory compromise. The estimates of ultimate claims remained
virtually unchanged for this class.

Class 5

The fitted parameters had moved towards the refined Hoerl curve parameters originally
adopted. Given the varying and variable forces acting on this class, the model seemed
to have produced good estimates of the outcome over the three years as a whole and
the original parameters were retained. With some reservations, the original tail
parameters were also retained.

The model as applied to the latest data produced the same levels of overall ultimate
claims, whilst increasing some of the latest accident years and decreasing some of the
earlier ones.
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6.2.3. Practical Limitations

All the analysis in section 6.2 was performed using a Lotus spreadsheet. There are
various limitations of spreadsheets generally when it comes to matrix manipulation or
performing regression analysis.

Part of the process of arriving at the variance-covariance matrix referred to in section
6.2.1.4 involves manipulating matrices. In most common spreadsheets there is a limit
to the size of matrix that can be multiplied or inverted. In Lotus or Excel this is about
an 80x80 matrix. This limits the number of future values the model can project to 80
points. Clearly for a ten accident year triangle, this is quite a considerable practical
constraint. However, it still allowed the models fitted to be projected to development
year thirteen, which is adequate for most purposes.

When performing the regression, there is a limit in the standard Excel regression
facility to the number of dependent variables of seventeen. For this reason Lotus was

chosen in preference, as the limit is seventy-five. The regression could of course have
been performed using matrices in Excel.
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6.3. Log-Incremental Claims I

6.3.1. Overview of method

The basis of this extension is the previous section where we considered the process of
modelling the log incremental claims. We are reminded that the stochastic framework
does not restrict itself to cash flows and these approaches can be applied to other
triangles of claim data. The extensions are:

1) The inclusion of an additional parameter to reflect the trends between every
two contiguous payment years.

2) The relaxation of the assumption that all claim payments are i.i.d. normally
distributed random variables. Thus the variances are allowed to differ by
development period. This extension may be desirable because variances often
change over development periods.

3) Varying parameter modelling. In the preceding descriptions it was commented
that b(0) is set to 0 to reduce equations to be solved. Through the use of
varying parameter modelling this problem of multicollinearity (more unknowns
than equations) is reduced. Varying parameter modelling is where we are able
to include relationships between the parameters. Thus we have dynamic
parameters by using exponential smoothing or credibility weighting. To solve
the subsequent equations we use generalised least squares. The Kalman filter is
a generalised least squares algorithm. [16]

The model does not purport to represent the underlying claim generating processes.
This approach is advocated on the grounds that the multitude of variables involved in
generating the claims are invariably complex and to attempt to model all the underlying
processes might lead to an imeffi¢ienenimpractical and potentially incorrect forecast.

Dr Ben Zehnwirth has developed a commercially available computer package called
ICRFS (Interactive Claims Reserving and Forecasting System) which embodies these
techniques. It has been used to analyse the test data. [17]
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6.3.2. Data Analysis

In general, the same techniques were used in fitting the parameters as outlined in
section 6.2.2 for log-linear regression, the main exception being that annual data only
was used. In practice the modelling process would include full interaction with a
reserving specialist who has business knowledge of the accounts. In this artificial
environment no information other than the actual triangles was provided.

Although for each of Class 1, Class 3 and Class 5 a number of loss development arrays
were available we only analysed the incremental payments and the closed claim counts.
The latter were analysed for the purpose of determining whether .

1 Any instability in trends in the incremental payments can be "explained" by
changes in the speed of settling claims.

2. The claim counts are more or less predictable than the incremental payments.

Accident years

More informed decisions about the future could be made if accident years exposure
bases were made available. The three incremental payment arrays present similar
accident year trends. That is the trends tend to increase until 1926 at which point they
decrease until 1928/1929. These changing trends may well be explained by changing
exposures.

Payment years

The three trends obtained for each model during the modelling process are diverse
ranging from 0% for Class 1 to 10.6% for Class 5 (even after adjusting for accident
year trends). An interesting result was that apart from Class 5 where there appeared to
be a slight increase in inflation in the later years the payment year trends appeared
stable. A different picture was obtained when looking at the data gross of salvage and
subrogation but this was outside of the scope of the working party's analysis.

Development Period factors

From inspection a model utilising probabilistic development factors was adopted rather
than a smooth curve model.
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Closed claim arrays

Closed claim arrays were analysed in order to determine whether instability of trends in
payments are 'caused' by changes in speed of settlement. From the analysis this did not
appear so. Moreover, the closed claim arrays appeared less stable than the
corresponding incremental payments.

Projecting beyond the triangle

In order to estimate the ultimate claims it is necessary to assume a pattern of claim
payments beyond the confines of the triangle. In the absence of additional information
it was decided simply to continue the latest probabilistic development factor into the
future and to assume the same inflation factor into the future. This is consistent with
an assumption of long tail for Class 1, medium tail for Class 3 and long tail for Class S.
Validation

An integral part of the modelling process is validating and testing the model for
stability.

This is performed by assigning zero weight to.

1) The last payment year 1931

2) The last two payment years 1931 and 1930.
i.e. we investigate whether the model would forecast the distributions of (incremental)
payments for the last two payment years, had we used the model structure at year end

1929 and moreover tested the estimates of outstanding payments for stability.

The validation analysis also aids in determining the most appropriate assumptions for
the future.
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Validation: Class 1

The validation table is as follows.

Years Included Future Payment Forecast To The

In Estimation Year Trend End Of Triangle
%

1922-1931] 0+0 367,243 £9.976

1922-1930 0x0 362,301 £ 15,180

1922-1929 0xo0 303,256 *+ 28,639

The validation for 1922-1929 illustrates that we would not have been able to forecast
the tail of the triangle (up to the development year 9) from the development patiern up
to year 7. This may be expected and does not cause concern but should be noted for
the purpose of estunating the tail beyond development year 9.

The standard error for the payment year trend was set to zero. This was done after
examining the test statistics which indicated that the parameter for payment year trends
was not significant. This view was taken as a result of the modelling process and
would require investigation.

The payment year trend was assumed from the payment year 1923.

We have estimated a base development year trend along development years 7-9 of
-21.05% % 2.57%. So for the future we are assuming that the mean base development

year trend is -21.05% and the standard deviation of the trend is 2.57%.

The total number of parameters used was 7.5 (the fraction is a consequence of as a
result of using dynamic parameters through the use of the Kalman filter).
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Validation: Class 3

The validation table is as follows:

Years Included Future Payment Forecast To The

In Estimation Year Trend End Of Triangle
%

1922-1931 244 £1.27 806,550 + 26,972

1922-1930 1.73+1.40 772,795 £ 29,778

1922-1929 1.74 £1.70 776,243 £ 41,279

The poor validation was a result of slight changing payment year trends. In a practical
environment the decision as to which trend is more appropriate for projection purposes
is required. We were not in a position 1o justify any change in the model.

The payment year trend was assumed from the payment year 1923

We have estimated a base development year trend along development years 5-9 of
-70.85% =+ 2.10%. So for the future we are assuming that the mean base development
year trend is -70.85% and the standard deviation of the trend is 2.10%. This would be
in accordance with the business being medium term.

The total number of parameters used was 6.8 (as a result of using dynamic parameters)
Validation: Class 5

The validation table is as follows:

Years Included Future Payment Forecast To The
In Estimation Year Trend End Of Triangle

%
1922-1931 10.74 £ 2.49 875,767 £ 57,665
1922-1930 12.08 £3.19 874,564 + 90,675
1922-1929 19.88 +4.]12 1,081,002 £174,262

The validation result when we removed two payment years was a result of a change in
the inflationary trend (as can be seen). In a practical environment the decision as to
which trend is more appropriate for projection purposes is required. Again we were
not in a position to justify any change in the model.
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The payment year trend was assumed from the payment year 1923,

We have estimated a base development year trend along development years 6-9 of
-39.03% * 3.55%. So for the future we are assuming that the mean base development
year trend is -39.03% and the standard deviation of the trend is 3.55%.

During the modelling process it was discovered that the development pattern for
development years 0 to 1 for accident years 1922 to 1927 exhibited a different pattern
from those of 1928 onwards. The decision was taken that these observations would be
weighted out because the underlying development pattern had changed and the results
presented are from the model created using these weightings. Without this allowance
the mode! would have been very unstable.

The total number of parameters used was 6.0 (as a result of using dynamic
parameters).

Comparison with next three years payments

Normally this process would be carried out annually and in a practical environment
where our analysis indicates we would modify the model to incorporate later years
information.

On initial inspection Class 1 and Class 3 appeared to forecast reasonably well in
comparison with the actual payments. Class 5 did not appear to compare well and this
was due to the inflation parameter, which was identified as a problem during the
validation process.
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6.3.3. Practical Limitations

In theory one could perform the calculations in a spreadsheet, as indicated in 6.2.3 for
the log-Incremental method. However use of dynamic linear modelling, such as the
Kalman filter, introduces a level of complexity which would be difficult to program and
run in a reasonable timeframe. Therefore in practical terms commercial packages are
required.
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6.4 An Operational Time Stochastic Model
6.4.1 Description Of Method

This model has been developed by Tom Wright [18]. The model attempts to (partially)
represent the underlying claim generating process. It starts with the premise that the cost
of settling claims depends on the order in which they settle. Typically, for example, later
settled liability claims cost more.

The method therefore develops a mode] of the claim settlement cost, as a function of the
relative proportion of claims settled.

The method is likely to be of greatest use in circumstances where the greatest source of
variation in predicting ultimate claim cost is due to the individual claim costs e.g. in
motor bodily injury.

Ultimate numbers of claims are required, and timing of cash flows are derived from a
given settlement pattern for claim numbers. The method gives the individual expected
cost of each claim.

The concept of operational time can trace its origins back to the model developed by
Harry Reid in 1979 [19], which was done in a non stochastic framework. The concepts
were further developed by Taylor [20], [21].

6.4.1.1. Data

There are two base data triangles required, one containing claim numbers and a second
containing loss amounts. Generally, these may take one of three forms:

Claim Number Triangle Claim Amount Triangle
a) The number of claims closed total of all payments on claims closed with
part payments assigned to the development
period of closure
b) The total number of payments, usual paid loss triangle, with each part

including part payments payment assigned to the development
period in which it was made.
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c)The number of claims closed usual paid loss triangle, with each part
payment assigned to the development
period in which it was made.

Data in formats a) and b) are equivalent from a modelling point of view. Format c)
requires a more detailed model which may make effective use of an additional triangle,

namely one containing numbers of claims outstanding. Format c) is the one usually
encountered in practice.

6.4.1.2. Notation

Throughout the rest of this note, the following notation is used:

Subscripts:  w Year of Origin

d Development period
T Operational time
Triangles: Nw.d Number of claims closed

Yw d Paid loss amounts

Xw.d Random variable of individual claim amounts

Sw.d Observed average claim amounts (that is, Yy, 4 / Ny d)
Tw,d Average operational times

Estimated ultimate number of claims: Mw
Mean claim amount in real terms: mq

6.4.1.3. Operational Time

Operational time (1) is defined as the proportion of all claims closed to date. Thus for
each origin year, operational time starts at 0 and increases ultimately to 1.
Transformation into operational time eliminates the need to model settlement rates.
Use of operational time overcomes a major problem with stochastic modelling in
development time. It is often the case that large claims take longer to settle than small
claims, for this reason we model m as a function of 1. When modelling in development
time, because the time to settlement for an individual claim is uncertain, the
appropriate claim size distribution for that claim is also uncertain. Whilst it is not
difficult to calculate the expected value of projected future claim payments, the
calculation of standard errors is extremely complex (except in the special case where
the claim size distribution does not vary with delay).
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6.4.1.4, Claim Numbers

The first step in the modelling process is to estimate the ultimate number of claims
M,y and their standard errors. Where triangles are compiled on a notification year
basis, the number of claims is known, that is, it is equal to the number reported.
Where data is analysed on an accident or underwriting year basis, then the expected
ultimate number must be estimated by another method. The possible methods to
obtain these estimates and their standard errors are not dealt with in this paper.
6.4.1.5. Initial Assumptions

In order to clarify the explanation of the modelling process, we make some initial

assumptions which will be relaxed later. All these assumptions may be tested by use of

residual plots and other diagnostic tests, they are not general restrictions on the validity
of the model

) The expected claim size in real terms my is the same for all years of origin, that
is, m¢ does not depend on w.

(i) The coefficient of variation () of individual claim amounts is the same for all
operational times, that is:
Var(X¢) = (p'z.mt:2
(i)  The data Y,y ¢ is not affected by inflation

(v)  The standard error of the ultimate number of claims is zero

(v)  Part payments are not present in the data triangles, that is, the data is of type a)
or b) as set out in section 3.

6.4.1.6. Modelling Under Initial Assumptions

A triangle of average operational times may be calculated as:

Tw‘d = (Nw‘l + Nw’2 + ... + Nw‘d.] + l/2 Nw‘d) / Mw
A triangle of average claim amounts may be calculated as:

Swd= Yw.d /Nw,d

Variance in Claim Reserving PageS8

58



In order to project future claim payments, we need a model for mg. This is act.ieved

by fitting models to the sample means S,, 4. To fit these models we need expressions
for the mean and variance which may be derived from the initial assumptions.

E(Sw,t) =me
Var(Sy 1) = 92.m2/ Ny, 4
It is not necessary to have any further knowledge about the distribution of S in order

to fit models of generalized linear form. Use of this form allows great flexibility in the
model for m¢. Use of a log link function (see Appendix 1) and a variety of terms in the

linear predictor enables the following example models to be tested:

Model Terms in the Linear Predictor
() mqg = exp(Bg + B) .1+ By . log(1) ) 1, T, log(t)
(i) me=exp(Bg+B;.1+08s. 12) 1, 1, 2
(i) my=exp(Bo+Bj.1+By 12+B3.1%) 1, T, 12, 14

These and other models may be fitted to the observed data points (S, d. Ty d). the
fitted models extending over the range (0, 1)

6.4.1.6.1, Model Zero

The modelling process starts with the fitting of a deliberately over parameterised model
(model zero) which consists of a piece-wise exponential function of 1. The number of
sub intervals can be chosen to make the model as flexible as desired. This model may
be used to test assumption (i), the variance assumption, and also to quantify the
amount of random variation in the data. This enables subsequent F tests to determine
the best model. The variance assumption is tested by examining plots of standardised
residuals against operational time. If mq has been fitted using model zero, then the

variance of the standardised residuals, Var((Sy, ¢ - mt)-‘ij,r / m¢) equals @2, which

does not depend on 1. Hence if the pattern of the residuals does not vary with
operational time, then the variance assumption may be reasonable. If this is the case,
and residual plots against origin and payment periods also look reasonable, then the
fitted model zero may be used to quantify the random variation inherent in the data.
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6.4.1.6.2. Model Selection

Once model zero has been validated, other models for m; may be fitted and the

residuals checked for trends against operational time. F tests can be used to help find
the best model by identifying those models with the best compromise between a)
relatively few, and more accurately estimated, parameters, and b) residual variation
which is not much greater than the purely random variation identified in model zero.

6.4.1.6.3. Prediction

If a suitable model can be found, then the expected value of each future claim can be
obtained by evaluating the fitted value of m;. The variance of each future claim may

be obtained by evaluating <p2.m12 using the estimated values for ¢ and m;. Assuming

the amounts of future claims are statistically independent, the mean and variance of the
total may be calculated, augmenting the resulting variance to allow for estimation error
in the fitted means m. .

6.4.1.7. Relaxing The Initial Assumptions (%)

) The expected claim size in real terms my is the same for all years of origin, that
is, mt, does not depend on w.

This assumption may be relaxed by allowing the 8 parameter to vary with origin year.
In practice, at most, only two or three levels of this parameter are required for most
data triangles. Whilst this allows different groups of origin years to have different
levels of mq, it is still assumed that the pattern is the same.

(i) The coefficient of variation (¢p) of individual claim amounts is the same for all
operational times, that is:
Var(X¢) =(p2.m2

This may be replaced by:
Var(X¢) =<p2.m1‘1 for some a

This allows for the coefficient of variation of individual claims to depend on the mean
claim size. If examination of the residual plots against operational time for mode! zero
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with a=2 suggests that the variance is decreasing, then the model may be refitted using
a smaller value.

(i)  The data Y,y { has been adjusted to remove the effects of inflation

An overall rate of inflation may be simultaneously estimated as part of the modelling
process by inclusion of an extra parameter. If i represents the annual force of inflation
and p represents the number of development periods per year, then the example models
in 6.4.1.6 above, become:

Model Terms in the Linear Predictor

(i) me =exp(i.(wHd/p)+ g+ B} .1+ (5 . log(r)) w+d/p |, 1, log(t)

(ii) my = exp(i(w+d/p) + Bo+ By T+ By .12)  wHdp 1, 1, 12

L)

When fitting these models, the parameters estimated are ( i, By, B), By ).
Incorporating future claim inflation in the projections involves additional calculations
to quantify the variation due to uncertainty in the future rate of claim inflation and
uncertainty in the real time scale of the run off’
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(iv)  The standard error of the ultimate number of claims is zero

The estimated ultimate numbers of claims M,, are used for two purposes: a) for
calculating the triangle of operational times, and, b) in calculating estimates from the
fitted model. Provided the estimates M,, are unbiased and not highly correlated,
because the model is fitted to the whole triangle simultaneously, most of the variability
from source a) is already taken into account in the fitted scale parameter and any
additional variability can reasonably be ignored. The additional variability arising from
source b) can be quantified for each origin year in terms of a standard error u:

A

u= r,.m,+-’g_— Ry
M
where: [/ is the expected total of future payments for the origin year, calculated

by summing m for each expected future claim

n

M s the estimated ultimate number of claims for the origin year
Ty is the latest operational time for the origin year

m| is the fitted mean value corresponding to Tj

v is the standard error of the estimate

The expression in brackets above, is a weighted average of the fitted value at time 1|,

(my) and the mean value of future claims: (f / (A>I— Np) = a. That is, the expression in

brackets equals tp. my+ (1 - 11). a
(v)  Part payments are not present in the data triangles, that is, the data is of type a)
or b) as set out in section 3.

Where data is of type c), the model may be extended to allow for part payments as
outlined below
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6.4.1.8. Modelling Part Payments (%)

If m; represents the average cost of closed claims, but the observed data contains part
payments, then the data Yy, 4 has been increased by the amounts of these part
payments. This extra amount may be expressed as the number of part payments
multiplied by an average cost. If we express the number of part payments as a
constant proportion (c}) of the number of claims outstanding; and the average amount
as a proportion (c3) of the average cost of closed claims (m;), we have an expression

for the additional amount arising from part payments, that is:

Expected Number x Mean Amount = (c¢j.L).(ca.m¢)

Where L is the average number of outstanding claims corresponding to Y, 4.
Expressing this as an average amount per closed claim, and combining the constants ¢
and ¢y into a single value, ¢, we have the amount derived from part payments per
closed claim equal to:

c. (L/N). mq
The constant c represents the expected part payment per outstanding claim as a

percentage of the average cost of claims closed. Thus, expressing the ratio L, 4 /
Ny.d as Ry 4 we have:

E(Swd)=(1+c Ryd). me

The constant ¢ is usually small, typically around 0.1. This is because the number of
part payments per outstanding claim is usually small ( say 0.2 ), and the average cost of
those payments is often less than the average cost of closing payments ( say 0.5 );
hence multiplying these two factors together produces a small value for the ¢
parameter. Approximating (| + ¢. Ry, 4 ) as exp(c.Ry, ¢). this model can simply be
built into the model and the ¢ parameter estimated from the data as part of the fitting
process, making use of a revised model for Var(S,, ¢), namely:

Var(Sy 1) = p2.my2/ (exp(c.Ry g) - Ny d )
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Returning to our example models used earlier, we now have :
Model Terms in the Linear Predictor

(i) my = exp(c.Ry, g + i.(w+d/p) + By + By . 1+ By . log() ) Ry g. w+d/p. I 1. log(v)
(i) m = exp( CRy g+ i(w+d/p) +By+By . 1+By.72) Ryg wHdp. L 1. 12

The vector of parameters estimated becomes: ( ¢, i, 8, By, 2 ).

For some lines of business, it is unlikely that the rate at which part payments are made,
or their average costs as a percentage of closed average cost, remains constant across
operational time. This sort of change is accommodated within the same sort of model
described above; the effect is usually to make mq increase less rapidly, or even

decrease, as operational time approaches |.
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6.4.2. Data Analysis

General Points

$ Modelling in operational time is designed to give accurate estimates of the
expected cost of each future claim. The timing of those claims settlements is
an input to the model and is used to apply the effects of future inflation.

L In all three data sets, the data was modelled quarterly giving 220 data points
in each triangle.

L] No information was available as to the lines of business, claim types or actual
accident periods. This limited the reliability of the analysis. In particular, no
information was provided on the possible impact of part payments in the data.
For this reason, the modelling was carried out ignoring the possibility of part
payments. Including part payment parameters in the modelling may have
improved the reliability of the estimates, particularly for data set S.

. All three data sets have the feature that over 50% of claims (by number) are
settled in the first year and at significantly lower average cost than subsequent
claims. Improved models may have been obtained by fitting to development
after the first 4 quarters, which could have reduced the numbers of parameters
required to fit the models reliably.

L 3 Operational time (and most other) models are more reliable where different
claim types are analysed separately. Data set | appears to be subject to latent

claims which may not be fully reflected in the settlements to date as paid and
incurred development do not appear to be totally consistent.
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Data Set 1

There is significant development of claim numbers in the tail, and these claims are

generally settled at high cost. The estimated reserves are dependent on the accuracy of
the claim number estimates.

Numbers of claims reported were modelled using a number of methods and an ultimate
selected for each accident year.

Model zero was fitted using one level parameter for all origin years and seven intervals
in operational time. Examination of residuals led to a total of 6 origin year parameters
being fitted. This is an unusually large number for models of this sort which suggests
fundamental changes are occurring in the average claim sizes in this data set. The
origin year groups and operational time intervals fitted were:

Origin Year  Groups Operational Time Intervals
1922 1 0.000 <1< 0.179
1923 2 0.179 <1< 0.363
1924 3 0.363 <t< 0.556
1925 3 0.556 <1< 0.791
1926 3 0.791 <1< 0.894
1927 4 0894 <1< 0.948
1928 5 0948 <1< 1.000
1929 6
1930 6
1931 6

The first graph shows the fitted model zero and the data points. It is clear that over
60% of the claims are settled in the first development year, but the average cost of
those claims is around 1/20 of the average cost of claims settled in the tail. This
suggests that the data may contain a mix of claim types possibly with a changing mix
for different accident years.

The final fitted model replaced the 7 straight lines of model zero with 6 polynomial.
coefficients. The relatively large number of parameters was needed to cope with the
sudden increase in average cost at operational time 0.8. The 13 fitted parameters are
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shown below together with their standard errors.
freedom and is plotted in the second graph.

Past Force Of Inflation:

Origin Year Group 1

" ‘t7
" .8

AN bh W

Estimate

0.090

0.059
0.154
0314
0.171
-0.155
-0.348

4.365
-13.219
62.930
-309.011
428.698
-169.903

This model has 207 degrees of

S.Err

0.008

0.088
0.080
0.065
0.055
0.049
0.037

0.485
1.869
8.816
42.377
59.060
24.140

or

The residual plots against origin year show a greater spread for 1929 and 1930 than for
earlier years. This may be indicating that the pattern of average costs is changing.
However, changes in the claims settled in the first two years may not be a reliable
indicator for changes in claims settled in the tail.

The results from the modelling are set out below:

Oorigin

Year

1922
1923
1924
1925
1926
1927
1328
1929
1930
1931

Total

Expected

Amount

24,014
48,525
64,818
72,538
91,065
56,457
54,093
62,483
96,894
137,779

708,666

Parameter
Uncertainty

1,609
3,000
3,575
3,952
4,822
2,975
2,713
2,869
3,547
3,729

29,136

Inflation Severity

Variation Variation
523 6,175
1,182 9,308
1,712 11,794
2,025 12,575
2,630 14,096
1,643 10,268
1,554 8,352
1,716 7,836
2,506 9,124
3,162 9,641
18,652 32,147

67

Total Future Payments

Claim No.
Variation

2,769
5,399
7,023
7,684
9,348
5,613
4,995
5,117
6,110
9,082

20,858

Error Of
Prediction

6,975
11,233
14,288
15,391
17,783
12,186
10,221

9,938
11,808
14,118

51,626
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Comparison With Data Three Years Later

The mode! over estimated the cash flows in the following three years, mainly as a
result of the approximate estimates of the run off of claim numbers. However, the
estimated ultimate for the oldest accident year is just below the incurred claim figure 3
years later. This suggests that the overall reserve estimated may not be as
overestimated as the 3 year payment figure. Even three years later, the ultimates for
this class of business are very uncertain. Furthermore, there appear to be some latent
claim types that may not be fully reflected in the payments to date. Modelling
aggregate payments using other models gives estimated ultimates below the level of
current outstandings, but a reliable prediction of the next three years payments. The
operational time model estimates ultimates allowing for significant IBNR, but spreads
the reserve according to settlements and so overestimates the next three year
payments. The table below shows the difference in actual payments compared with
those estimated as a multiple of the estimated standard error.

Year Actual Payments
1922 -1.4
1923 -24
1924 21
1925 -1.9
1926 -23
1927 -1.1
1928 -0.8
1929 -2.0
1930 -1.5
1931 -0.6
Total -3.8
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Data Set 3

The development of claim numbers in the tail is relatively small, no new claims being
expected for the oldest origin year. The estimated reserves are dependent on the
accuracy of the claim number estimates and so the estimates for this data set should be
more reliable that for the first data set.

Numbers of claims reported were modelled using a number of methods and an ultimate
selected for each accident year.

Model zero was fitted using one level parameter for all origin years and seven intervals
in operational time. Examination of residuals led to a second origin year parameter
being fitted for 1925 and 1926 as these years appear to have a higher average cost.
The origin year groups and operational time intervals fitted were:

1931

Origin Year  Groups Operational Time Intervals
1922 1 0.000 <t< 0.219
1923 1 0.219 <1< 0407
1924 ] 0.407 <1< 0.585
1925 2 0.585 <t< 0.807
1926 2 0.807 <t< 0.894
1927 1 0.894 <t< 0949
1928 1 0949 <1< 1.000
1929 I
1930 ]

1

The first graph shows the fitted model zero and the data points. It appears that over
80% of the claims are settled in the five development quarters, but the average cost of
those claims is significantly lower than the average cost of claims settled in the tail.
This suggests that the data may contain a mix of claim types.

The final fitted model replaced the 7 straight lines of model zero with 6 polynomial
coefficients. The relatively large number of parameters was needed to cope with the
sudden increase in average cost at operational time 0.8. The 9 fitted parameters are
shown below together with their standard errors. This model has 210 degree of
freedom since one negative increment was excluded from the fit. The model is plotted
in the second graph.
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Estimate S.Error

Past Force Of Inflation : 0.022 0.002
Origin Year Group 1 ; 0.694 0.084
"o " 2 : 0.798 0.084
Predictor Term t : -4.024 2.331
" " IZ . 4 1 996 19206
! " 13 : -181.670 68.465
] " 14 : 384.976 119.126
" " 15 : -39L6]0 99.629
; w6 - 153.070 32.046

The residual plots are generally well behaved for this data set and the results from
the modelling are set out below:

Total Future Payments

Origin Expected Parameter Inflation Severity Claim No. Error Of
Year Amount Uncertainty Variatiean WVariation Variation Prediction
1922 1,957 :1:] 1 1,57 [¢] 1,973
1823 2,902 130 4 2,405 306 2,428
1924 5,497 246 12 3,321 548 3,375
1925 12,584 565 32 5,281 828 5,375
1926 22,057 879 60 6,942 1,376 7,144
1927 31,953 1,361 94 7,812 1,934 8,163
1928 60,817 2,422 187 10,368 4,068 11,388
1929 129,331 4,420 423 13,942 7,608 16,491
1930 231,499 6,069 838 16,525 11,659 21,132
193 422,476 7,318 1,473 18,303 20,808 28,700

Total 921,074 22,832 3,125 32,676 25,496 47,422
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Comparison With Data Three Years Later

The next three years development indicated that the model underestimated 1927

accidents and overestimated those from 1929 and 1930.

The projected cash flows over the following three years are based on an
approximate model for the numbers settled and hence not too much notice should be
taken of the significance of theses results. The table below shows the difference in
actual payments compared with those estimated as a multiple of the estimated

standard error.

Year

1922
1923
1924
1925
1926
1927
1928
1929
1930
193}

Total

Actual Payments

-0.8
-0.1

0.0
-0.7
-0.1

23
-0.7
-1.6
-2.4
-0.5

-1.8

71
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Data Set 5

The development of claim numbers in the tail is relatively small, with only a few new
claims being expected for the oldest origin year. Numbers of claims reported were
modelled using a number of methods and an ultimate selected for each accident year.

Model zero was fitted using one level parameter for all origin years and 13 intervals in
operational time. Examination of residuals led to no additional origin year parameters
being fitted. The origin year groups and operational time intervals fitted were:

Origin Year  Groups Operational Time Intervals
1922 1 0.000 <t< 0.130
1923 1 0130 <1< 0.234
1924 ] 0234 <1< 0.30]
1925 1 0.301 =<t< 0407
1926 ] 0407 <1< 0.467
1927 ] 0.467 <1< 0.597
1928 1 0.597 <1< 0.652
1929 1 0.652 <1< 0.724
1930 1 0.724 <1< 0.788
1931 1 0.788 <1< 0.845

0.845 <1< 0.897
0.897 <t< 0948
0.948 <t< 1.000

The first graph shows the fitted model zero and the data points. It appears that over
60% of the claims are settled in the five development quarters, but the average cost of
those claims is significantly lower than the average cost of claims settled in the tail.
This suggests that the data may contain a mix of claim types.

The final fitted model replaced the 13 straight lines of model zero with 4 polynomial
coefficients. The 6 fitted parameters are shown below together with their standard
errors. This model has 214 degrees of freedom and is plotted in the second graph.
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Estimate S.Error

Past Force Of Inflation :0.087 0.005
Origin Year Group 1 o 1167 0.036
Predictor Term 13 0 1.229 1.655
" "gS . .76.016 16372
" n <6 ©140.315 28.033
" noq7 . -67.937 13.385

The residual plots are generally well behaved for this data set and the results from

the modelling are set out below:

Total Future Payments

Origin Expected Parameter Inflation Severity Claim No.
Year Amount Uncertainty Variation Variation Variation
1922 8,849 924 83 5,659 1,923
1923 17,371 1,785 181 7,996 2,579
1924 32,037 3,253 377 10,964 3,863
1925 66,921 6,412 882 15,900 5,437
1926 95,928 8,662 1,383 19,071 6,779
1827 122,238 8,768 1,982 20,924 6,186
1828 97,086 6,271 1,681 18,445 5,781
1929 124,181 6,775 2,361 20,376 6,353
1930 166,521 7,987 3,519 23,236 8,232
1931 219,703 9,532 4,968 26,101 15,593

Total 950,833 59,212 17,417 56,983 22,886

Comparison With Data Three Years Later

Error Of
Prediction

6,049

8,593
12,077
18,008
22,059
23,598
20,391
22,517
26,151
32,248

87,065

The next three years development indicated that the model overestimated the

development in the tail.
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The projected cash flows over the following three years are based on an
approximate model for the numbers settled and hence not too much notice should be
taken of the significance of theses results. The table below shows the difference in

actual payments compared with those estimated as a multiple of the estimated
standard error,

Year Actual Payments
1922 -0.3
1923 -0.8
1924 -0.9
1925 -0.9
1926 -0.6
1927 -1.1
1928 -0.7
1929 0.8
1930 1.0
1931 0.3
Total -0.4

To investigate the cause of the overestimation in the tail, the model was refitted to
the data three years later and two possible causes identitied. Firstly, inflation over
the three year period was significantly lower than the average of past inflation.
Secondly, the original model assumed that the average cost of claims increased
significantly as operational time approaches 1. In fact, many claims in the tail were
settled at low cost so that the model of average cost possible should have been
decreasing in the extreme tail.

The original model was also refitted allowing for a part payment parameter. This
produced more accurate estimates of the development in the tail. However, it is

unwise to fit this parameter unless one has knowledge about the nature of the part
payment process for the particular data set being analysed.
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6.4.3. Practical Limitations

Model depends on a reliable model for claim numbers.

Whilst these models may be fitted in the GLIM package [7], they are time consuming
to develop. Otherwise a commercial package could be purchased.
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6.5. Bootstrapping

6.5.1. Overview of Method

This method does not by itself generate claim reserves. Rather it is a mechanism for
measuring the uncertainty of a particular method e.g. chain-ladder. It utilises the errors
between the particular method and actual observed data to generate alternative 'actual’
data. The method is then repeatedly used to generate a distribution of claim reserves.

It can be applied to any particular chosen deterministic method which works directly
on the claims data. It does not work for methods which require an external information
feed e.g. Bornhuetter-Ferguson.

The method is conceptually a good all-purpose way of measuring the uncertainty of
any chosen deterministic method. However, unlike some of the previous methods
described it does not provide a detailed breakdown of the sources of error, and
requires a lot of computer time to generate the results. One area where it does score,
however, is in enabling the modeller to assess how much of the variability in reserves
arises from the statistical error (the random "noise” of the claims process) and how
much comes from the reserving method itself. This information is not provided by any
of the other methods.

6.5.1.1. Introduction

Because Bootstrapping in a reserving context is relatively unknown, this section gives
a general explanation of what the technique involves, and then goes on to examine two
reserving models to which it can be applied.

6.5.1.2. What is it generally?

Given a sample of data A, from an unknown distribution B, Bootstrapping is a
technique for obtaining information about a random variable C(A B) by re-sampling
the observed data A in an appropriate way.

6.5.1.3. What are A,B,C in a reserving context?

Consider an estimate of outstanding claims. A triangle of paid claims, say, is taken
("A"). The claims have some unknown distribution ("B"). A model is fitted to the data,
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which produces estimates of past (fitted) and future claim payments. The future claim
payments, or Reserve, is a random variable ("C(A,B)").

The model, or reserving method, can be a simple model, such as the basic Chain-ladder
method, or a more complicated method, such as a Regression model based on Log-
Incremental payments.

6.5.1.4. What does Bootstrapping add to basic Chain-ladder
methods?

In the reserving example above, Bootstrapping lets us produce an estimate of the
variance of the Reserve, C(A,B). The basic method only gives us a point estimate of
the Reserve, with no indication of the extent to which we expect the Reserve to vary
either side of this expected value. The analysis in 6.5.2 will show how we can obtain a
graph of the distribution of the reserve, with accompanying estimates of variance, from
Bootstrapping a basic Chain-ladder reserving method.

Reserving methods, whether basic or more sophisticated, make implicit or explicit
assumptions about the claims process in fitting a model to it. By providing information

about the fit of a model, Bootstrapping lets the modeller assess how appropriate these
assumptions are.

6.5.1.5. Can Bootstrapping add anything to more sophisticated
models?

Yes. Take for example the Regression model based on Log-Incremental payments
from the 10A claims reserving manual. The model of the claim process is described as:

Log(Pij) = a(i)+b(j))+Ej)

where Pij are the claim payments in Accident Year i at development period j, a(i) and
b(j) are the parameters fitted by the model and Eij is an Error term.

The method produces Maximum Likelihood Estimates for the expected values of
claims payments, MLE(E(Pij)). But the MLEs are biased, that is:

E(MLE(E(Pij))) > E(Pij)

The MLEs are asymptotically unbiased, i.e. as the sample size gets larger,
E(MLE(E(Pij))) gets nearer to E(Pij). However, for “small" sample sizes, as is usually
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the case with reserving data, the E(MLE(E(Pij))) may be considerably different from
E(Pij). Bootstrapping lets you make an estimate of this bias and may provide a better
estimate than a traditional asymptotic estimate (e.g. a maximum likelihood estimator)
with only a small sample size. The examination of bias was the original impetus for
looking at Bootstrapping (or more generally, the Jackknife).

Some more sophisticated models produce estimates of the variance of the projected
reserve. Bootstrapping can give the modeller an indication of an extent to which the
model variance is a result of the underlying "noise" in the data (Statistical error) or due
to uncertainty in the modelling process itself - such as mis-specifying the model, or the
fact that the estimates of the parameters of a model are themselves random variables
and contribute a degree of uncertainty to the predicted reserve.

6.5.1.6. Is it as easy as A,B,C?

Yes and No! Consider the basic Chain-ladder model. The model produces fitted values
for past claim payments, which are different from the actual claim payments. These
differences between fitted and actual values are called the Residuals. Given "n" such
Residuals each can be given a "mass”, or probability of 1/n, to produce an empirical
distribution for that set of Residuals. A random selection from this empirical
distribution is chosen, which generates a new set of data, called Pseudo-data. This
process can be repeated many times to produce a large collection of such sets of
Pseudo-data. For each set of Pseudo-data the reserving model can be applied and a
Reserve estimate produced - a Pseudo-Reserve. If enough sets of Pseudo-data are
produced we can produce an estimate of the distribution of the Pseudo-Reserve and
infer details about its distribution, such as its variance. The approach is outlined
graphically below:

Do

Data Triangle Model and Reserve : 5’
A /

Residuals

D2 R2 D03 R3 Jr on Rn
m i Pseudo-Data [__—_— U
i!} [ T ;

[}

1 i
Distribution of Reserve L(_.’_i H‘
FromR1,R2, ... Rn i l | | H—L_ .
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We can also go one step further, and produce a set of Pseudo-Data for all future values
in a similar way. These future Pseudo-Data represent "reality"; they are the simulated
completion of the rectangle. The Pseudo-Reserve, however, is still calculated from the
first "half" of the rectangle and attempts to "fill in" the rest, using, in this case, the
chosen reserving method.

We expect the Pseudo-Reserve Standard Error to be made up of an error due to the
randomness of the underlying data (often called "Statistical Error", as indicated by the
Standard Error of the future Pseudo-Data) plus other error terms due to the
specification of the model and the ability of the model to fit the correct parameters,
even if the model were correct. Comparing the relative sizes of the Standard Errors of
the future Pseudo-Data and the Standard Errors of the Pseudo-Reserve, gives an
indication of the extent to which the variability in reserve estimates is due to the
underlying noise of the data, as opposed to variance introduced by the process of
estimating the reserve.

6.5.1.7. A small amount of theory

To be able to justify inferring results from Bootstrapping, the Residuals should be
independent and identically distributed (there is no requirement for them to be normally
distributed). If one looks at cumulative data, the residuals are unlikely to be
independent, so the method tends to be applied to incremental data. Some
sophisticated reserving methods also make assumptions about Residuals, but tend to
make the more restrictive assumption that they are independent, identically and
normally distributed.

6.5.1.8. What can Bootstrapping be applied to?

Any reserving method that can be performed automatically in a spreadsheet is
amenable to Bootstrapping methods. Once Bootstrapping has been set up for one
reserving method, it can quite easily be extended to another. For part of the analysis
that follows in 6.5.2 the Add-In @Risk is used in conjunction with a Lotus
spreadsheet.

@Risk lets one enter random variables in a spreadsheet cell. @Risk then effectively
recalculates the spreadsheet as many times as required, each time picking a value from

the chosen random distributions and collating statistics regarding chosen cells in the
spreadsheet that are functions of the random variables. In this case, the random
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distribution is just re-sampling the triangle of Residuals. @Risk is available for a few
hundred pounds and can be added to many standard spreadsheet packages, such as
Lotus, Excel or Symphony.

Whilst the results for more basic models should be treated with caution, for any
method that can be performed in a spreadsheet, Bootstrapping provides a first estimate
of the variance of reserves which is certainly better than no estimate at all. Very little
extra effort is needed, once one has a clear idea of what one is trying to do! The
method boils down to recreating lots of sets of triangles, and then performing one's
reserving method on those new Pseudo-Data triangles. The reserving methods are
usually such that they can just as easily be applied to the new triangles of Pseudo-Data
as to the original data, so the bulk of the effort goes into re-sampling the Residuals to
come up with lots of sets of Pseudo-Data.

To illustrate the technique, section 6.5.2 examines the application of Bootstrapping to
the basic Chain-ladder method and to Regression models based on Log-Incremental
payments. For the first method information is obtained about the distribution of the
reserve that was not available from the original method alone. For the second method,
we can examine the extent of the Bias in the model and the breakdown of the Standard
Errors produced by the model between Statistical Error ("noise" in the data) and
additional sources of error introduced by the process of reserving.
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6.5.2. Data Analysis

We have seen above that Bootstrapping is not itself a reserving method, it is just a
technique for enhancing the information available regarding existing reserving
methods. This section will not dwell therefore on the results obtained for particular
classes, but will illustrate some of the information that Bootstrapping provides and
comment on how the techniques were applied in practice.

Bootstrapping the Basic Chain-ladder

The analysis was performed in a Lotus spreadsheet for each class. A volume-weighted
quarterly chain-ladder was performed. A volume weighted approach has the benefit
that all the Residuals for each accident year add up to zero, and hence the Residuals in
total add up to zero. Having completed the square, both for the future payments and
the fitted past payments, the difference between the fitted and actual incremental claims
was calculated - this is our set of Residuals.

To construct a set of Pseudo-Data, which is the heart of the technique, lots of sets of
Residuals need to be calculated and added to the original set of fitted past data. This
was done using the Lotus Add-in @Risk, as described in 6.5.1.8. From each set of
Pseudo-Data, the revised cumulative triangle was constructed and the chain-ladder
applied to produce a reserve estimate - the Pseudo-Reserve.

The Add-in @Risk performs all these simulations by adding a Residual, picked at
random, from the set of Residuals to each original past fitted data (the choice is
different for each point but can replicate the choice for other points in the triangle).
The new Pseudo-Reserve is calculated (by calculating the spreadsheet within @Risk),
and the results collated so the distribution of the Pseudo-Reserve and statistics of
interest can be examined.
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A sample of the distribution output is given below. It shows the distribution of the
reserve estimate calculated by the basic chain ladder on 5,000 sets of Pseudo-data for
Class one, Accident year 1926:

Expected
Resuk=
30.52163

. ; Samblnas ”
PSEUDO _RESERVES #Tnals= _ $000

’5% e A P e E v e R frE A S SR T YN R AT LB AL I AR L A AB RSB RN ha ey b et . ame s nas o

12,8% =f=coe-emmemericans
9'6% -L ------------------------------
6.4% ~p-remsemesmnioomeenns

3.2% <peeececeiosiiemanes

0%
5 10.625 16.25 21.875 27.5 33.125 38.75 44.375 50
Values in Thousands (in Cell BC251)

The graph shows the extent to which the reserve estimate of the basic chain-ladder
varies either side of the expected value, assuming that the variation of the Pseudo-Data
is typical of the variation of the claims process underlying the data for Class one. Such
graphs and accompanying statistics could be provided for any reserving method that
can be set up in a spreadsheet to provide a point estimate of reserves by a simple
recalculation of the spreadsheet for a given set of data. Clearly this is information of
interest and an improvement on a single point estimate of the reserves.

The Bootstrapping output includes estimates of the Standard Error of the reserve
estimate for each accident year and for the reserve estimate for all accident years
combined. These were perhaps not surprisingly higher than the SE's as calculated by
the Log-linear regression methods indicated in section 6.2, but they were only
different by a factor of about two, so could not be said to be unreasonable.

As well as the distribution of the reserve, Bootstrapping can give this user an idea as to
what goes into the variability of the claims estimate, as indicated in section 6.5.1.6.
This is done by comparing the variability of the Pseudo-reserve estimate with the
variability of the Pseudo-data for those future payments. We expect the reserving
method to add uncertainty to the underlying claims process, and so by comparing the
two, we can examine the components of the reserve SE.
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The following table shows the Pseudo Reserve and future Pseudo-Data to
development year nine for Class five. We observe that the Pseudo-Reserve SE is
greater than the Pseudo-Data SE - this gives us a measure of the variability that the
reserving process is adding relative to the implicit variability of the claims process:

Bootstrapped Basic Chain-ladder Proportion | Proportion
Future ofreserve | of resene
Class 5 Pseudo ermor error
Resarve Data dueltd due to
Accident to year SE/ to year claims resening
Year nine Resene nine process process
Predicted 1922
SE
Predicted 1923
SE
Predicted 1924 12,352 12,303
SE 3,216
Predicted 1925 37,603 37,581
SE 11,562 31% 4,536 39% 61%
Predicted 1926 73,585 73,547
SE 12,283 17% 5,633 46% 54%
Predicted 1927 71,944 71,882
SE 11,663 16% 6,487 56% 44%
Predicted 1928 69,919 69,915
SE 12,375 18% 7,214 58% 42%
Predicled 1929 92,312 92,289
SE 14,753 16% 7,936 54% 46%
Predicted 1930 123,674 123,578
SE 18,527 15% 8,490 46% 54%
Predicted 1931 163,576 163,369
SE 28,923 18% 9,233 32% 68%
Total 644,965 644,463
55,485 9% 19,075 34% 66%
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The results are displayed graphically as follows:

Components of Reserve Variability

Class $ Boostrapped Basic Chan.ladder
1004

80%
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40%
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- Claims Process Reserving Process

The split of the reserving variability worked best for class five, which was itself the
most variable class. For other classes for some accident years, the variability of the
reserve was largely or entirely attributed to the claims process, which is clearly

unrealistic, but perhaps a function of the over-parameterised nature of the basic chain-
ladder.

A weakness in all the above is the assumption that the Residuals are uniform across the
triangle. Clearly the payments in the initial years are substantially larger than the
payments in the later years, so the Residuals in the earlier years, if added to the fitted
payments in the later years, may be imparting an undue amount of variability to that
section of the Pseudo-Data. That said, however, it is the tail of the triangle where a
few large claims may have a particularly distorting effect, so that is not to say that the
larger Residuals applied to the smaller payments is completely unrealistic.

The problem of applying one set of Residuals to the entire triangle can be overcome by
scaling the Residuals, or partitioning them into several sets - an early and a late
development set, for example. This was briefly examined and did not materially affect
the results and is not considered further.

Bootstrapping the Log-Linear Regression method
The previous section described how Bootstrapping could enhance the information

gleaned from basic chain-ladder reserving methods. This section describes how the
techniques can be used to look at more sophisticated methods.
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One use of the technique is to look at the components of reserve variability in the same
fashion as that done for the chain-ladder. To do this, the log-payments were
bootstrapped. That is to say the Residuals were taken to be the set of differences
between the actual and fitted log-payments.

The Add-in @Risk could not be used for Bootstrapping this method, as the results
could not be obtained by a simple calculation of the spreadsheet. Instead a simple
macro was constructed to loop through choosing from the set of Residuals, forming
the new set of Pseudo-Data, performing the regression on the Pseudo-Data, calculating
the expected reserve from the revised set of regression parameters, and collating the
results.

The results are summarised below, in a similar fashion to that shown previously:

Bootstrapped Log-Linear Proportion | Proportion
Future of resene | of resene
Class 1 Pseudo eror error
Resene Data due to due to
Accident to year SE/ to year claims resensng
Year thirteen Resene thirteen process process

Predicted 1922 6,537 6,475

SE 564 9% 286 51% 49%
Predicted 1923 14,116 14,097

SE 1,062 8% 652 61% 39%
Predicted 1924 24,670 24,717

SE 1,607 7% 878 55% 45%
Predicted 1925 36,610 36,617

SE 2,157 6% 1,423 66% 34%
Predicted 1926 48 448 48,184

SE 2,352 5% 1,790 76% 24%
Predicted 1827 37,244 37,080

SE 1,481 4% 1,160 78% 22%
Predicted 1928 31,853 32,066

SE 1,085 3% 966 89% 11%
Predicted 1929 38,826 39,450

SE 1,338 3% 1,326 99% 1%
Predicted 1930 73,619 73,660

SE 2,683 4% 2,714 100% 0%
Predicted 1931 121,166 120,743

SE 5,349 4% 3,245 61% 39%
Total 433,090 433,099

12,361 3% 5,993 48% 52%

The SEs are of a similar size to those predicted by the Log-linear regression method in
6.2.2. The components of reserve variability are now less for the reserving process
than for the claims process - although the reserving process element is still understated.
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It is interesting to compare these results with those for the basic chain-ladder, which
had considerably more uncertainty being added by the reserving process.

The results are again displayed graphically below:
Components of Reserve Vanablllty

Class | Bommppad Log-Linear Regression
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The other area which Bootstrapping can be useful in investigating the bias of methods
such as Log-linear regression. Section 6.2.1.2 and 6.5.1.5 described how the process
of transforming from estimated log-payments to estimated payments introduced bias
into the reserving process for this model.

How big do we expect this bias to be? Section 6.2.1.2 detailed an adjustment to the
biased payments, involving a daunting-looking infinite series. The series can be
simplified to a few terms, for sizes of n (number of observations), p (number of
parameters) and small model variance, of the orders of magnitude we are usually
dealing with in a reserving context. This reduces to:

Corrected Payments / Uncorrected payments = m / (m+1)

wherem=n-p

In other words our uncorrected payments are about 1/m too big, or around 1% in the
context of the models looked at in section 6.2.
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To examine the bias, we need to Bootstrap the actual v. fitted payments, rather than
the actual v. fitted log-payments, as was done previously. This was done again using a

macro in a Lotus spreadsheet. The results are summarised below:

Bootstrapped Log-Linear Regression

(bootstrapping the actual payments)

Class 1 Pseudo Ratio
Pseudo Future Pseudo
Resene Data Resene
Accident | to year to year | to Pseudo
Year nine nine Future
Predicted 1922
SE
Predicted 1923
SE
Predicted 1924 8118 7,731 105%
SE
Predicted 1925 19,664 18,833 104%
SE
Predicted 1926 32,679 31,627 103%
SE
Predicted 1927 28,579 27,944 102%
SE
Predicted 1928 26,559 26,239 101%
SE
Predicted 1929 34,405 34,362 100%
SE
Predicted 1930 68,605 67,841 101%
SE
Predicted 1931 116,819 114,965 102%
SE
Tolal 335,428 329,680 102%

[Note that the Pseudo-Reserve and Pseudo-data figures for the above table only go up
to year nine, whereas the previous Bootstrapping table projected numbers up to year

thirteen, so the two sets of numbers are not directly comparable.]
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At first sight the results look as if they support the expected size of the bias. However,
the treatment of negative claims comes back to haunt the Log-linear regression
method. We have picked the Residuals from the entire triangle and applied them to all
the actual fitted payments. This means that payments in the tail have some large
negative payments. The model coped with this by setting such payments equal to the
actual original fitted payment - this in itself introduced bias in to the reserving process.

This bias will have caused some or all of the effects above. Time and materiality
prevented the working party looking into this further.
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6.5 7. Practical Limitations

The concepts of Bootstrapping are quite straightforward, the main limitation is the
speed at which computers can perform the many calculations required. The heart of the
Bootstrapping process is the construction of many sets of Pseudo-Data and the
collating of the Pseudo-Reserves calculated from each. This is a very intensive number
crunching process and needs a powerful PC if the calculations are to be carried out in a
realistic time frame. The Bootstrapping calculations were performed on a speed-
doubled 486 PC, operating at 66Mhz.

The Bootstrapping of the Basic Chain-ladder reserving method was carried out in a
Lotus version 2.0]1 spreadsheet with the Add-In @Risk. The spreadsheet comprised
fifteen 10x40 triangles (quarterly data was used), that is 6,000 individual calculations.
The re-sampling of the residuals involved a recalculation of a 10x40 triangle of past
and future payments, each cell being a random sample from 216 residuals. The add-in
@Risk provided the facility to enter the triangle of re-sampled residuals as random
variables in cells, and then collated the results for some 60 cells of interest within the
spreadsheet. This is clearly quite a number intensive spreadsheet! For each class 5,000
simulations were performed (i.e. 30 million individual calculations), which took about
ten hours. Similar work has been done for smaller, annual, triangles for which around
40,000 simulations can be performed in about ten hours. Though time-consuming, the
calculations are not beyond the scope of today's more powerful PCs.

The Bootstrapping of the Log-Linear method was not performed with the assistance of
@Risk. This was because the results could not be produced for each new set of
Pseudo-Data simply by recalculating the spreadsheet, because part of the process
involved performing regression on the Log-Payments each time. Instead a simple
macro was set up to run through a loop, each time selecting a new set of Pseudo-Data,
performing the regression, calculating the reserves and storing the results in a table.
This was equally time-consuming, and again about 5000 simulations could be
performed in ten hours.

The time constraints are clearly quite large, but, especially when annual payments are
being considered, need not pose a problem. Although it is helpful to have packages
such as @Risk to collate simulation results, the production of statistics regarding
Pseudo-Reserves and Pseudo-Data generally can still be performed in any
straightforward spreadsheet in a reasonable time frame.
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6.6. Summary of Results

The following tables bring together the results of using the three stochastic methods,
and Bootstrapping using the Basic Chain-Ladder on the three classes of data described
in6.1.

The modellers were asked to predict the payments over the next three years, and an
ultimate reserve. The tables show these predictions together with the actual payments

made over the three years, and the latest estimate of reserves required, excluding
IBNR.

It is interesting to compare the accuracy of the predicted payments, and whether the
ultimate reserve looks reasonable in the light of three years development. However the
main purpose of this entirely unrealistic exercise was to draw out the practical aspects
of these methods, and readers should not draw any conclusions as to the value of these
methods purely on the strength of the results shown here. In particular the results are
subject to a great deal of subjective judgement as the modeller is required to make a
number of assumptions in interacting with the models. In practice these would be made
on the basis of much additional information, some of which may be prompted by
skilled analysis of the diagnostics from using one or more of these statistical methods.
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7. Features of the Statistical Reserving Techniques
or
Rhen (an they be lsed?

Modelling Method

Features Log- Log- fOperational Bootstrapping
Incremental Incremental | Time
Claims Claims I1

Model
Developed to x X v 4
represent
underlying
Claims Process
Separation of
Different v v v (\/ )
Sources of

Variability
Allows
Projection v v v X
Beyond the
Range of the
Available Data
Independent of
Distributional X X v v
Assumptions
Handles
Negative X X X v
Claims
Adequately
Requires
Numbers as X X v X
well as
Amounts
Predicts future

Cash Flow v v X (\/ )

Note: () indicates basic approach can be extended to provide feature
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8. Benchmarking Statistical Reserving Techniques
or
How should we jinlee e success of a reserime lecligue.”

It is important to reiterate that the use of a particular reserving approach should not be
judged solely on the accuracy of its prediction, nor whether its standard error range
encompassed the ultimate result. Clearly these are important measures, but the benefits

to the practitioner of a particular reserving methodology embrace wider
considerations. These include

8.1

Do the diagnostics assist the practitioner to identify features in the data
requiring further investigation?

Is the method robust from year to year?

Does the method lend itself to a ready analysis of the changes from one
valuation to the next? (an "Analysis of Surplus')

Does the method aid the lay manager in making business decisions?

Why Methods Don't Always Predict the Future Accurately

Some of the more common reasons for a method failing to predict the future
accurately are:

L.

Future is not like the past.
Assumptions are wrong,

Note: The simple chain ladder also contains lots of implicit assumptions which
users should be aware of - Thomas Mack's paper [6] is well worth studying.

Paid and incurred may be giving different pictures.

May have ignored problems with the data / modelled the wrong data.
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9. Other Methods & Further Reading
or
Where Now.?

9.1. Further Reading

The numbers refer to references made in the relevant sections of the paper. Otherwise
papers are shown for the purposes of further reading.

[1JCHRISTOFIDES §.(1990) "Regression models based on Log-Incremental
payments”, Institute of Actuaries Reserving Manual
Volume 11

[2JEFRON B. (1979) "Bootstrap Methods, Another Look at the Jackknife"
(the 1977 Rietz Lecture), The Annals of Statistics Vol 7
No 1, pages 1-26

[3]JFINNEY D.J. (1941) "On the distribution of a Variate whose logarithm is
Normally distributed”, JRSS Supplement 7, pages 155-
61

[4JFREEMAN D.A. & PETERS S.C. (1984) "Bootstrapping a  Regression

Equation: Some Empirical Results", Journal of the
American Statistical Association Vol 79 No 385, pages
97-106

[SJHARRISON P.J. & STEPHENS C.F. (1976) "Bayesian Forecasting”, Journal
of the Royal Statistical Society (B) 38

[6JMACK T. (1993) "Measuring the Variability of Chain Ladder Reserve
Estimates", Casualty Actuarial Society

[7IMCCULLAGH P. & NELDER J.A. (1983) "Generalized Linear Models",
Chapman & Hall

[8J]MURPHY D.M. (1993) "Unbiased Loss Development Factors", Casualty
Actuarial Society
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[9JRENSHAW A_.E. (1989) "Chain-ladder and Interactive modelling", JIA 116 Part III
[10JTAYLOR G.C. "Regression Models in Claims Analysis I: Theory”

[11JVERRALL R.J. (1989) "A State-Space Representation of the Chain-Ladder Linear
Model”, JIA 116 Part III, pages 589-611

The chain ladder model parameters are fitted using a Bayesian approach

[12]JVERRALL R.J. (1991) "Chain-Ladder and Maximum Likelihood", JIA 118 Part
I11, pages 489-499

[13]VERRALL R.J. (1991) "On the Unbiased Estimation of Reserves from Loglinear
Models", Insurance: Mathematics and Economics, Vol 10
No. 1, Pages 75-80

(14]VERRALL R.J. (1993) "Statistical Methods for the Chain-Ladder Technique", City
University

[I5]VERRALL R.J. (1993) "Negative Incremental Claims: Chain-Ladder and Linear
Models", JIA 120 Part I, pages 171-185,

The practical problem of handling negative incremental claims when modelling

with a log incremental model is addressed. A statistical estimate of the "correct”
adjustment is given.

[16)WRIGHT T.S. (1990) "A Stochastic Method for Claims Reserving in General
Insurance”, JIA 117 Part IIlI, pages 677-733

[17YZEHNWIRTH B. (1990) "Probabilistic Development Factor Models with
applications to loss reserve variability, prediction intervals
and risk based capital”, CAS Loss Reserve Seminar 1990

[I8]WRIGHT T.S. (1992) "Stochastic Claims Reserving when Past Claim Numbers
are Known", PCAS 1992

[I9]REID D.H. (1978) "Claim Reserves in General Insurance”, JIA 105

[20)]TAYLOR G.C. (1981) "Speed of Finalization of Claims and Claims Run-Off
Analysis", ASTIN Bulletin 12, pages 81-100

[21JTAYLOR G.C. (1983) "An Invariance Principle for the Analysis of Non-Life
Insurance Claims", JIA 110, pages 205-242
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Appendix 1: Generalized Linear Models ("GLMs")

When we construct a model, we are trying to find a mathematical structure which
describes features of a set of data. In a stochastic model, we assume that the model has
a systematic element and a random element. GLMs comprise models whose systematic
and random components have a certain structure,

Consider modelling a set of data as a realisation of a set of random variables
(Y1.Y2,....Yn) = Y, with expected values (111,12,.....un) = &t = E(Y). GLMs are then
characterised by three features:

1. The Yji's have a distribution belonging to the exponential family. This
includes Normal, Poisson, Binomial, Gamma and X 2 distributions amongst others.

2. There is a set of factors affecting the model through what is called a
Linear Predictor, n, where (n).m2......... Nn) = n and:

ni = Z xij Bj for j=1......p, where xjj are a series of factors affecting
the model.

3. The linear predictor, n . is connected to the model by what is called a
Link function, such that:

n=g(u)

g has to satisty certain conditions, such as being monotonic and
differentiable.

A simple example of a GLM may make the above characteristics clearer. Consider the
classical linear model (otherwise known as the General Linear Model):

P
yi =.Zl xij Bj + i, fori=12...n, wheregjis N(0,62).
i
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This is a particular case of a GLM where:

1. The distribution is Normal.
14

2. The predictoris mi=>_ xjj Bj. fori=1.2,..n.
7151

3. The Link function is "identity", thatis n=g(u)=p.

GLMs cover a variety of familiar techniques, such as regression, analysis of variance,
analysis of contingency tables and so on. With the range of possible distributions and
Link functions, they also provide a much wider set of models which can be applied in a
reserving context, premium rating or a variety of other actuarial applications.
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Appendix 2: Glossary

Below is a brief list of terms commonly used in the statistical techniques described in
this paper, and their associated definitions

Akike Information Criterion (AIC) A discriminatory statistic to indicate the level of
significance of the number of parameters used in
a model relative to the number of degrees of
freedom available. The measure contains a
penalty factor if too many parameters are used.

Bayes Information Criterion (BIC) A variant on AIC, which is generally believed to
be more powerful.

General Linear Models special case of the Generalized Linear Model
with the Link function set equal to the identity.
This corresponds to a linear model with a normal
error structure.

Generalized Linear Models Linear Model applied to data transformed by the
link function
Kalman Filter In the claims reserving context, this filter is used

as a smoothing algorithm. 1t may be thought of
as the recursive use of Bayes theorem. With
conventional approaches to development pattern
modelling, one must assume either that all years
have the same development pattern, or else that
individual years, or groups of years are
independent. Use of the Kalman filter allows the
fitted pattern to change or adapt smoothly across
years.

Log-Space the original claims data is transformed by taking
logarithms of the incremental payments, and
regression is then performed on this. The data is
now said to be in "Log-Space".

Operational Time Operational time (1) is defined as the proportion
of all claims closed to date.
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Standard Deviation root mean square deviation of a statistic

Standard Error standard deviation of the estimate, allowing for
parameter uncertainty
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Appendix 3: Charts of the over/(under) Provision of Claims against
Adjusted Previous Year's Underwriting Result
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Appendix 4: Graphs of the development of the Total Claims Estimate,
grouped by Accounting Class and Size of Business
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