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Summary 

This paper is educational. There has been considerable development of statistical 
techniques for predicting claim payments over recent years, which has yet to be 
assimilated by the profession and put into practice by practitioners. 

We want to spread the knowledge of these techniques, to dispel some of the mystique, 
and to give some examples which demonstrate how they work in practice. These 
techniques do not replace existing methodologies, but serve to enrich the actuary’s tool 
box. 

So that readers can form a view of the success of existing methods in the past we 
include a review of the variance of the actual out-turn from the reserves of some UK 
insurance companies over the past ten or so years, to which we add some thoughts on 
the factors which may have contributed to the variances. 

We would like to encourage a healthy scepticism of “black box” techniques and some 
of the pitfalls for the unwary are presented as a warning against using them without an 
understanding of the limitations. For example we believe that the use of the term 
‘Confidence intervals’ is to be discouraged since we think it conveys a false impression 
of the modelling process, which applies to past data. The circumstances that will apply 
in the future can not be known at the moment, so the model is emphatically not a 
crystal ball. 

A bibliography is included for the reader who has been encouraged to pursue the 
subject further. 

Terms of Reference 

•. (Briefly) identify areas of application for the claim reserve variance 
• Review past reserve variance by company and class using DTI Returns 
• Review selected Statistical Reserving Methods 

• Compare Methods using real life historic data sets covering medium and long tail 

business. 
• Health warning! why method can fail illustrations 
• Provide selected bibliography, for further reading on Statistical Methods 

The views expressed in this paper represent the consensus of the members of the 
working party in their personal capacity and do not necessarily reflect the views 
of their employers or every individual. 
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1.Introduction 
or 

Why this paper? 

The motivation for this paper is a desire to educate the profession. A number of 
statistical techniques have developed over recent years that purport to assist in 
determining claim reserves, and we want to bring these to the attention of a wider 
audience. 

These techniques have slowly been gaining in popularity in recent years. This is mainly 
due to the increasing speed and low cost with which microcomputers can handle the 
heavy computational load necessary to carry out the calculations. 

However, the mathematics is heavy, and this factor alone is enough to put off many 
practitioners. We believe that this should not be seen as an obstacle. The paper aims to 
pull together the underlying principles to show the factors that these methods have in 
common and, by comparing and contrasting their results, to bring out their particular 
features. 

We hope this paper will give readers a better understanding of how these techniques 
work in practice, and give sufficient explanation of their strengths and limitations so 
that they may judge when their use may be appropriate. 

The title of ‘Claim Variance’ has been used somewhat liberally. The paper is concerned 
with the difference between actual out-turn of claims and the predictions used to 
decide upon reserves before the claims have been paid. The main thrust of the paper 
looks at statistical methods which provide a measure of the variance of the estimate 
made for the claim reserve. The accountant’s use of variance, in the sense of 
“difference from expected”, is employed in consideration of the insurance industry’s 
track record in the field of claim reserving. Section 2 deals with a review of DTI 
Returns over the past ten years or so. There is some suspicion that companies may 
manipulate their reserves, and one or two popular theories of systematic bias have been 
tested. 

Section 3 introduces the subject of ‘stochastic modelling’. A scientific approach to 
statistical claim reserving, in the form of a formal modelling structure and the use of 
the statistical diagnostics, is established. This section provides a checklist of essential. 
statistics for the modeller. 

Section 4 briefly considers the value of the claim variance in terms of how it can be 
used and applied. 
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Section 5 sets out concerns that the doubting actuary may have about using statistical 
methods. The reader may care to judge whether the paper adequately addresses these 
concerns. 

Section 6 starts by posing a real life claim reserving problem in the form of genuine UK 
medium and long tail business. 

Outlines are provided of three statistical reserving techniques, within the framework of 
Generalized Linear Models (Log-Incremental Payments, Log-Incremental II, and 
Operational Time) . Brief details of Generalized Linear Models are given in an 
appendix. A statistical “add-on”, Bootstrapping, which can be used to provide 
information on the variance of all types of reserving methods, is also discussed. 

These techniques are then used on the real test data to demonstrate how they cope in 
practice. Results are compared with the known outcome (these were not revealed to 
the operators in advance of their analysis!). The lessons of the study are then discussed 
so that readers may appreciate the differences between the techniques. Included in this 
section are some details on the practical limitations of each of the techniques. 

Section 7 summarises the particular features of each of the methods. 

Section 8 briefly considers the value of the statistical methodology, and why statistical 
methods may fail to produce the correct forecast. 

Section 9 winds up with an extensive list of further reading which will be of particular 
use to readers who wish to have a better understanding of the mathematical bases that 
underlie the reserving techniques discussed. References to other methods are also 
given. 

A glossary of terms used in this paper is given in appendix 2. 

This paper will have achieved its objective if the reader is left with a better 
understanding of the application of statistical methods to the subject of claim reserving, 
and feels sufficiently confident to try out the techniques. 
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2. Review of Past Reserving Adequacy 
Or 

How Good Are We? 

2.1. Introduction 

It would be comforting to feel that more complicated claims reserve modelling is 
unnecessary because insurers already reserve accurately. Is this the case? 

The main tranche of data available to test the current state of affairs is provided by the 
DTI returns. These we have used to examine two aspects of the question: 

Biases: Do the swings and roundabouts balance out? Or is there consistent under 
or over reserving? Is there any evidence that reserving practice is influenced by 
underwriting result? 

Variability: How close are initial reserves to ultimate payments? How much does it 
vary across different companies ? How quickly do estimate ranges settle towards 
the ultimate? What difference is there between classes of business? 

Needless to say, the data is not ideal. Since this investigation is only to provide a 
backdrop to the main work of the report, it has not been possible to do more than 
apply a broad brush approach. As such the ‘biases’ investigation has not distinguished 
between classes of business (although the ‘variability’ analysis has). In both cases there 
has been a degree of stratification by size of company as follows: 

Total incurred claims in 1991 Number of Companies 

< £10 million 9 
£l0m to £00Om 17 
£l00m to £1000m 16 

> 10000 million £ 7 

It is accepted that much of the data has been aggregated despite considerable 
heterogeneity. However the conclusions drawn are very broad in nature, and it is not 
felt that they are threatened by the crudity of the approach. Moreover, looking at the 
aggregated position is appropriate if management decisions regarding reserve strength 
are taken at an overall portfolio level rather than at an individual class level. 
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2.2 Biases in Reserving 

The main thrust of the investigation has been to test reserve adequacy against 
underwriting results. The method has been to postulate a variety of hypotheses (for 
instance that surpluses in reserves revealed in Form 23 of the DTI return will be 
correlated with the previous year’s underwriting result). In general, data has been 
plotted in monetary terms for each level of stratification, and the points quartered in 
such a way that, if no correlation exists, equal numbers of points would be found in 
each quadrant. Statistical significance was tested using a simple contingency table/chi 
squared approach. 

The significance levels for the chi squared distribution with one degree of freedom are: 

Chi squared Value Significance Level 
3.84 95% 
5.24 97.5% 

6.64 99% 
10.83 99.9% 

The returns for the years 1987 to 1991 inclusive have been used, and each company 
has provided a data point for each year. In order to use all the data together for each 
approach, scaled versions have been produced by dividing through by Net Premium 

Income. 

Various hypotheses have been investigated: 

2.2.1 Hypothesis - Claims reserves will be boosted in years when underwriting 
results are good, and weakened when u/w results are poor. 

How Tested: Savings on estimates recorded in year t+l were plotted against 
underwriting results in year t. 

Logic: If the overall company underwriting result is healthy, the company will for the 
sake of prudence take the opportunity to bolster reserves. As such, when the bulk of 
claims comes in - in the next financial year - there will be a higher than usual release of 

reserves. 
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Chi squareds: 

Company size Chi squared 
< £l0m 7.1 
£l0m to £l00 0.0 

E 000m to £1000m 1.0 

> £l000m 2.3 

For or against hypothesis 
For 
Not sig. 
Not sig. 
Not sig. 

All companies 6.6 For 

Conclusion: There is a weak level of significance here (given the large number of chi 
squareds being carried out). but there seems some evidence to support the hypothesis. 

It needs to be noted, however, that if you spend your good underwriting result on 
boosting claims reserves, that will in itself worsen the result. That thought process 
leads on to testing the hypothesis in a different way. 

2.2.2 Hypothesis - Claims reserves will be boosted in years when underwriting 
results are good, and weakened when u/w results are poor. 

How tested: Savings on estimates recorded in year t+l were plotted against 
underwriting results in year t. The latter were, however, adjusted by the amount of 
savings accruing in year t+l. The adjustment comprised simply adding those savings to 
the u/w result. 

Logic: The underwriting result in year t would have been better if the savings 
liquidated in year t+l had been taken up front. The reserves are boosted in proportion 
to the prevailing ‘feel good’ factor in year t - which is governed by the results prior to 
boosting. 

There was some discussion in the working party as to whether the add-back to the u/w 
result should be limited to the increase in savings over the previous year (which is, 
after all, the true distortion to the result). In the end, however, it was felt that the 
psychological impetus is applied to senior management through the operation of the 
actual incurred losses - leading to the underwriting result. It is then that decisions 
might be made to sideline profit into the reserves. 

Results: A full set of charts for this approach are attached as Appendix 3, but the 
results are summarised below. 
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Chi squareds: 

Company size Chi squared 
< £l0m 7.1 
£10m to £100 8.5 
£ 100m to £l000m 6.3 

> £ 1000m 5.1 

For or against hypothesis 
For 
For 
For 
For 

All companies 36.0 For 

Conclusion: For each stratum, and overwhelmingly for all companies taken together, 
there appears to be very strong support for the hypothesis. 

Effectively we are adding one variable to the other prior to testing for correlation. The 
justification for this seemingly dubious procedure is the assumption that the variable 
had previously been deducted, by the process of sidelining profit from year t to year 
t+1. Thus the data is being corrected rather than distorted. If this assumption is 
incorrect, clearly the process builds in correlation, and throws doubt on the validity of 
the conclusion above. 

2.2.3 Hypothesis - The level of IBNR set up is related to the level of underwriting 
profit. 

How tested: In this case data in monetary terms was not felt to be appropriate. IBNR 
was expressed as a percentage of total claims reserves, and plotted against the 
underwriting result in the same year as a percentage of Net Premium Income. 

Logic: If a company has a good underwriting result in a particular year, it will feel able 
to bolster/rebuild its IBNR reserve. Since it is more easily manoeuvred than case 

estimated claims reserves. it will therefore rise as a percentage of total claims reserves. 

Chi squareds: 

Company size 
< £l0m 
£l0m to £l00 
£ 100m to £ 1000m 

> £1000m 

Chi squared 
5.8 
2.3 
1.8 
2.9 

For or against hypothesis 
Against (!) 
Not sig. 
Not sig. 
Not sig. 

All companies
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Conclusion: The perverse result for small companies probably illustrates the problem 
that there are two contrary forces acting. On the one hand a big IBNR will reduce the 
underwriting result. On the other hand a bad underwriting result reduces the desire for 
a large IBNR. Perhaps for small companies the former is a bigger force than the latter. 

Overall however it is interesting that there does not seem to be an IBNR effect to 
match the Claims Reserve effect. IBNR reserving does not seem to be correlated with 
underwriting result. 

2.2.4 It was suggested that work done in America showed some correlation between 
reserving levels and changes in underwriting results. Thus, as performance improves 
insurers, take the opportunity to boost reserves, and vice versa. Analysis showed some 
weak correlation for larger companies, but this did not seem a particularly fruitful line 
of approach. 

2.3. Variability Of Reserves 

Form 33 of the DTI Returns permits an analysis of reserving accuracy over different 
accident years. 

The form details for each accident year, on a gross basis, paid, outstanding and IBNR 
claim amounts over successive financial years, 

The data is split by risk-group and it enables claim triangles to be constructed that 
show the movement of ultimate claim estimates as the accident year develops. 

The analysis has been centred on the seven major composites, i.e. the “over £l,000m 
total incurred claims” group. 

For each of the seven companies ultimate claim triangles have been produced for each 
of the one-year accounting classes, i.e. 

- Accident & Health 
- Motor 
- Property Damage 
- Pecuniary Loss 
- General Liability 

By using the accounting class, the data is split broadly into the different types of 
business, which should ensure consistency for all companies. However it is 
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acknowledged that the differing mix of risk-groups within each class does introduce a 
level of heterogeneity. 

The graphs shown in Appendix 4 plot the development of the total claim estimate as a 
percentage of the 1991 year end value for each company and for accident years 1981- 
1986 inclusive. 

The line on each graph represents the arithmetic average of all points for each 
development year ( NB development year 1 is the year of origin ). 

The graphs exhibit the following characteristics : 

How close are the initial estimates to the ultimate value? 

The General Liability and Pecuniary Loss classes have a large spread in the initial 
estimate. 

The spread is reduced for the Motor and Accident & Health classes, with the Property 
Damage class showing the smallest variability. 

In terms of the average, the most noticeable trend is the initial over estimation for the 
Property and Pecuniary Loss classes. 

How quick is the convergence? 

As one would expect, the long-tail classes show the slowest convergence. 

The Accident class shows no consistent tendency to either under or over estimate. 

The Motor class shows a tendency to under-reserve for development years 2 onwards. 

The Property Damage class shows consistent over-reserving for all development years. 

The Pecuniary Loss class shows consistent over-reserving for all development years. 

The General Liability class shows consistent under-reserving for all development years. 

The observed variability does not of course directly reflect the accuracy of actuarial 
reserving methods - rather it depends on the nature of the reserves used for the DTI 
returns. 
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Results for smaller companies 

A similar analysis was performed on a selection of smaller “£l00 - £l,000m total 
incurred” companies. 

The results were consistent with the above but, as might be expected, the spread of 
estimates tended to be greater. 

The exception was the General Liability class. where claims tended to be over-reserved 
at early years. 

2.4. Final Observations 

2.4.1 It is clear that companies do strengthen reserves when they feel they can afford 
it, and that they draw them down when they need to. This amounts to the operation of 
implicit equalisation reserves, and is obviously prudent business practice. It does, 
however, imply that the reserving process is not even aiming at absolute accuracy (or 
accuracy plus a margin). 

2.4.2 For the majority of reserves we (reserve modellers) are not under scrutiny here. 
Most of the claims reserves are still based on case estimating; which could clearly be 

improved upon. 

2.4.3 It is interesting to note that the IBNR reserves, which are most likely to be 
influenced by modelling are the least distorted by underwriting performance. It may , 
not be too optimistic to suggest that, whilst they are far from accurate, modelled 
approaches are providing unbiased estimates, 

2.4.4 Some consistent biases are evident, with the strong implication that reserving 
could be improved. These are most pronounced in the consistent over-resenting of the 
short-tail Pecuniary Loss and Property Damage accounting classes. 
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3. Stochastic Modelling Background 
or 

What are Stochastic Method ? 

Most claims reserving methods are based on some assumptions about the underlying 
shape of the run-off. The assumptions usually define a mathematical model of the run- 
off. The difference between stochastic and non-stochastic methods is that in stochastic 
methods the mathematical model is not confined to the underlying pattern: the 
variation of the data around the underlying pattern is also modelled. The stochastic 
approach offers three main benefits: 

(a) The influence of each data-point in determining the fitted model should depend 
on the amount of random variation in that data-point: figures with large 
random components should have relatively little influence. 

(b) The reliability of the fitted model, and the likely magnitude of random variation 
in future payments can be estimated. This enables ‘standard errors’ indicating 
the reliability of predictions to be calculated. 

(c) Statistical tests may be applied to the modelling process to verify any 
assumptions and gain understanding of the variability of the claims process, 

3.1. Types Of Stochastic Models 

There are three basic types of stochastic models depending on the data to which they 
are applied: 

(a) Models that are applied to aggregate data, that is, a run off triangle of amounts 
paid or incurred. 

(b) Models that also involve triangles of numbers of claims to enable more accurate 
estimation of average costs. frequency and inflation. 

(c) Models that are applied to a database of individual settlement amounts. 

Models of types (a) and (b) may be used to derive reserves and standard errors; with 
approximate techniques being necessary to estimate the distribution of the aggregate 
reserve. Models of type (c) may be able to estimate more accurately the aggregate 
reserve distribution. 
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3.2. Modelling Results 

Models may be used to derive estimates of future cash flows or incremental incurred 
claims, total reserves for origin or calendar periods and any associated standard errors 
or probability distributions. 

Models usually produce a set of fitted values which may be compared with the actual 
data to derive residuals of the fitted model. These form a useful basis for testing 
modelling assumptions and examining the nature of the claims development process. 

3.3. Basis For Stochastic Modelling 

Models usually fall into one of two categories: 

(a) Ad-hoc models where no assumptions of the underlying process are made, the 
data is modelled using any shape and variance structure that happens to fit past 

development, 

(b) Models derived from an underlying theory of the claims process. These models 
start with a set of assumptions that are then refined and calibrated to the data, 
or else if not appropriate, alternative models may be suggested. 

There are occasions when each of the above approaches is more appropriate. 
However, when modelling a small data set, for example less than 10 years of annual 
development, there are few data points in the tail to construct a model of the variance. 
In these cases, a prior view of the variance structure can be helpful. 

3.4. Stochastic Modelling Misconceptions 

There are three common misconceptions with regard to statistical approaches, which 
should be dispelled. 

i) “The ‘optimal’ statistical model is the best for producing forecasts” 

The ‘optimal’ statistical model may not be the best for producing forecasts. The 
‘optimal’ statistical model may tell us that there is instability in trends in more recent 
payment years. Judgement about future trends could then be based on analysis of 
other data types, e.g. claim numbers closed. 
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ii) “The model represents explicitly the underlying claims generating process.” 

There are essentially two approaches to formulating the initial model. It may be 
generated because it is believed that the model represents the underlying processes at 
work. Alternatively the model may be developed in terms of simple components which 
fit the observed experience. 

In either case the model should be proved by checking that all assumptions inherent in 
the model are supported by the data. 

iii) “A stochastic model (as opposed to a deterministic model) is always useful.” 

A model contains information or assumptions. If the assumptions contained in the 
model are not supported by the data then the model is not useful. 

3.5. Testing Models - Diagnostics 

3.5.1. Residual Plots 

For each data point we have an observed and a fitted value. The difference between 
these is defined as the residual error. If divided by an amount proportional to the 
estimated variance for the point, the residual is known as a standardised residual. If 
the residuals are assumed to be normal, then the standardised residual is a normalised 

residual. 

The model assumes E(r) = 0 and Var(r) = constant 

Hence we can plot residuals against origin (or underwriting period), development and 
payment (or calendar) periods. If E(r) is not equal to zero, it may show up as a 
systematic error in the residuals. If the plot against development period looks non 
random, then it is likely that the assumed shape of the run off is inappropriate. If the 
plot against origin period looks non random, then it is likely that the assumed level for 
some origin year(s) is wrong, and if the plot against calendar period looks non random, 
then it is likely that the assumed inflation model is wrong. 

However, the above residual plots may still appear reasonable even though there are 
systematic errors in the fitted model. These may often be detected by examining the 
triangle of residuals, for example, plotting positive residuals in one colour, negative 
residuals in another and by setting the brightness in accordance with the magnitude. 
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Even if the E(r) is zero, the Var(r) may not be constant. For example, the residuals 
may be fanning outwards or inwards with development. In this case, the model for the 
variance may be wrong. It is important to correct for this as the model for the variance 
determines the amount of weight that each point is given in fitting the model and hence 
the fitted pattern. If the residuals appear to be fanning in with development, then the 
data points in the tail may be given too little weight compared with earlier values. 
Conversely, if the residuals are fanning out with development, then the data in the tail 
will be given too much weight and predicted variances in the tail will be too low. 

If the residuals are standardised rather than normalised, note that they may still be 
skew. Where Generalized linear models are being used, this will be allowed for in the 
modelling. 

When modelling small data sets, for example, 6 years of annual development data, 
residual plots have to be used with care since it is easy to see patterns in the residuals 
and end up with an over-parameterised model with unrealistically low standard errors. 
It is often helpful to gain experience of random residuals by creating triangles of 
random normally distributed numbers and examining the plots. Most people will see 
patterns in small sets of random residuals! 

An example of a residual plot is shown in 6.2.2 as part of the analysis used for the log- 
incremental payments technique. 

3.5.2. Statistical Tests 

The use of F, t and other tests is helpful in deciding on the number of parameters to 
use in a model. 

One approach is to use the standard “GLIM” type of analysis using F tests. This 
approach starts with a possibly over parameterised model and then fits models with 
subsets of the original parameters. An F statistic may be constructed and used to check 
that the reduction in parameters doesn’t introduce significant extra residual variability. 

Standard errors of fitted parameters may be checked to test whether the fitted 
parameters are significantly different from zero, and hence whether or not the 
parameters should be included in the model. They may also check whether parameters 
are significantly different from each other (if they represent different levels of the same 
parameter set). 

Where Kalman filters are used, some sort of parameter counting method is needed to 
allow for the dynamic nature of the model. 
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Where models are being compared that have a different structure. then statistics such 
as the AIC or BIC may be useful. 

3.5.3. Validation 

It is possible to refit models ignoring the most recent 1, 2 or 3 years data and compare 
the results with current estimates. If the estimates are stable then the model may give a 
reasonable estimate for future development. If the estimates are unstable compared 
with the estimated standard errors, then the model may be unreliable for predicting the 
future. 

It is usually helpful to model different data types (for example paid and incurred) and 
to apply different methods. If the answers are similar, then the model are likely to be 
more reliable than if they are inconsistent, in which case judgement will be required to 
eliminate the inappropriate models. 

It is often helpful to examine plots of the actual development together with the fitted 
models so that graphs of incremental and cumulative development appear reasonable 
for the data set being modelled. 

3.6. Modelling Error 

Whatever model is used the final outcome will inevitably differ from that estimated. 
The standard error can be useful in indicating the size of the likely error of an estimate. 
However there are potentially other sources of error. 
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Taylor [l0] sets out the components of the prediction error as follows 

specification error arising from the initial specification of the model 
- typically this will be due to assuming linearity 
which does not exist 

selection error due to incorrect selection of the predictors 

estimation error due to the fact that the estimated parameters are 
still only random variables 

statistical error reflecting the inherent random noise in the 
process 

The standard error is the sum of the estimation and statistical errors, i.e. the parameter 
uncertainty and the residual variation. Hence the model is still subject to unmeasured 
specification and selection error. 

This subject is further considered in the section dealing with the concerns of the 
Doubting Actuary. 
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4. Application of the Claim Variance 

or 
What use is it ? 

Essentially this can be answered by considering the converse. If we don’t know the 
claim variability (or at least have a feel for the sensitivity of the reserves established) 
how can we form an opinion as to the adequacy of the Claim Reserve? After all, the 
requirement for adequacy may carry with it the implication of “with margins for 
caution”. As the required size of any margins can only be judged by reference to the 
variability of the reserve the importance of these statistics should be readily apparent. 

Other possible uses include 

(a) Assessment of reserve adequacy may be applied in the context of both absolute 
(as above) and also relative terms comparing origin years and lines of business. 

(b) Basis of allocation of capital. Again, both in absolute and relative terms, 

(c) Basis for comparing modelling of different data sets, for example, 
paid/incurred/average costs and numbers. 

(d) Basis for discussions with the DTI or Inland Revenue. Quantifying the 
uncertainty in estimated reserves can be helpful in these circumstances. 
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5. What Does the Doubting Actuary Require? 
or 

What value statistical Techniques ? 

5.1. Benchmarks 

In order to illustrate the questions we answer in this paper we have constructed a 
“Doubting actuary”, whose concerns are set out in the rest of this section. The criteria 
by which we would like this paper to be judged are our successes at answering the 
various issues raised below. 

5.2. The “Doubting Actuary” 

I am the Doubting Actuary. I am responsible for advising on appropriate levels of 
provisions for a wide range of types of general insurance. As well as needing to arrive 
at a “best estimate” of claims from business already written - not necessarily an easy 
task - I would also like as much information about possible differences between the 
eventual out-turns and my current estimates. I want this information 

(a) 
(b) 

(c) 

for assistance in monitoring my own performance 
so that I can decide whether differences between my estimates and those of my 
colleagues are material 
so that I can advise on the range of possible outcomes. 

In my own mind, I have several ranges which need to be taken into account:- 

Range A includes any point estimate and consists of those values which I 
regard as equally valid. If the eventual out-turn is within this range I will 
regard myself as having been a good predictor, and I would be prepared to 
support provisions anywhere within the range 

Range B surrounds Range A, and consists of estimates which I do not regard 
as unreasonable but which I would not myself be prepared to recommend 

Range C surrounds Range B and consists of estimates which may be achieved 
in practice but which I do not consider as reasonable for current provisions. 
If the eventual out-turn is within Range C I shall say “That is not what I 

expected but it is not a major surprise” 
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Range D surrounds Range C and consists of results which are possible but 
which would be a major surprise 

Range E surrounds Range D and consists of results which I currently believe 
to be impossible. 

These concepts are described in qualitative rather than quantitative language and the 
boundaries between the ranges themselves are often intuitive points which I would be 
pushed to define other than by saying that they are my subjective impressions, 

I would welcome anything upon which I felt able to rely to help me refine these 
concepts. 

Over time I have had the benefit of various presentations on various statistical methods 
which might address the problem. Some of the presenters have had a financial interest 
in promoting their methods and some have not. 

In general the methods have three components: 

(a) a statistical model 

(b) a way of fitting the model to past data - i.e. choosing parameters 

(c) a justification for the belief that the model will predict future claims experience. 

So far as (a) is concerned, I can normally follow the work done by others and, 
provided it is published. and scrutinised by others with statistical expertise, I am happy 
to take it on trust. 

(b) is usually a way of solving a large number of simultaneous equations with the 
benefit of a computer. I learnt how to solve simultaneous equations at the age of ten 
so I have no difficulties with this stage and I probably underestimate the effort and skill 
which were needed to produce the method of solution. 

I do have difficulties with (c). I consider that it is my responsibility to determine 
whether the model is actually appropriate for making predictions about future claim 
payments; and it is the point upon which proponents of various statistical methods 
seem weakest. 
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Using models for predictions requires: 

(a) that the model describes behaviour in the future, whether or not it has done so 
in the past. 

(b) that the parameters have been correctly determined. 

To put this concept into probability terminology, suppose that X is the event that 
claims exceed some specified level. Then: 

where: A1 is the event that future claims will be in accord with the model and the 
parameters have been correctly determined, 

A2 is the event that future claims will be in accord with the model but the 
parameters determined from past experience are not appropriate for the 
future. 

A3 is the event that the model was correct for past behaviour but is no 
longer so 

A4 is the event that the model was never correct and the apparent fitting 
to the past experience is illusory ! 

We can probably put a numerical value on P (X/AI) but would anyone have any idea of 
the values to be assigned to the other possibilities? 

My doubts about the applicability of whatever model is under discussion stem from 
several sources: 

We know that it is possible to go through the motions and assign values to 
parameters but this does not necessarily mean that the model was appropriate 
in the past, let alone the future. Far more work seems to have been done 
assuming that some model will be appropriate than in assessing whether it is so; 
and in demonstrating this fact in a convincing way. Unless supporters of models 
can meet me on this matters I am going to be rather unconvinced and unwilling. 

In the language of Taylor [1] A2.A3.A4. correspond to a belief that the specification error particularly, 
and to a lessor extent selection error - both of Which cannot be measured - are likely to be significant 
in practice, thereby invalidating the use of

 
standard errors as a measure for the reliability of a model. 
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(b) 

(c) 

to rely upon the results. I would also like some information about the 
consequences of the model fitting only approximately. 

Many models seem to be dependent upon assumptions which are not in fact 
true. Usually it is assumed that incremental claims can be described by a 
parameter and an error term, the error being independent. In my conception of 
the claims process, a fixed but unknown number of claims occur during the 
period of exposure and there is then a variable period for each claim until it is 
paid (or reported). Since a claim can be paid (or reported) in only one period, I 
would expect the error terms to be negatively correlated. When incremental 
claims are taken to be log normal, the method ought not to be applied to both 
quarterly and annual data. I have read that the sum of a log normal 
distributions is not log normal and I deduce that quarterly and annual claims 
can not both be log normal. 

If an astrologer produced a model based upon the movements of the stars 
which “explained” the past claims experience, would I be happy to use his 
model for predictions of the future? Surely not! If his predictions always 
turned out to be true, would I change my mind? Probably, eventually after 
some period; it would be perverse not to accept that his model seemed to work 
but unless I understood the mechanism which turned star movements into 
claims I would always be concerned that the predictions would fail at the next 
attempt. Clearly one does not have to emulate, or even understand, the 
complicated processes which produce claims at various times; they may 
combine to fit some straightforward statistical model, but the validity of 
assumptions which appear not to be met in practice will need to be explained. 

(d) Since I am not an expert on statistics, my opinions of the reliability of proposed 
methods will be influenced by my assessment of their proponents, Inaccuracy 
on matters which I can check will make me doubtful about things which I can 
not. Examples of statements which undermine my confidence are: 

(i) the method will work on all classes and types of business. Look at the 
list of classes of business for which I have a responsibility! Is Property 
Catastrophe Reinsurance to be treated in the same way as Personal 
Motor? 

(ii) working on incremental paid claims will give more reliable answers than 
incorporating information about outstandings. True perhaps for 
personal lines. My aviation account, which is exposed to (compared 
with other types of insurance) a relatively small number of large claims, 
can be predicted reasonably well by using a chain ladder on incurred 
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claims. At short durations little has been paid and it is difficult to draw 
useful conclusion. Loss ratios vary wildly from year to year from, say 
20% to 300%! For some casualty accounts nothing at all may be paid 
for the first couple of years. 

(iii) statistics should be adjusted for exposure and inflation. Yes, if it can be 
done. What does one do in the case of, say, excess of loss reinsurance 
of Employers’ Liability? 

(iv) anyone who uses the chain ladder is an idiot. I have a vested interested 
here, in that pride won’t let me agree to this statement! Anyone who 
believes that any responsible actuary is going to use the results of a 
naive chain ladder blindly, doesn’t know much about what actuaries do. 
My own methods would call for an examination of the data, possibly 
the removal of large claims, and then, if it seemed the right thing to do, 
calculation of the linked ratios implied by the past experience which 
would then be adjusted in the light of all collateral information, 
including trends in the experience, because my job is to guess what they 
will be in the future not to say what they were in the past. 

I look forward to reading the rest of the paper in the hope that it will assist me to do 
my job better. 
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6. Statistical Techniques & Application to Real Data 

or 
What Are These New Methods and How Good Are They?How Good Are They? 

The statistical techniques presented here are not intended to cover the full range of 
possible methods. Rather they should be seen as representative of a range of methods 
that are currently attracting considerable interest, as witnessed by the plethora of 
papers being produced on the subject (some are given in the bibliography.) 

The first three use general linear models to obtain the parameters and should be seen as 
frameworks for deriving an ultimate model for the data in the sense that the user must 
interpret the results of a particular model and then exercise his judgement, based on the 
diagnostics, as to whether the model 

a) can be improved by more or fewer parameters; 

b) provides a fair representation of past data; and 

c) is suitable for the future. 

With regard to c) it is vitally important that the actuary considers whether the 
parameters fitted to the past data need adjustment in the light of known or predicted 
developments in the outside world. 

Certain mathematical sections may be skipped without prejudicing understanding of 
the principles concerned. These are denoted by an asterisk (*) next to the title, or in 
the left hand margin of the section. and apply to the remainder of the section. 
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6.1, Data Description 

Three classes were prepared for the various reserving techniques, comprising two long 
tail classes and one medium. Six sets of data were constructed initially, which is why 
here and in the rest of the paper they are referred to as classes one, three and five. 

The data for each class was for ten accident years developing quarterly. The data 
triangles provided were: 

Paid Claims net of salvage and subrogation 
Number of Closed Claims 
Case Estimates 
Number of Open Claims 

The salvage and subrogation could have been considered separately, but it was decided 
to stick to examining the paid claims net of salvage, as it is more common for data to 
be held at this level. 

All the data was net of a typical reinsurance program, with no particular features of 
merit, that remained pretty much consistent over the period considered. The data is 
gross of any special facultative or stop-loss type reinsurance arrangements. 

The reserving methods were used to predict ultimate claims and the claims expected to 
be paid in the next three years, for each accident year and for the class as a whole, 
giving a range one Standard Error either side. Updated triangles were then provided, 
giving the position three years down the line. The predictions of payments over the 
next three years could then be compared to the actual outcome. The payments over 
three years represented up to 80% of the reserve as a whole for the three classes, so 
good estimates for this figure should augur well for the reliability of the reserve 
estimate. 

Class 1 - Long 

This class of business is very long tail indeed, with a modest number of claims still 
being reported some thirteen years after the original accident year. After ten years 
development, for every three claims closed two new claims are reported and of the 
total number of claims reported for a given accident year, as many as one in five 
hundred are still outstanding ten or more years after the accident year. Around 95% of 
claims are paid in the first year, these claims being around one hundredth of the 
average loss paid ten years later. This is typical of employer’s liability business. The 
average payments and case estimates do not change markedly after ten years of 
development. It seems likely that the payment and reporting of claims after year ten 
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will continue for a considerable time into the future at pretty much the level they are 
currently. Modest growth was experienced in the first few years under consideration; 
the class was then drastically curtailed. Each of the last five accident years had 
approximately half the number of claims of each of the first five; the last five accident 
years could therefore be expected to behave somewhat differently and this is evident in 
some of the patterns that emerge - for example having a slower reporting pattern. 

Initially high inflation of claims payments of 10% or so in the initial calendar years 
gradually decreased over the period considered to around 5% in the recent years. 

Class 3 - Medium 

Whilst certainly not having the long tail features of class one this does still have a few 
claims reported, some ten years or more after the accident year. For this class though, 
for every four claims that are closed after year ten, only around one claim is reported 
and only around one in ten thousand of the total claims are still outstanding after ten 
years. 

Around 80% of claims are paid in the first two years, these claims being around one 
tenth of the average loss paid after ten years of development. The payments and case 
estimates in the tail are fairly erratic, being distorted by the occasional very large claim. 
This is typical of property business. 

This class grew markedly in the first two years, growing 50% as measured by the 
ultimate number of claims, then gradually declining thereafter to pretty much its’ 
original level. Most accident years show fairly stable payment and reporting patterns. 

Inflation was again at a high level, in excess of 10% initially, then dropped away to low 
levels of a few percent before starting to increase again. 

Class 5 - Long 

As for class one, claims are still being paid and reported well into the tail of this class 
with around three claims being reported for every five claims closed after year ten and 
one in five hundred claims still being open after ten years of development. 

Around 80% of claims are paid in the first two years, these claims being around one 
hundredth of the average loss paid after year ten. The tail is again erratic with some 
very large claims indeed. This is typical of general liability / bodily injury business.. 

The class grew rapidly, doubling in size in the first five years then contracted rapidly, 
reducing by 50% to its’ original level. The patterns show the turmoil of these changes 
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and exhibit some marked changes in reporting and payment patterns, with speeding up 
closely followed by slowing down! 

Inflation was more consistent across the years, dipping then rising again, but not 
exceeding the ten percent levels experienced by the other classes initially. 
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6.2. Regression model based on Log-Incremental payments 

6.2.1. Overview of method 

The first method presented is the natural extension of the chain-ladder model. Statistics 
are introduced by reference to the error term. A mathematically simple structure for 
the error terms is assumed, namely that the errors in the logarithms of the incremental 
claim payments are independently identically distributed (i.i.d) normal random 
variables. 

The method in its simplest form is very general, and is likely to suffer the same 
problems encountered by the straightforward chain-ladder. 

Use of logarithms for the log-incremental method does have some theoretical 
objections but nevertheless has been found to work well in practice.[16] 

In practice these models are relatively easy to develop. The recommended 
methodology set out in Section 3 ensures the modeller tests the validity of the key 
error structure assumption, and systematically identifies any problems thrown up by the 
data. 

The statistical significance of the modelled fit is generally improved by reducing the 
number of parameters. To this end simplified models for the pattern of claims run-off 
within each accident year (the development year axis ) are introduced. 

6.2.1.1. Introduction 

The method applied in section 6.2.2 fits models to the various sets of data - in this case 
the triangles of past claim numbers and payments. This modelling can be viewed at two 
levels. At the first level, the models are specific examples of more general types of 
model - Generalised Linear Models. At another level, they are an extension and 
refinement of a more basic type of model - that is what is sometimes called the 
Stochastic Chain Ladder (see [6] for a more in depth comparison with the Chain- 
Ladder). 

To put the method into context, a brief description of the more general class of 
models, and the more basic type of model is given, before the specific method used 

is described. 
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6.2.1.2. Stochastic Chain-ladder 

There is a considerable body of work describing models which are the stochastic 
equivalent of the Chain-ladder [6]. These models are broadly the same as the 
deterministic (i.e. without a random component) Chain-ladder, except that: 

• the mode! is explicitly defined; 

• the parameters of the model are estimated using a statistical technique to 
obtain a “best fit”, rather than choosing factors “by eye” or by a simple 
calculation: 

• finally. explicit assumptions are made about the systematic and random 
elements of the claims process, so estimates of the variance of the reserve 
estimates can be produced, rather than just a point estimate. 

The model of the claims process is described as: 

Log(Pij) = a(i)+b(j)+Eij 

where Pij are the incremental claim payments in Accident Year i at development period 
j, a(i) and b(j) are the parameters fitted by the mode! and Eij is an Error term. The Eij 
are assumed to be independent and identically normally distributed with mean zero and 

variance o2. 

The assumption that the Eij are identically distributed across the whole triangle is an 
area of the model open to debate. The payments in the early years of development are 
likely to be larger than in the tail, and so one might expect the error term to reflect this. 
Conversely however, it is the tail where a few large claims can have a particularly 
distorting affect. The simple error structure can be refined, as is the case in some other 
models. 

For an n x n triangle, there are n parameters a(i) and n-l parameters b(j) (we set 
b(0)=O, so that there is a unique solution for a(i) and b(j)). In total then we have 2n-1 
parameters. This has the same number of parameters as the basic Chain-ladder, which 
implicitly assumes a “level” for each of the n Accident years, corresponding to the a(i), 
and a development year effect, corresponding to the n-l b(j) parameters the model fits. 

• For convenience, denote Yij = Log(Pij) and let 0ij = E(Pij). Under our assumptions 
above, the a(i) and b(j) can be estimated by a simple regression procedure to produce 
Maximum Likelihood Estimates of the Yij, MLE(Yij), in our Log-space. We then have 
to produce estimates back in our payment-space. It can then be shown that the 

Variance in Claim Reserving Page32 

32 



Maximum Likelihood Estimate of 0ij. MLE(0ij), back in our payment-space, is given 
by: 

It can also be shown that the Standard Error, SE, of the estimates of 0ij is given by: 

Thus, from our simple regression estimates of Yij in the Log-space, we are able to 
back out estimates of the expected values of the actual payments and their standard 
error. The practical details of how one may perform the regression using spreadsheet 
regression functions, and make the transformation back into the payment space are not 
set out in this paper. The interested reader may refer to the IOA Reserving Manual 
Volume II [1]. 

There is a slight hitch in this method of producing estimates of expected payments, in 

that the Maximum Likelihood Estimates of 0ij can be shown to be biased - that is: 

The MLE of 0ij is asymptotically unbiased, that is, as the sample size gets larger, the 

MLE gets closer to the true value of the 0ij . For small sample sizes however, as can be 
the case with reserving data, the bias may be significant. Section 6.5.2. gives an 
example of how Bootstrapping can be used to quantify the extent of this bias. 

Alternatively, a different, unbiased estimate of 0ij can be made. Finney [3] showed that 

an unbiased estimate of 0ij, say 0ij’, can be constructed as follows: 

. where: 
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where: 

n = the number of data points ; and 
m = the number of degrees of freedom of the model i.e. n less the 

number of parameters 

Similar adjustments can be made to produce unbiased estimates for the variance of our 
expected payments. In practice, especially if working in a spreadsheet environment, the 
extra effort needed to produce unbiased estimates is usually deemed to be 
disproportionate to the extra accuracy gained. 

One can extend the estimation of variances of payments from one payment to several - 
either all the future payments for a given Accident year, say, or the total of all future 
payments for all Accident years. This enables one to produce an estimate of the 
Standard Error for the reserve for a given Accident Year, or the Standard Error for the 
reserve for all Accident years combined. 

The SE’s for these combinations of payments are obtained from the standard identity 

Var(A+B) = Var(A) + Var(B) + 2 x Cov(A,B). In this context, this translates to: 

Var(MLE(0ij+0kl))=Var(MLE(0ij)) + Var(MLE(0k1)) + 2x Cov(MLE(0ij).MLE(0k1)) 

where it can be shown that: 

Cov(MLE(0ij).MLE(0kl))=MLE(0ij) x MLE(0k1) X esp(Cov(MLE(Yij). MLE(Ykl))-l) 

Whilst some of the algebra above looks daunting, the various calculations for the 
expected payments and their variances all boil down to the simple regression estimates 
of a(i) and b(j), hence Yij, in our Log-space, which are then suitably transformed to re- 
cast them as estimates back in our original payment space. 

6.2.1.3 Regression model based on Log-Incremental payments 

The model described in 6.2.1.2. is similar to the basic Chain-ladder. with the addition 
of a random component, and uses the same number of parameters in defining the 
model. There is no reason, however. why the model should slavishly follow the 
structure of the basic Chain-ladder model 

The basic nxn Chain-ladder may be considered over-parameterised, as it fits 2n-1 

parameters to a data triangle containing nx(n+1)/2 points. When modelling, one wants 
to strike a balance between models that adhere too tightly to the data, by having too 
many parameters, and models which over-simplify a complex process with too few 
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parameters to accurately reflect elements of the underlying process. One may also want 
to use the model to make predictions beyond the range of the data - in this case for 
development periods beyond the latest development period in the data. These 
considerations lead to refinements of the model, which may describe the data with 
fewer parameters, which are more stable with little or no loss to the standard of the 
“fit” of the model, and which enable one to make predictions beyond the latest 
available development year. 

The refinements to the model broadly address two questions. Firstly, whether the 
model can equally well be fitted without the use of all n of the a(i) parameters - the 
Accident year level parameters. Secondly whether the data exhibits some sort of 
pattern which can be fitted by a curve, or combination of curves, to describe the b(j) 
parameters, rather than have n-l separate parameters to describe each development 
period. The process of making these two refinements, as it pertains to the actual 
Working Party database, is described in 6.2.2. An overview of the nature of the 
refinements and how they are implemented is given below. 

Considering the first point, there are methods. as indicated by Renshaw [9]. of 
“scientifically” partitioning Accident years in some optimal fashion. Again, in practice, 
the extra sophistication is often thought not to reap rewards commensurate with the 
effort involved. One can, however, visually inspect the data to see if given Accident 
years are of a similar “level” of payment. In doing this, one may try and first normalise 
the data in some sense - for example, by adjusting the payments by an Exposure 
measure, such as the number of claims, or adjusting the data by an inflation index. One 
may then find that the accident year levels fall into a small number of groups. For 
example, if in a 10x 10 triangle, the business written appeared to be of a different nature 
in the first five years compared to the last five years, the model for the a(i)'s may be of 
the form: 

a(i) = A, for i =1,2 ,.... 5, and, 

a(i) = B, for i = 6,7 ,.... 10. 

A and B are constants, as are C,D,E and F below. 

Revisions of the model may be examined by using the simple regression method on the 
Yij’s, back in our Log-space. This will produce estimates of all the parameters involved 
and produce statistics as to the overall fit of the model, as well as to the significance of 
the individual parameters. When examining the fit of a model, the Residuals (the 
differences between fitted and actual values) are also examined, to observe whether the 
model exhibits any unwanted features. For a good model, we would expect that the 
Residuals are suitably “random”, that is they do not exhibit any systematic pattern. The 
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Residuals can be examined to see how they vary by Accident Year, Development Year 
or Payment Year. Again. the interested reader is referred to the IOA Reserving Manual 
[1] for further information on Residuals and their characteristics and the actual process 
of fitting a model. 

The second, and more fruitful, refinement one may make is to model the development 
parameters in Log-space, b(j). by a curve, or a combination of curves. Frequently one 
may find that given classes of business have their own particular “shape” in the first 
few years of development but adhere closely to a curve, or combination of curves 
thereafter. This can be determined by visually examining the data, to see what sort of 
families of curve suggest themselves. The same process of fitting the model to the data 
by regression, then examining the statistics regarding the fit of the model and the 
Residuals is gone through, as indicated above. 

Typically, the revised model may take the form of: 

b(j)=C, for j = 1 

b(i) = D, for j = 2 

b(i) = f(j), for j > 2 

There are a variety of types of curve, f(j), which may be tried. These include: 

Exponential 

f(j) = E x (j-2). for j >2 

In Log-space, this is just a straight line, indicating that the claims payments die 
away exponentially over time, after year 2. 

Power Curve 

f(j)=Fxlog(j-l),forj>2 

This assumes that the claims payments decay according to a power curve, after 
year 2. 
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Hoerl Curve 

f(j) = Ex (j-2)+Fx log (j-1), for j > 2 

This can be seen to be a combination of the first two curves. It indicates that 
the decay of the claims payments is a combination of exponential and power 
curve. This curve proves to be an effective fit for a wide variety of classes of 
business. 

One can extend the range of possible curves by fitting different curves to different 
sections of the development - for example an exponential decay with parameter El for 
2 <j < 7 and exponential decay with another parameter, E2, for j > 6. Also, there is no 
reason why other curves should not be fitted - if part of the development in Log-space 
looks like a quadratic curve. go and see what the fit and the Residuals look like ! 

A further possible extension is to include a calendar year effect. As an alternative to 
stripping out inflation before the model is applied, one can explicitly model inflation. 
The basic model would have the additional term: 

Log(Pij) = a(i)+b(j)+Yx(i+j)+Eij 

where Y = log (l+u), and; 
u = annual rate of inflation across the whole triangle 

For all the curves above. it is just a matter of re-formulating the model and using 
regression in Log-space to fit different combinations of parameters to the data. The 
process of examining different curves and the various statistics for each, for the 
Working Party Database is described in 6.2.2. 
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6.2.2. Data Analysis 

The following gives some general comments about the procedures that were 
performed in looking at the three classes. Rather than give a blow by blow account for 
each class, various stages of the modelling and diagnostic process will be illustrated for 
a sample class, rather than for all three classes. At the end of the section the final 
model arrived at for each class will be summarised and any particular features of the 
modelling as it applied to that class noted. 

Looking at the data 

We are modelling the logs of incremental payments, so the first step is to look at 
graphs of the log-incremental payments. Due to the limits of matrix manipulation 
referred to in section 6.2.3, we are restricted to looking at quarterly data at the start of 
the development and annual data thereafter, or the matrices that need manipulating 
become too unwieldy. The choice here was to look at quarterly data for the first eight 
quarters, and a variety of curves thereafter. The graphs to examine were therefore of 
the logs of the first eight quarters’ incremental payments and the incremental annual 
payments thereafter, an example of which is given below: 

Class 1 : Long 
Graph Log Page 

1 

We can justify looking at a combination of quarterly and annual payments as the total 
payments in each of the first eight quarters are of the same order of magnitude as the 
subsequent annual payments, so this does not cause us undue problems with our 
assumptions regarding the Residuals being uniform across the triangle - indeed it could 

be said to be a positive feature. 

Other methods partition the development period (in this case ten years) into different 
time periods: this is just doing the same. It should be noted that we are not assuming 
anywhere that the sum of four lognormally distributed variables is also lognormal, 
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although even if we were, such simplifying assumptions are made in many other areas, 
For example in option pricing one assumes that a stock price is lognormally distributed 
when applying the Black-Scholes model, and the same model is used when examining a 
stock index comprising many stocks. In option pricing models, just as in reserving and 
many other models, the model is not “reality”, it is just a useful representation of 
reality. As long as one is aware of strengths and weaknesses in the assumptions, one 
can happily make simplifying assumptions. 

Another advantage of grouping the quarterly payments into annual for later 
developments is that it reduces or largely eliminates the problem of negative claims. All 
of the classes had negative quarterly payments in the later stages of development, but 
none of the annual payments did. 

Whilst it would be nice to be able to fit a model with an unlimited number of quarterly 
development points, as can be seen from the graph above, this does not present a 
severe set-back. For the vast majority of classes, the first eight quarters or so are likely 
to have their own particular shape, and any curve that is to be fitted to the data after 
that point could equally well be fitted to the annual as the quarterly data. Because the 
first eight quarters for the three classes did have their own particular characteristics, 
the model for three classes was just a piece-wise linear section for the first eight 
quarterly payments followed by different curves. For the example above it can be seen 
that these first eight points do have a very consistent shape. The development 
thereafter looks suspiciously like two straight lines (because this is a graph of log- 
payments, this means the actual payments decay according to two exponential curves), 
see the section on Class 1 for more details. 

Fitting the parameters 

Having examined the graphs of the log-payments to choose a model, we need to fit the 
model to the data using regression. If we have n past data points and p parameters, this 
means constructing an nxp matrix defining the model for each data point, along the 
lines set out in section 6.2.1.4. This matrix (called the Design matrix) is then our “X” 
range when per-forming regression using a standard spreadsheet package, the “Y” 
range being a column of the data points themselves. This process and the various 
diagnostic tests mentioned below are further described in the IOA Reserving Manual 
Volume II [I], so they will not be expounded on in any detail here. 

The standard regression output of most spreadsheets then outputs the fitted parameters 
and their standard errors (SE’s), along with an overall model variance figure and an R- 
squared statistic, which gives an indication as to how good the fit of the model is. 
Ideally we would like the model variance to be as low as possible, and the R-squared 
to be as near to one as possible. One cannot just focus on these numbers however, as 
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one does not want to over-parameterise the model and it is important to look at the 
Residuals as described subsequently. One can also look at the T-ratio of the various 
parameters - the parameter divided by its’ SE. If the parameter is significantly different 
from zero, we would expect the absolute value of the T-ratio to be bigger than two. 

A typical section of regression output from the model is reproduced below: 

Class 1 : Long Design 5 - Unique level first eight qarters,Hoeri curve therafter 
Regression Output: 

Constant 0 
Std Err of Y Est 0.090 
R Squared 0.989 
No. of Observations 112 
Degrees of Freedom 92 

a1 a2 a2 a4 a5 a6 a7 

12.034 11.435 10.940 
a8 

XCoefficient(s) 11.522 11. 861 12.045 12.090 10.768 
Std Err of Coef. 0.095 0.097 0.098 0.099 0.098 0.097 0.097 0.097 

T-Ratio 120.794 122.129 122.675 122.664 122.467 117.310 113.227 111.382 

Grouping the Accident year levels 

The T-ratios for the accident levels (al,....a8 are illustrated above) do not in 
themselves mean anything other than that accident year has payments significantly 
different from zero - no great surprise !! To see if one can group the accident year 
levels, the accident year parameters are visually examined. If some of the parameters 
look similar, say we thought 3=a4=a5 above, we could amend the Design matrix so a 
that instead of separate levels a4 and a5, those accident year levels were described as 
a3+C, and a3+D. where C and D are just two constants. The regression could then be 
performed again. This time, if the T-ratios for C and D are greater than two, it means 
that the accident year parameters for a4 and a5 are significantly different from a3. If 
not, then those accident year levels can be taken to have a common level. More 
rigorous treatments of this stage of the modelling process can be made (although they 
require rather more than a simple spreadsheet and a few minutes of time!) and are 
referred to in section 6.2.1.4. 

For the classes examined, the most likely grouping appeared to be between some or all 
of the first five accident years and some or all of the remaining five accident years. 
Various combinations were tried, but the groupings were at best of two accident years 
with a tentative level of significance. This is not altogether surprising - the business has 
been changing and inflationary forces have been increasing the level of claims 
payments. 
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To Try and increase our chances of reducing the number of accident year parameters, 
the data triangles were scaled by one or both of an inflation index across the payment 
direction (i.e. the diagonals) and an exposure index in the accident direction (i.e. down 
the columns). The inflation index was arrived at by a simple separation-type process - 
in practice this could draw on outside knowledge of the classes of business concerned. 
The exposure index was taken to be the ultimate number of claims, as determined by a 
simple chain ladder method. 

For each of the classes, a slightly less parameterised model could now be found, either 
by grouping accident year levels for 1923-1926 or 1928-31. Again the significance was 
tentative and the overall fit of the model was not drastically improved, or in some cases 
worsened. The future payments would have to be adjusted by an estimated future 
inflation index adding further uncertainty. Given the marginal improvement in the 
model and the additional uncertainty arising from the exposure and inflation indices, it 
was decided to leave each of the classes being modelled by ten separate accident year 
parameters. 

Looking at the Residuals for different curves 

The three types of curve outlined in section 6.2.1.4 were examined for each class. The 
only variations that suggested themselves were to try a double-exponential curve for 
Class 1 with various points at which the two curves joined. For a given curve, various 
plots of the Residuals were examined. as well as the various statistics outlined above. 
Once the basic Design matrix for a model had been set up, it could easily be applied to 
all three classes, so each curve that was looked at for one class was also looked at for 
all the other classes too. 

Variance in Claim Reserving Page41 

41 



The Residuals examined took two basic forms, with variations on each. The first was a 
standard scatter plot, showing the distribution of the residuals in the three “directions” 
implicit in the triangle - development. accident year and payment. We expect roughly 
one in twenty Residuals to be outside the range -2 to +2. We also expect the Residuals 
to be suitably random. Any non-randomness may indicate defects in the model, or 
suggest refinements to the model. The Residuals for class five and examination of the 
data for that class generally suggested refinements to the model other than using the 

directly calculated parameters. An example of this type of Residual output is given 

below: 

Class 3 : Medium 
Payment Year Residuals 

If one particular point looks way off-beam compared to the surrounding points, its’ 

effect on the model can be ascertained and if necessary that point can be removed from 
the regression in arriving at the model. Care needs to be taken in doing this, so that 
salient features of the data are not obliterated without good reason. The author of this 
text prefers to give the data “the benefit of the doubt” rather than rush to remove 
outlying Residuals wherever they may pop up, unless there are strong reasons to the 

contrary. 
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A further aid to modelling was the following type of Residual plot: 

Class 3 : Medium 
Standardized Residuals: Design 4 - Unique level first eight quarters, Exponential therafter 
Comparison of size of residuals 

 

Another such Residual plot showed the sign of the Residuals, either positive or 
negative. This distribution of the size of the Residuals in a “triangular plot” such as that 
shown above gives a useful visual summary of the model and can often bring out 
features of the fit of the model not instantly obvious from the statistics or scatter plots 
of the Residuals. 

The other Residual plot showing the sign of the Residuals can also be useful but needs 
to be treated with a little more care. One particularly large outlying Residual can “pull” 
the parameters towards it, so that all the Residuals along. say, the particular accident 
year in which the Residual resides are pulled towards it, producing a row of Residuals 
which tend to be of one sign or the other, possibly by only a small margin. 

Validation 

Once one has arrived at a model one is happy with, one can and should try and see 
what the model would have predicted had it been applied a number of years ago and 
compare this to the known outcome. Only for class five did this, and other checks, lead 
to the model being refined slightly. 
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The Tail 

One advantage of modelling claim payments by curves is that the curves can be 
extended beyond the triangle of data to give an estimate of the tail. As with any 
projection beyond known data, this involves something of a leap of faith that the trends 
in the first ten years will continue thereafter. For some classes this is clearly not the 
case - particularly for business such as that exhibited by class one, where the payments 
decay up to a point but then continue at pretty much the same level as claims continue 

to be reported at pretty much the same level as they are closed. 

A disadvantage of some of the curves used in this type of modelling is that the 
exponential component representing claims payments decaying over say years seven to 
ten, tends to die away too rapidly thereafter, and the model does not add greatly to the 
estimation of the tail. At this stage, one can review the projected tail payments relative 
to the known case estimates and the rates at which claims continue to be closed and 
reported. 

The tail calculation chosen was an extension of the curves in all three cases, but with 
the decay parameter modified to reflect, where appropriate, the expected slow down in 
the decay of paid claims by reference to the case estimates and rates of closure and 
reporting in the later stages of development. The payments were extended by a further 
twenty years. The Standard Error of the reserve could only be calculated for the 
reserve up to year thirteen. This SE as a percentage was applied to the total reserve 
including the tail - because of the extra uncertainty in this area of the calculation, this 
SE is likely to be understated. 

For classes such as class one, the payments after thirteen years are a few thousand a 
year and the reserve may be of the order of twenty times this amount, representing 
payments continuing at the same sort of level for several more decades. To put these 
problems into perspective, for practical internal purposes such claims are likely to be 
discounted, and hence their significance reduced. They may well be included implicitly 
in special reserves, not specific to a given class or accident year, held in respect of 
latent claims or for claims where the future development at such advanced stages 
cannot accurately be quantified with any degree of certainty. 
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Class 1 - the model 

The initial graph of the log-incremental payments suggested that curves after year two 
consisting of two exponential curves (i.e. two straight lines in the log-space) should be 
examined. Although providing a good fit, none of these pairs of exponential curves 
provided as good a fit as a Hoerl curve. 

The Hoerl curve Residuals had a few spiky areas, but these were not felt to be 
sufficiently material to alter the basic model. A Power curve with a reduced number of 
accident year levels provided equally good fit statistics and higher levels of significance 
for the parameters, but the Residuals were clearly unsatisfactory. 

The tail calculation is a weakness for this type of model, as for later accident years the 
tail is many times greater than the reserve up to development year thirteen to which the 
model was extended (practical considerations again limited the number of years one 
could extend the analysis in a spreadsheet). The total tail calculated is of the same 
order as the rest of the total reserve for this class. 

The final model, to year thirteen, consisted of twenty parameters: 

a1-a10 Ten Accident year level parameters 
b1-b8 Eight initial quarterly payment parameters in the first two years 

A,B Two Hoerl curve parameters for development after year two 

A further parameter was the adjustment to the decay rate in the tail. 

This compares to, say, the forty-nine parameters one would have used in the basic 
chain-ladder for such a ten by forty triangle. 

This model had a very low Standard Error and a high R-squared of 0.989. This reflects 
the very consistent incremental payments over the bulk of the triangle, and we would 
expect to be able to make good predictions of the overall payments in the forthcoming 
years for such a model. The model may not fare so well when considering the tail of 
the distribution. 

Class 3 - the model 

Both the Exponential and the Hoerl curve provided good levels of fit to this data, but 
not all the Hoerl curve parameters were significant and so the Exponential curve was 
preferred. 
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The final model had nineteen parameters: 

a1-a10 Ten Accident year level parameters 
b1-b8 Eight initial quarterly payment parameters in the first two years 

S One Exponential parameter for development after year two 

A further parameter was the adjustment to the decay rate in the tail. 

This model had a fairly low Standard Error and an R-squared of 0.987. Again this 
reflects fairly consistent incremental payments over the bulk of the triangle. Some of 
the tail projections for the older accident years only projected payments slightly above 
or below the case estimates. This feature was left in the final reserve estimates as the 
total Incurred (paid plus case estimates) position showed little or no development in 
the final years. From the follow up data three years on, two of the last four accident 
years in fact showed a decline in the total Incurred position over this period. 

Class 5 - the model 

This class proved the hardest to fit. Whereas classes one and three showed either rapid 
growth then gradual decline or gradual growth then sharp decline, this class exhibited 
both rapid growth and decline and accompanying mayhem in the payment, closure and 
reporting of claims. The class, even if stable, is of a volatile nature being long tail and 
the subject of some very large claims indeed. 

This Hoerl family of curves is the only one that seemed to fit the class adequately. This 
led to the potential model with the lowest number of parameters, as several accident 
year levels and a group of the first eight quarterly, payment parameters were amenable 
to being grouped together leaving an eleven parameter model. This had some slightly 
unsatisfactory Residuals and seemed too few a number of parameters to describe a 
large number of data points. 

The twenty parameter model based on the Hoerl curve was chosen, but with slight 

refinements to the two Hoerl parameters to reflect the apparent change in payment 
patterns. The initial parameters, fitted by reference to the entire triangle, produced 
payments that came through too quickly in the forthcoming years then died away too 
rapidly, as inferred from the ebbs and flows of the payment and reporting patterns 
across the accident years. The final model still probably suffers from the drawbacks 
described in class one as to the too rapid decaying of the payments in the tail. 

The final model had the same number of parameters as class one. 
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Revisiting the models in three years time 

For each class the original model was re-fitted to the updated data. Depending on the 
difference between experience and expectation, and the fit to the latest data, the 
original parameters were kept or the new ones adopted, in formulating a revised 
estimate of the ultimate claims. 

Class 1 

Overall the predicted payments were very close to the actual payments. Although the 
band for predicted payments was only 2.5% either side, the total payments were within 
this band. The later accident years actual payments were on the higher sides of 
expectation however, as suspected. The re-fitted model was very similar to the initial 
model, but boosting the payments slightly. These new parameters were adopted, with a 
slightly “thickened” tail decay parameter. This was the only class where the revised 
estimate of ultimate claims was slightly higher than previously. 

Class 3 

Again overall the actual total payments were in the middle of the predicted payments 
band. The model parameters were virtually unchanged from the original model and the 
slightly revised parameters were adopted. The tail calculation was now changed to a 
default of the case estimates if greater for the last few accident years - there are clearly 
a few large claims outstanding and the best estimate of these seems to be the case 
estimates themselves. The Incurred position for the older accident years had remained 
at or about the same level as three years previously, and in some cases decreased, so 
this seemed a satisfactory compromise. The estimates of ultimate claims remained 
virtually unchanged for this class. 

Class 5 

The fitted parameters had moved towards the refined Hoerl curve parameters originally 
adopted. Given the varying and variable forces acting on this class, the model seemed 
to have produced good estimates of the outcome over the three years as a whole and 
the original parameters were retained. With some reservations, the original tail 
parameters were also retained. 

The model as applied to the latest data produced the same levels of overall ultimate 
claims, whilst increasing some of the latest accident years and decreasing some of the 
earlier ones. 
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6.2.3. Practical Limitations 

All the analysis in section 6.2 was performed using a Lotus spreadsheet. There are 
various limitations of spreadsheets generally when it comes to matrix manipulation or 
performing regression analysis. 

Part of the process of arriving at the variance-covariance matrix referred to in section 
6.2.1.4 involves manipulating matrices. In most common spreadsheets there is a limit 
to the size of matrix that can be multiplied or inverted. In Lotus or Excel this is about 
an 80x80 matrix. This limits the number of future values the model can project to 80 
points. Clearly for a ten accident year triangle, this is quite a considerable practical 
constraint. However, it still allowed the models fitted to be projected to development 
year thirteen, which is adequate for most purposes. 

When performing the regression, there is a limit in the standard Excel regression 
facility to the number of dependent variables of seventeen. For this reason Lotus was 
chosen in preference, as the limit is seventy-five. The regression could of course have 
been performed using matrices in Excel. 
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6.3. Log-Incremental Claims II 

6.3.1. Overview of method 

The basis of this extension is the previous section where we considered the process of 
modelling the log incremental claims. We are reminded that the stochastic framework 
does not restrict itself to cash flows and these approaches can be applied to other 
triangles of claim data. The extensions are: 

1) The inclusion of an additional parameter to reflect the trends between every 
two contiguous payment years. 

2) The relaxation of the assumption that all claim payments are i.i.d. normally 
distributed random variables. Thus the variances are allowed to differ by 
development period. This extension may be desirable because variances often 
change over development periods. 

3) Varying parameter modelling. In the preceding descriptions it was commented 
that b(0) is set to 0 to reduce equations to be solved. Through the use of 
varying parameter modelling this problem of multicollinearity (more unknowns 
than equations) is reduced. Varying parameter modelling is where we are able 
to include relationships between the parameters. Thus we have dynamic 
parameters by using exponential smoothing or credibility weighting. To solve 
the subsequent equations we use generalised least squares. The Kalman filter is 
a generalised least squares algorithm. [16] 

The model does not purport to represent the underlying claim generating processes. 
This approach is advocated on the grounds that the multitude of variables involved in 
generating the claims are invariably complex and to attempt to model all the underlying 
processes might lead to an inefficient. impractical and potentially incorrect forecast. 

Dr Ben Zehnwirth has developed a commercially available computer package called 
ICRFS (Interactive Claims Reserving and Forecasting System) which embodies these 
techniques. It has been used to analyse the test data. [ 171 
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6.3.2. Data Analysis 

In general, the same techniques were used in fitting the parameters as outlined in 
section 6.2.2 for log-linear regression. the main exception being that annual data only 
was used. In practice the modelling process would include full interaction with a 
reserving specialist who has business knowledge of the accounts. In this artificial 
environment no information other than the actual triangles was provided. 

Although for each of Class 1, Class 3 and Class 5 a number of loss development arrays 
were available we only analysed the incremental payments and the closed claim counts. 
The latter were analysed for the purpose of determining whether . 

1 Any instability in trends in the incremental payments can be “explained” by 
changes in the speed of settling claims. 

2. The claim counts are more or less predictable than the incremental payments. 

Accident years 

More informed decisions about the future could be made if accident years exposure 
bases were made available. The three incremental payment arrays present similar 
accident year trends. That is the trends tend to increase until 1926 at which point they 
decrease until 1928/1929. These changing trends may well be explained by changing 
exposures. 

Payment years 

The three trends obtained for each model during the modelling process are diverse 
ranging from 0% for Class 1 to 10.6% for Class 5 (even after adjusting for accident 
year trends). An interesting result was that apart from Class 5 where there appeared to 
be a slight increase in inflation in the later years the payment year trends appeared 
stable, A different picture was obtained when looking at the data gross of salvage and 
subrogation but this was outside of the scope of the working party’s analysis. 

Development Period factors 

From inspection a model utilising probabilistic development factors was adopted rather 

than a smooth curve model. 
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Closed claim arrays 

Closed claim arrays were analysed in order to determine whether instability of trends in 
payments are ‘caused’ by changes in speed of settlement. From the analysis this did not 
appear so. Moreover, the closed claim arrays appeared less stable than the 
corresponding incremental payments. 

Projecting beyond the triangle 

In order to estimate the ultimate claims it is necessary to assume a pattern of claim 
payments beyond the confines of the triangle. In the absence of additional information 
it was decided simply to continue the latest probabilistic development factor into the 
future and to assume the same inflation factor into the future. This is consistent with 
an assumption of long tail for Class 1. medium tail for Class 3 and long tail for Class 5. 

Validation 

An integral part of the modelling process is validating and testing the model for 
stability. 

This is performed by assigning zero weight to. 

1) The last payment year 1931 

2) The last two payment years 1931 and 1930. 

i.e. we investigate whether the model would forecast the distributions of (incremental) 
payments for the last two payment years, had we used the model structure at year end 
1929 and moreover tested the estimates of outstanding payments for stability. 

The validation analysis also aids in determining the most appropriate assumptions for 
the future. 
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Validation: Class 1 

The validation table is as follows. 

Years Included 
In Estimation 

Future Payment 
Year Trend 

% 

Forecast To The 
End Of Triangle 

1922-1931 0±0 367,243 ± 9,976 

1922-1930 0±0 362,301 ± 15,180 

1922-1929 0±0 303,256±28,639 

The validation for 1922-1929 illustrates that we would not have been able to forecast 
the tail of the triangle (up to the development year 9) from the development pattern up 
to year 7. This may be expected and does not cause concern but should be noted for 
the purpose of estimating the tail beyond development year 9. 

The standard error for the payment year trend was set to zero. This was done after 
examining the test statistics which indicated that the parameter for payment year trends 
was not significant. This view was taken as a result of the modelling process and 
would require investigation. 

The payment year trend was assumed from the payment year 1923. 

We have estimated a base development year trend along development years 7-9 of 

-21.05% ± 2.57%. So for the future we are assuming that the mean base development 
year trend is -21 .05% and the standard deviation of the trend is 2.57%. 

The total number of parameters used was 7.5 (the fraction is a consequence of as a 
result of using dynamic parameters through the use of the Kalman filter). 
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Validation: Class 3 

The validation table is as follows: 

Years Included 
In Estimation 

Future Payment 
Year Trend 
% 

Forecast To The 
End Of Triangle 

1922-1931 2.44 ± 1.27 806,550 ± 26,972 
1922-1930 1.73 ± 1.40 772,795 ± 29,778 
1922- 1929 1.74 ± 1.70 776,243 ± 41,279 

The poor validation was a result of slight changing payment year trends. In a practical 
environment the decision as to which trend is more appropriate for projection purposes 
is required. We were not in a position to justify any change in the model. 

The payment year trend was assumed from the payment year 1923. 

We have estimated a base development year trend along development years 5-9 of 

-70.85% ± 2.10%. So for the future we are assuming that the mean base development 
year trend is -70.85% and the standard deviation of the trend is 2.10%. This would be 
in accordance with the business being medium term. 

The total number of parameters used was 6.8 (as a result of using dynamic parameters) 

Validation: Class 5 

The validation table is as follows: 

Years Included 
In Estimation 

Future Payment 
Year Trend 
% 

Forecast To The 
End Of Triangle 

1922-1931 10.74 ± 2.49 875,767 ± 57,665 
1922-1930 12.08 ± 3.19 874,564 ± 90,675 

1922- 1929 19.88 ± 4.12 1,081,002 ± 174,262 

The validation result when we removed two payment years was a result of a change in 
the inflationary trend (as can be seen). In a practical environment the decision’ as to 
which trend is more appropriate for projection purposes is required. Again we were 
not in a position to justify any change in the model. 
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The payment year trend was assumed from the payment year 1923. 

We have estimated a base development year trend along development years 6-9 of 
-39.03% ± 3.55%. So for the future we are assuming that the mean base development 
year trend is -39.03% and the standard deviation of the trend is 3.55%. 

During the modelling process it was discovered that the development pattern for 
development years 0 to 1 for accident years 1922 to 1927 exhibited a different pattern 
from those of 1928 onwards. The decision was taken that these observations would be 
weighted out because the underlying development pattern had changed and the results 
presented are from the model created using these weightings. Without this allowance 
the model would have been very unstable. 

The total number of parameters used was 6.0 (as a result of using dynamic 
parameters). 

Comparison with next three years payments 

Normally this process would be carried out annually and in a practical environment 
where our analysis indicates we would modify the model to incorporate later years 
information. 

On initial inspection Class 1 and Class 3 appeared to forecast reasonably well in 
comparison with the actual payments. Class 5 did not appear to compare well and this 
was due to the inflation parameter, which was identified as a problem during the 
validation process. 
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6.3.3. Practical Limitations 

In theory one could perform the calculations in a spreadsheet, as indicated in 6.2.3 for 
the log-Incremental method. However use of dynamic linear modelling, such as the 
Kalman filter, introduces a level of complexity which would be difficult to program and 
run in a reasonable timeframe. Therefore in practical terms commercial packages are 
required. 
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6.4 An Operational Time Stochastic Model 

6.4.1 Description Of Method 

This model has been developed by Tom Wright [18]. The model attempts to (partially) 
represent the underlying claim generating process. It starts with the premise that the cost 
of settling claims depends on the order in which they settle. Typically, for example, later 
settled liability claims cost more. 

The method therefore develops a model of the claim settlement cost, as a function of the 
relative proportion of claims settled. 

The method is likely to be of greatest use in circumstances where the greatest source of 
variation in predicting ultimate claim cost is due to the individual claim costs e.g. in 
motor bodily injury. 

Ultimate numbers of claims are required, and timing of cash flows are derived from a 
given settlement pattern for claim numbers. The method gives the individual expected 
cost of each claim. 

The concept of operational time can trace its origins back to the model developed by 
Harry Reid in 1979 [19], which was done in a non stochastic framework. The concepts 
were further developed by Taylor [20], [21]. 

6.4.1.1. Data 

There are two base data triangles required, one containing claim numbers and a second 
containing loss amounts. Generally, these may take one of three forms: 

Claim Number Triangle Claim Amount Triangle 

a) The number of claims closed total of all payments on claims closed with 
part payments assigned to the development 
period of closure 

b) The total number of payments, 
including part payments 

usual paid loss triangle, with each part 
payment assigned to the development 
period in which it was made. 
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c)The number of claims closed usual paid loss triangle, with each part 
payment assigned to the development 
period in which it was made. 

Data in formats a) and b) are equivalent from a modelling point of view. Format c) 
requires a more detailed model which may make effective use of an additional triangle, 
namely one containing numbers of claims outstanding. Format c) is the one usually 
encountered in practice. 

6.4.1.2. Notation 

Throughout the rest of this note, the following notation is used: 

Subscripts: w 
d 

t 

Triangles: Nw,d 
Yw,d 
Xw,d 
Sw,d 

tw,d 

Year of Origin 
Development period 

Operational time 

Number of claims closed 
Paid loss amounts 
Random variable of individual claim amounts 
Observed average claim amounts (that is, Yw,d / Nw,d) 
Average operational times 

Estimated ultimate number of claims: 

Mean claim amount in real terms: 
Mw 
m 

6.4.1.3. Operational Time 

Operational time ( ) is defined as the proportion of all claims closed to date. Thus for 
each origin year, operational time starts at 0 and increases ultimately to 1. 
Transformation into operational time eliminates the need to model settlement rates. 
Use of operational time overcomes a major problem with stochastic modelling in 
development time. It is often the case that large claims take longer to settle than small 

claims, for this reason we model m as a function of . When modelling in development 
time, because the time to settlement for an individual claim is uncertain, the 
appropriate claim size distribution for that claim is also uncertain. Whilst it is not 
difficult to calculate the expected value of projected future claim payments, the 
calculation of standard errors is extremely complex (except in the special case where 
the claim size distribution does not vary with delay). 
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6.4.1.4. Claim Numbers 

The first step in the modelling process is to estimate the ultimate number of claims 
Mw and their standard errors. Where triangles are compiled on a notification year 
basis, the number of claims is known, that is, it is equal to the number reported. 
Where data is analysed on an accident or underwriting year basis, then the expected 
ultimate number must be estimated by another method. The possible methods to 
obtain these estimates and their standard errors are not dealt with in this paper. 

6.4.1.5. Initial Assumptions 

In order to clarify the explanation of the modelling process, we make some initial 
assumptions which will be relaxed later. All these assumptions may be tested by use of 
residual plots and other diagnostic tests, they are not general restrictions on the validity 
of the model 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

The expected claim size in real terms is the same for all years of origin, that 

is, does not depend on w. 

The coefficient of variation of individual claim amounts is the same for all 
operational times, that is 

The data is not affected by inflation 

The standard error of the ultimate number of claims is zero 

Part payments are not present in the data triangles, that is, the data is of type a) 
or b) as set out in section 3. 

6.4.1.6. Modelling Under Initial Assumptions 

A triangle of average operational times may be calculated as: 

A triangle of average claim amounts may be calculated as: 
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In order to project future claim payments, we need a model for m . This is achieved 

by fitting models to the sample means To fit these models we need expressions 

for the mean and variance which may be derived from the initial assumptions. 

It is not necessary to have any further knowledge about the distribution of S in order 
to fit models of generalized linear form. Use of this form allows great flexibility in the 

model for m . Use of a log link function (see Appendix I) and a variety of terms in the 

linear predictor enables the following example models to be tested: 

Model Terms in the Linear Predictor 

These and other models may be fitted to the observed data points the 
fitted models extending over the range (0, 1) 

6.4.1.6.1. Model Zero 

The modelling process starts with] the fitting of a deliberately over parameterised model 

(mode! zero) which consists of a piece-wise exponential function of . The number of 
sub intervals can be chosen to make the mode! as flexible as desired. This model may 
be used to test assumption (ii). the variance assumption, and also to quantify the 

amount of random variation in the data. This enables subsequent F tests to determine 
the best model. The variance assumption is tested by examining plots of standardised 

residuals against operational time. If has been fitted using model zero, then the 

variance of the standardised residuals, equals which 

does not depend on Hence if the pattern of the residuals does not vary with 
operational time, then the variance assumption may be reasonable. If this is the case, 
and residual plots against origin and payment periods also look reasonable, then the 
fitted model zero may be used to quantify the random variation inherent in the data. 
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6.4.1.6.2, Model Selection 

Once model zero has been validated, other models for m T may be fitted and the 

residuals checked for trends against operational time. F tests can be used to help find 
the best model by identifying those models with the best compromise between a) 
relatively few, and more accurately estimated, parameters, and b) residual variation 
which is not much greater than the purely random variation identified in model zero. 

6.4.1.6.3. Prediction 

If a suitable model can be found, then the expected value of each future claim can be 

obtained by evaluating the fitted value of m . The variance of each future claim may 

be obtained by evaluating using the estimated values for and m T. Assuming 

the amounts of future claims are statistically independent, the mean and variance of the 
total may be calculated, augmenting the resulting variance to allow for estimation error 

in the fitted means m T 

6.4.1.7. Relaxing The Initial Assumptions (*) 

(i) The expected claim size in real terms m T is the same for all years of origin, that 

is, mt does not depend on w. 

This assumption may be relaxed by allowing the ßo parameter to vary with origin year. 
In practice, at most, only two or three levels of this parameter are required for most 
data triangles. Whilst this allows different groups of origin years to have different 

levels of mt, it is still assumed that the pattern is the same. 

(ii) The coefficient of variation of individual claim amounts is the same for all 
operational times, that is: 

This may be replaced by: 

for some a 

This allows for the coefficient of variation of individual claims to depend on the mean 
claim size. If examination of the residual plots against operational time for model zero 
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with =2 suggests that the variance is decreasing. then the model may be refitted using 
a smaller value. 

(iii) The data Yw,d has been adjusted to remove the effects of inflation 

An overall rate of inflation may be simultaneously estimated as part of the modelling 
process by inclusion of an extra parameter. If i represents the annual force of inflation 
and p represents the number of development periods per year, then the example models 
in 6.4.1.6 above, become: 

Model Terms in the Linear Predictor 

When fitting these models, the parameters estimated are ( i. ß0, ß1, ß2 ). 
Incorporating future claim inflation in the projections involves additional calculations 
to quantify the variation due to uncertainty in the future rate of claim inflation and 
uncertainty in the real time scale of the run off. 
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(iv) The standard error of the ultimate number of claims is zero 

The estimated ultimate numbers of claims Mw are used for two purposes: a) for 
calculating the triangle of operational times, and, b) in calculating estimates from the 
fitted model. Provided the estimates Mw are unbiased and not highly correlated, 
because the model is fitted to the whole triangle simultaneously, most of the variability 
from source a) is already taken into account in the fitted scale parameter and any 
additional variability can reasonably be ignored. The additional variability arising from 
source b) can be quantified for each origin year in terms of a standard error u: 

where: µ is the expected total of future payments for the origin year, calculated 

by summing m for each expected future claim 

M is the estimated ultimate number of claims for the origin year 

m| 
V 

is the latest operational time for the origin year 

is the fitted mean value corresponding to 
is the standard error of the estimate 

The expression in brackets above. is a weighted average of the fitted value at time , 

(m|) and the mean value of future claims: µ / (M- N|) = a. That is, the expression in 

brackets equals 

(v) Part payments are not present in the data triangles, that is, the data is of type a) 
or b) as set out in section 3. 

Where data is of type c), the model may be extended to allow for part payments as 
outlined below 
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6.4.1.8. Modelling Part Payments (*) 

If m
 
T represents the average cost of closed claims, but the observed data contains part 

payments, then the data Yw,d has been increased by the amounts of these part 
payments. This extra amount may be expressed as the number of part payments 
multiplied by an average cost. If we express the number of part payments as a 
constant proportion (cl) of the number of claims outstanding; and the average amount 

as a proportion (c2) of the average cost of closed claims (m ), we have an expression 

for the additional amount arising from part payments, that is: 

Expected Number x Mean Amount = ( cl . L ) . ( c2 mt ) 

Where L is the average number of outstanding claims corresponding to Yw,d, 
Expressing this as an average amount per closed claim, and combining the constants cl 
and c2 into a single value, c, we have the amount derived from part payments per 
closed claim equal to: 

c. ( L/N ). mt 

The constant c represents the expected pat-t payment per outstanding claim as a 
percentage of the average cost of claims closed. Thus, expressing the ratio Lw,d / 
Nw,d as Rw,d we have: 

E(sw,d) = ( 1 + c. Rw,d ) . m 

The constant c is usually small, typically around 0. I. This is because the number of 
part payments per outstanding claim is usually small ( say 0.2 ), and the average cost of 
those payments is often less than the average cost of closing payments ( say 0.5 ); 
hence multiplying these two factors together produces a small value for the c 
parameter. Approximating ( I + c. Rw,d ) as exp(c.Rw,d), this model can simply be 
built into the model and the c parameter estimated from the data as part of the fitting 

process; making use of a revised model for Var(Sw, ), namely: 
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Returning to our example models used earlier, we now have : 

Model Terms in the Linear Predictor 

The vector of parameters estimated becomes: ( c, i, ßo, ß1, ß2 ). 

For some lines of business, it is unlikely that the rate at which part payments are made, 
or their average costs as a percentage of closed average cost, remains constant across 
operational time. This sort of change is accommodated within the same sort of model 

described above; the effect is usually to make mt increase less rapidly, or even 

decrease, as operational time approaches I. 
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6.4.2. Data Analysis 

General Points 

Modelling in operational time is designed to give accurate estimates of the 
expected cost of each future claim. The timing of those claims settlements is 
an input to the model and is used to apply the effects of future inflation. 

In all three data sets, the data was modelled quarterly giving 220 data points 
in each triangle. 

No information was available as to the lines of business, claim types or actual 
accident periods. This limited the reliability of the analysis. In particular, no 
information was provided on the possible impact of part payments in the data. 
For this reason, the modelling was carried out ignoring the possibility of part 
payments. Including part payment parameters in the modelling may have 
improved the reliability of the estimates, particularly for data set 5. 

• All three data sets have the feature that over 50% of claims (by number) are 
settled in the first year and at significantly lower average cost than subsequent 
claims. improved models may have been obtained by fitting to development 
after the first 4 quarters, which could have reduced the numbers of parameters 
required to fit the models reliably. 

Operational time (and most other) models are more reliable where different 
claim types are analysed separately. Data set I appears to be subject to latent 
claims which may not be fully reflected in the settlements to date as paid and 
incurred development do not appear to be totally consistent. 
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Data Set 1 

There is significant development of claim numbers in the tail, and these claims are 
generally settled at high cost. The estimated reserves are dependent on the accuracy of 
the claim number estimates. 

Numbers of claims reported were modelled using a number of methods and an ultimate 
selected for each accident year. 

Model zero was fitted using one level parameter for all origin years and seven intervals 
in operational time. Examination of residuals led to a total of 6 origin year parameters 
being fitted. This is an unusually large number for models of this sort which suggests 
fundamental changes are occurring in the average claim sizes in this data set. The 
origin year groups and operational time intervals fitted were: 

Origin Year Groups 

1922 1 

1923 2 

1924 3 

1925 3 

1926 3 

1927 4 

1928 5 

1929 6 
1930 6 

1931 6 

Operational Time Intervals 

0.000 < 0.179 
0.179 < 0.363 
0.363 < 0.556 
0.556 < 0.791 
0.791 < 0.894 
0.894 < 0.948 

0.948 1.000 

The first graph shows the fitted model zero and the data points. It is clear that over 
60% of the claims are settled in the first development year, but the average cost of 
those claims is around l/20 of the average cost of claims settled in the tail. This 
suggests that the data may contain a mix of claim types possibly with a changing mix 

for different accident years. 

The final fitted model replaced the 7 straight lines of model zero with 6 polynomial. 
coefficients. The relatively large number of parameters was needed to cope with the 

sudden increase in average cost at operational time 0.8. The 13 fitted parameters are 
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shown below together with their standard errors. This model has 207 degrees of 
freedom and is plotted in the second graph. 

Estimate S.Error 

Past Force Of Inflation: 0.090 0.008 

Origin Year Group 1 : 0.059 0.088 

I, II ” 2 : 0.154 0.080 

II II II 3 : 0.314 0.065 

,I II ,I 4 : 0.171 0.055 

8, II II 5 : -0.155 0.049 

II I, II 6 : -0.348 0.037 

Predictor Term 
11 ” 
II ” 

,I 14 

11 ” 

0 11 

: 
: 
: 
: 

: 
: 

4.365 0.485 

-13.219 1.869 

62.930 8.816 

-309.011 42.377 

428.698 59.060 

- 169.903 24.140 

The residual plots against origin year show a greater spread for 1929 and 1930 than for 
earlier years. This may be indicating that the pattern of average costs is changing. 
However, changes in the claims settled in the first two years may not be a reliable 
indicator for changes in claims settled in the tail. 

The results from the modelling are set out below: 

Origin 
Year 

1922 24,014 1,609 523 6,175 2,769 6,975 
1923 40,525 3,000 1,182 9,308 5,399 11,233 
1924 64,818 3,575 1,712 11,794 7,023 14,288 
1925 72,538 3,952 2,025 12,575 7,684 15,391 
1926 91,065 4,022 2.630 14,096 9,348 17,783 
1927 56,457 2,975 1,643 10,268 5,613 12,186 
l928 54,093 2,713 1,554 8,352 4,995 10,221 
1929 62,483 2,869 1,716 7,836 5,117 9,938 
1930 96,894 3,547 2,506 9,124 6,110 11,808 
1931 137,779 3,729 3,162 9,641 9,082 14,118 

Total 708,666 29,136 18,652 32,147 20,858 51,626 

Total Future Payments 
Expected Parameter Inflation Severity Claim No. Error Of 
Amount Uncertainty Variation Variation Variation Prediction 
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Comparison With Data Three Years Later 

The model over estimated the cash flows in the following three years, mainly as a 
result of the approximate estimates of the run off of claim numbers. However, the 
estimated ultimate for the oldest accident year is just below the incurred claim figure 3 
years later. This suggests that the overall reserve estimated may not be as 
overestimated as the 3 year payment figure. Even three years later, the ultimates for 
this class of business are very uncertain. Furthermore, there appear to be some latent 
claim types that may not be fully reflected in the payments to date. Modelling 
aggregate payments using other models gives estimated ultimates below the level of 
current outstandings, but a reliable prediction of the next three years payments. The 
operational time model estimates ultimates allowing for significant IBNR, but spreads 
the reserve according to settlements and so overestimates the next three year 
payments. The table below shows the difference in actual payments compared with 
those estimated as a multiple of the estimated standard error. 

Year Actual Payments 

1922 -1.4 
1923 -2.4 

1924 -2 I 

1925 -1.9 

1926 -2.3 

1927 -1.1 

1928 -0.8 
1929 -2.0 
1930 -1.5 

1931 -0.6 

Total -3.8 
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Data Set 3 

The development of claim numbers in the tail is relatively small, no new claims being 
expected for the oldest origin year. The estimated reserves are dependent on the 

accuracy of the claim number estimates and so the estimates for this data set should be 
more reliable that for the first data set. 

Numbers of claims reported were modelled using a number of methods and an ultimate 
selected for each accident year. 

Model zero was fitted using one level parameter for all origin years and seven intervals 
in operational time. Examination of residuals led to a second origin year parameter 
being fitted for 1925 and 1926 as these years appear to have a higher average cost. 
The origin year groups and operational time intervals fitted were: 

Origin Year 

1922 

1923 

1924 

1925 

1926 

1927 

1928 
1929 
1930 
1931 

Groups 

1 

1 

1 

2 

2 

I 

I 
I 
1 
I 

Operational Time Intervals 

0.000 < < 0.219 

0.219 < < 0.407 

0.407 < < 0.585 

0.585 < < 0.807 

0.807 < < 0.894 

0.894 < < 0.949 

0.949 < < 1.000 

The first graph shows the fitted model zero and the data points. It appears that over 
80% of the claims are settled in the five development quarters, but the average cost of 
those claims is significantly lower than the average cost of claims settled in the tail. 
This suggests that the data may contain a mix of claim types. 

The final fitted model replaced the 7 straight lines of model zero with 6 polynomial 
coefficients. The relatively large number of parameters was needed to cope with the 
sudden increase in average cost at operational time 0.8. The 9 fitted parameters are 
shown below together with their standard errors. This model has 210 degree of 
Freedom since one negative increment was excluded from the fit. The model is plotted 
in the second graph. 
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Estimate S.Error 

Past Force Of Inflation 0.022 0.002 

Origin Year Group I 0.694 0.084 
,I ,I " 2 0.798 0.084 

Predictor Term 
I, " 
II " 
I " 
I " 
I " 

-4.024 2.331 
41.996 19.206 

-181.670 68.465 
384.976 119.126 

-391.610 99.629 
153.070 32.046 

The residual plots are generally well behaved for this data set and the results from 
the modelling are set out below: 

Origin 
Year 

1922 1,957 88 1 1,971 0 1,973 
1923 2,902 130 4 2,405 306 2,428 
1924 5,497 246 12 3,321 548 3,375 
1925 12,584 565 32 5,281 828 5,375 
1926 22,057 979 60 6,942 1,376 7,144 
1927 31,953 1,361 94 7,812 1,934 6,163 
1928 60,817 2,422 187 10,368 4,068 11,399 
1929 129,331 4,420 423 13,942 7,608 16,491 
1930 231,498 6,069 838 16,525 11,659 21,132 
1931 422,476 7,318 1,473 18,303 20,808 28.700 

Total 921,074 22,832 3,125 32,676 25,496 47,422 

Total Future Payments 
Expected Parameter Inflation Severity Claim No. Error Of 
Amount Uncertainty Variation Variation Variation Prediction 
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Comparison With Data Three Years Later 

The next three years development indicated that the model underestimated 1927 
accidents and overestimated those from 1929 and 1930. 

The projected cash flows over the following three years are based on an 
approximate model for the numbers settled and hence not too much notice should be 
taken of the significance of theses results. The table below shows the difference in 
actual payments compared with those estimated as a multiple of the estimated 
standard error. 

Year Actual Payments 

1922 -0.8 
1923 -0. 1 
1924 0.0 
1925 -0.7 
1926 -0.1 
1927 2.3 
1928 -0.7 
1929 -1.6 
1930 -2.4 
1931 -0.5 

Total -1.8 
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Data Set 5 

The development of claim numbers in the tail is relatively small, with only a few new 
claims being expected for the oldest origin year. Numbers of claims reported were 
modelled using a number of methods and an ultimate selected for each accident year. 

Model zero was fitted using one level parameter for all origin years and 13 intervals in 
operational time. Examination of residuals led to no additional origin year parameters 
being fitted. The origin year groups and operational time intervals fitted were: 

Origin Year Groups Operational Time Intervals 

1922 1 

1923 1 

1924 1 

1925 I 

1926 1 

1927 I 

1928 1 
1929 1 
1930 1 

1931 1 

0.000 < < 0.130 

0.130 < < 0.234 

0.234 < < 0.301 

0.301 < < 0.407 

0.407 < < 0.467 

0.467 < < 0.597 

0.597 < < 0.652 
0.652 < < 0.724 
0.724 < < 0.788 
0.788 < < 0.845 

0.845 < < 0.897 
0.897 < < 0.948 

0.948 < 2 1.000 

The first graph shows the fitted model zero and the data points, It appears that over 
60% of the claims are settled in the five development quarters, but the average cost of 
those claims is significantly lower than the average cost of claims settled in the tail. 
This suggests that the data may contain a mix of claim types. 

The final fitted model replaced the 13 straight lines of model zero with 4 polynomial 
coefficients. The 6 fitted parameters are shown below together with their standard 
errors. This model has 214 degrees of freedom and is plotted in the second graph. 

Variance in Claim Reserving Page72 

72 



Past Force Of Inflation 

Origin Year Group 1 

Estimate S.Error 

0.087 0.005 

1.167 0.036 

Predictor Term 7.229 1.655 
"" -76.016 16.372 

" " 140.315 28.033 
" " -67.937 13.385 

The residual plots are generally well behaved for this data set and the results from 
the modelling are set out below: 

Origin 
Year 

1922 
1923 
1924 
1925 
1926 
1927 

Total Future Payments 
Expected Parameter Inflation Severity Claim No. Error Of 
Amount Uncertainty Variation Variation Variation Prediction 

8,849 
17,371 
32,037 
66,921 
95,928 
122,238 

924 
1,795 
3,253 
6,412 
8,662 
8,768 

83 5,659 
181 7,996 
377 10,964 
882 15,900 

1,383 19,071 
1,982 20,924 

,445 
,376 
'~236 
26,101 

1928 97,086 6,271 1,681 18 
1929 124,181 6,775 2,361 20 
1930 166,521 7,987 3,519 23 
1931 219,703 9,532 4,968 26 

1,923 6,049 
2,519 8,593 
3,863 12,077 
5,437 l8.008 
6,779 22,059 
6,186 23,598 
5,781 20,391 
6,353 22,517 
8,232 26,151 
15,593 32,248 

Total 950,833 59,212 17,417 56,983 22,886 07,065 

Comparison With Data Three Years Later 

The next three years development indicated that the model overestimated the 

development in the tail. 
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The projected cash flows over the following three years are based on an 
approximate model for the numbers settled and hence not too much notice should be 
taken of the significance of theses results. The table below shows the difference in 
actual payments compared with those estimated as a multiple of the estimated 

standard error. 

Year Actual Payments 

1922 -0.3 
1923 -0.8 
1924 -0.9 
1925 -0.9 
1926 -0.6 
1927 -1.1 
1928 -0.7 

1929 0.8 
1930 1.0 

1931 0.3 

Total -0.4 

To investigate the cause of the overestimation in the tail, the model was refitted to 
the data three years later and two possible causes identified. Firstly, inflation over 

the three year period was significantly lower than the average of past inflation. 
Secondly, the original model assumed that the average cost of claims increased 
significantly as operational time approaches 1. In fact, many claims in the tail were 
settled at low cost so that the model of average cost possible should have been 
decreasing in the extreme tail. 

The original model was also refitted allowing for a part payment parameter. This 
produced more accurate estimates of the development in the tail. However, it is 
unwise to fit this parameter unless one has knowledge about the nature of the part 
payment process for the particular data set being analysed. 
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6.4.3. Practical Limitations 

Model depends on a reliable model for claim numbers. 

Whilst these models may be fitted in the GLIM package [7], they are time consuming 
to develop. Otherwise a commercial package could be purchased. 
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6.5. Bootstrapping 

6.5.1. Overview of Method 

This method does not by itself generate claim reserves. Rather it is a mechanism for 
measuring the uncertainty of a particular method e.g. chain-ladder. It utilises the errors 
between the particular method and actual observed data to generate alternative ‘actual’ 
data. The method is then repeatedly used to generate a distribution of claim reserves. 

It can be applied to any particular chosen deterministic method which works directly 
on the claims data. It does not work for methods which require an external information 
feed e.g. Bornhuetter-Ferguson. 

The method is conceptually a good all-purpose way of measuring the uncertainty of 
any chosen deterministic method. However, unlike some of the previous methods 
described it does not provide a detailed breakdown of the sources of error, and 
requires a lot of computer time to generate the results. One area where it does score, 
however, is in enabling the modeller to assess how much of the variability in reserves 
arises from the statistical error (the random “noise” of the claims process) and how 
much comes from the reserving method itself. This information is not provided by any 
of the other methods. 

6.5.1.1. Introduction 

Because Bootstrapping in a reserving context is relatively unknown, this section gives 
a general explanation of what the technique involves, and then goes on to examine two 
reserving models to which it can be applied. 

6.5.1.2. What is it generally? 

Given a sample of data A. from an unknown distribution B, Bootstrapping is a 
technique for obtaining information about a random variable C(A,B) by re-sampling 
the observed data A in an appropriate way. 

6.5.1.3. What are A,B,C in a reserving context? 

Consider an estimate of outstanding claims. A triangle of paid claims, say, is taken 
(“A”). The claims have some unknown distribution (“B”). A model is fitted to the data, 
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which produces estimates of past (fitted) and future claim payments, The future claim 

payments, or Reserve, is a random variable ("C(A,B)"). 

The model, or reserving method, can be a simple model, such as the basic Chain-ladder 
method, or a more complicated method, such as a Regression model based on Log- 
Incremental payments. 

6.5.1.4. What does Bootstrapping add to basic Chain-ladder 
methods? 

In the reserving example above, Bootstrapping lets us produce an estimate of the 
variance of the Reserve, C(A,B). The basic method only gives us a point estimate of 
the Reserve, with no indication of the extent to which we expect the Reserve to vary 
either side of this expected value. The analysis in 6.5.2 will show how we can obtain a 
graph of the distribution of the reserve. with accompanying estimates of variance, from 
Bootstrapping a basic Chain-ladder reserving method. 

Reserving methods, whether basic or more sophisticated. make implicit or explicit 
assumptions about the claims process in fitting a model to it. By providing information 
about the fit of a model, Bootstrapping lets the modeller assess how appropriate these 
assumptions are. 

6.5.1.5 Can Bootstrapping add anything to more sophisticated 
models? 

Yes. Take for example the Regression model based on Log-Incremental payments 
from the IOA claims reserving manual. The model of the claim process is described as: 

Log(Pij) = a(i)+b(j)+Eij 

where Pij are the claim payments in Accident Year i at development period j, a(i) and 
b(j) are the parameters fitted by the model and Eij is an Error term. 

The method produces Maximum Likelihood Estimates for the expected values of 
claims payments, MLE(E(Pij)). But the MLEs are biased, that is: 

E(MLE(E(Pij))) > E(Pij) 

The MLEs are asymptotically unbiased, i.e. as the sample size gets larger, 
E(MLE(E(Pij))) gets nearer to E(Pij). However, for “small” sample sizes, as is usually 
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the case with reserving data, the E(MLE(E(Pij))) may be considerably different from 

E(Pij). Bootstrapping lets you make an estimate of this bias and may provide a better 

estimate than a traditional asymptotic estimate (e.g. a maximum likelihood estimator) 

with only a small sample size. The examination of bias was the original impetus for 

looking at Bootstrapping (or more generally, the Jackknife). 

Some more sophisticated models produce estimates of the variance of the projected 

reserve. Bootstrapping can give the modeller an indication of an extent to which the 

model variance is a result of the underlying “noise” in the data (Statistical error) or due 

to uncertainty in the modelling process itself - such as mis-specifying the model, or the 

fact that the estimates of the parameters of a model are themselves random variables 

and contribute a degree of uncertainty to the predicted reserve. 

6.5.1.6. Is it as easy as A,B,C? 

Yes and No! Consider the basic Chain-ladder model. The model produces fitted values 

for past claim payments, which are different from the actual claim payments. These 

differences between fitted and actual values are called the Residuals. Given “n” such 

Residuals each can be given a “mass”, or probability of I/n, to produce an empirical 

distribution for that set of Residuals. A random selection from this empirical 

distribution is chosen, which generates a new set of data, called Pseudo-data. This 

process can be repeated many times to produce a large collection of such sets of 

Pseudo-data. For each set of Pseudo-data the reserving model can be applied and a 

Reserve estimate produced - a Pseudo-Reserve. If enough sets of Pseudo-data are 

produced we can produce an estimate of the distribution of the Pseudo-Reserve and 

infer details about its distribution, such as its variance. The approach is outlined 

graphically below: 

78 
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We can also go one step further, and produce a set of Pseudo-Data for all future values 
in a similar way. These future Pseudo-Data represent “reality”; they are the simulated 
completion of the rectangle. The Pseudo-Reserve, however, is still calculated from the 
first “half’ of the rectangle and attempts to “fill in” the rest, using, in this case, the 
chosen reserving method. 

We expect the Pseudo-Reserve Standard Error to be made up of an error due to the 
randomness of the underlying data (often called “Statistical Error”, as indicated by the 
Standard Error of the future Pseudo-Data) plus other error terms due to the 
specification of the model and the ability of the model to fit the correct parameters, 
even if the model were correct. Comparing the relative sizes of the Standard Errors of 
the future Pseudo-Data and the Standard Errors of the Pseudo-Reserve, gives an 
indication of the extent to which the variability in reserve estimates is due to the 
underlying noise of the data, as opposed to variance introduced by the process of 
estimating the reserve. 

6.5.1.7. A small amount of theory 

To be able to justify inferring results from Bootstrapping, the Residuals should be 
independent and identically distributed (there is no requirement for them to be normally 
distributed). If one looks at cumulative data, the residuals are unlikely to be 
independent, so the method tends to be applied to incremental data. Some 
sophisticated reserving methods also make assumptions about Residuals, but tend to 
make the more restrictive assumption that they are independent, identically and 
normally distributed. 

6.5.1.8. What can Bootstrapping be applied to? 

Any reserving method that can be performed automatically in a spreadsheet is 
amenable to Bootstrappin g methods. Once Bootstrapping has been set up for one 
reserving method, it can quite easily be extended to another. For part of the analysis 
that follows in 6.5.2 the Add-In @Risk is used in conjunction with a Lotus 

spreadsheet. 

@Risk lets one enter random variables in a spreadsheet cell. @Risk then effectively 
recalculates the spreadsheet as many times as required, each time picking a value from 
the chosen random distributions and collating statistics regarding chosen cells in the 
spreadsheet that are functions of the random variables. In this case, the random 
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distribution is just re-sampling the triangle of Residuals. @Risk is available for a few 
hundred pounds and can be added to many standard spreadsheet packages, such as 
Lotus, Excel or Symphony. 

Whilst the results for more basic models should be treated with caution, for any 
method that can be performed in a spreadsheet, Bootstrapping provides a first estimate 
of the variance of reserves which is certainly better than no estimate at all. Very little 
extra effort is needed, once one has a clear idea of what one is trying to do! The 
method boils down to recreating lots of sets of triangles, and then performing one’s 
reserving method on those new Pseudo-Data triangles. The reserving methods are 
usually such that they can just as easily be applied to the new triangles of Pseudo-Data 
as to the original data, so the bulk of the effort goes into re-sampling the Residuals to 
come up with lots of sets of Pseudo-Data. 

To illustrate the technique, section 6.5.2 examines the application of Bootstrapping to 
the basic Chain-ladder method and to Regression models based on Log-Incremental 
payments. For the first method information is obtained about the distribution of the 
reserve that was not available from the original method alone. For the second method, 
we can examine the extent of the Bias in the model and the breakdown of the Standard 
Errors produced by the model between Statistical Error (“noise” in the data) and 
additional sources of error introduced by the process of reserving. 
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6.5.2. Data Analysis 

We have seen above that Bootstrapping is not itself a reserving method, it is just a 
technique for enhancing the information available regarding existing reserving 
methods. This section will not dwell therefore on the results obtained for particular 
classes, but will illustrate some of the information that Bootstrapping provides and 
comment on how the techniques were applied in practice. 

Bootstrapping the Basic Chain-ladder 

The analysis was performed in a Lotus spreadsheet for each class. A volume-weighted 
quarterly chain-ladder was performed. A volume weighted approach has the benefit 
that all the Residuals for each accident year add up to zero, and hence the Residuals in 
total add up to zero. Having completed the square, both for the future payments and 
the fitted past payments, the difference between the fitted and actual incremental claims 
was calculated - this is our set of Residuals. 

To construct a set of Pseudo-Data, which is the heart of the technique, lots of sets of 
Residuals need to be calculated and added to the original set of fitted past data. This 
was done using the Lotus Add-in @Risk, as described in 6.5.1.8. From each set of 
Pseudo-Data, the revised cumulative triangle was constructed and the chain-ladder 
applied to produce a reserve estimate - the Pseudo-Reserve. 

The Add-in @Risk performs all these simulations by adding a Residual, picked at 
random, from the set of Residuals to each original past fitted data (the choice is 
different for each point but can replicate the choice for other points in the triangle). 
The new Pseudo-Reserve is calculated (by calculating the spreadsheet within @Risk), 
and the results collated so the distribution of the Pseudo-Reserve and statistics of 
interest can be examined. 
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A sample of the distribution output is given below. It shows the distribution of the 
reserve estimation calculated by the basic chain ladder on 5,000 sets of pseudo-data 
class one, accident year 1926 . 

The graph shows the extent to which the reserve estimate of the basic chain-ladder 
varies either side of the expected value, assuming that the variation of the Pseudo-Data 
is typical of the variation of the claims process underlying the data for Class one. Such 
graphs and accompanying statistics could be provided for any reserving method that 
can be set up in a spreadsheet to provide a point estimate of reserves by a simple 
recalculation of the spreadsheet for a given set of data. Clearly this is information of 
interest and an improvement on a single point estimate of the reserves. 

The Bootstrapping output includes estimates of the Standard Error of the reserve 
estimate for each accident year and for the reserve estimate for all accident years 
combined. These were perhaps not surprisingly higher than the SE’s as calculated by 

the Log-linear regression methods indicated in section 6.2, but they were only 
different by a factor of about two, so could not be said to be unreasonable. 

As well as the distribution of the reserve. Bootstrapping can give this user an idea as to 
what goes into the variability of the claims estimate. as indicated in section 6.5.1.6. 
This is done by comparing the variability of the Pseudo-reserve estimate with the 
variability of the Pseudo-data for those future payments. We expect the reserving 
method to add uncertainty to the underlying claims process, and so by comparing the 
two, we can examine the components of the reserve SE. 
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The following table shows the Pseudo Reserve and future Pseudo-Data to 
development year nine for Class five. We observe that the Pseudo-Reserve SE is 
greater than the Pseudo-Data SE - this gives us a measure of the variability that the 
reserving process is adding relative to the implicit variability of the claims process: 

SE/ 
I 
to year 

Reserve nine 

Proportion 

of reserve 

error 
due to 
claims 
process 

39% 

46% 

56% 

32% 

34% 

Proportion 

of reserve 

error 
due to 
reserving 
process 

61% 

54% 

44% 

42% 

46% 

54% 

68% 

66% 
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Future

Pseudo
Date

to year
nine

Reserve
to year

nine
Accident

Year
Predicted

SE
Predicted

SE
Predicted

SE
Predicted

SE
Predicted

SE
Predicted

SE
Predicted

SE
Predicted

SE
Predicted

SE
Predicted

SE

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

Total

12.352

37.603

73.585
12.283
71.944

11.663
69.919
12.375
92.312
14.753

123.674
18.527

163.576
28.923

644.965
55.485

31%

17%

16%

18%

16%

15%

18%

9%

12.303
3.216

37.581
4.536

73.547
5.633

71.882
6.487

69.915
7.214

92.289
7.936

123.578
8.490

163.369
9.233

644.463
19.075

5 8 %

54%

46%

11.562

Bootstrapped Basic Chain-ladder

Class 5



The results are displayed graphically as follows: 

Components of Reserve Variability 
Class s Boostrapped Basic Chain.ladder 

The split of the reserving variability worked best for class five. which was itself the 
most variable class. For other classes for some accident years, the variability of the 
reserve was largely or entirely attributed to the claims process, which is clearly 
unrealistic, but perhaps a function of the over-parameterised nature of the basic chain- 
ladder. 

A weakness in all the above is the assumption that the Residuals are uniform across the 
triangle, Clearly the payments in the initial years are substantially larger than the 
payments in the later years, so the Residuals in the earlier years, if added to the fitted 
payments in the later years, may be imparting an undue amount of variability to that 
section of the Pseudo-Data. That said. however, it is the tail of the triangle where a 
few large claims may have a particularly distorting effect, so that is not to say that the 
larger Residuals applied to the smaller payments is completely unrealistic. 

The problem of applying one set of Residuals to the entire triangle can be overcome by 
scaling the Residuals, or partitioning them into several sets - an early and a late 
development set, for example. This was briefly examined and did not materially affect 
the results and is not considered further. 

Bootstrapping the Log-Linear Regression method 

The previous section described how Bootstrapping could enhance the information 
gleaned from basic chain-ladder reserving methods. This section describes how the 
techniques can be used to look at more sophisticated methods. 
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One use of the technique is to look at the components of reserve variability in the same 
fashion as that done for the chain-ladder. To do this, the log-payments were 
bootstrapped. That is to say the Residuals were taken to be the set of differences 
between the actual and fitted log-payments. 

The Add-in @Risk could not be used for Bootstrapping this method, as the results 
could not be obtained by a simple calculation of the spreadsheet. Instead a simple 
macro was constructed to loop through choosing from the set of Residuals, forming 
the new set of Pseudo-Data, performing the regression on the Pseudo-Data, calculating 
the expected reserve from the revised set of regression parameters, and collating the 

results. 

The results are summarised below, in a similar fashion to that shown previously: 

Bootstrapped Log-Linear 

Class 1 

The SEs are of a similar size to those predicted by the Log-linear regression method in 
6.2.2. The components of reserve variability are now less for the reserving process 

than for the claims process - although the reserving process element is still understated. 
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Predicted
SE

Predicted
SE

Predicted
SE

Predicted

SE
Predicted

SE
Predicted

SE
Predicted

SE
Predicted

SE
Predicted

SE
Predicted

SE

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

Total

9%

8%

7%

6%

5%

4%

3%

3%

4%

4%

3%

Future 

Reserve 

Accident to year SE/ 

Year thirteen Reserve 

Pseudo 

Data 

to year 

thirteen 

Proportion 

of reserve 

error 
due to 

claim 

Process 

6,475 

286 

14.097 

652 

24,717 

876 

36,617 

7,423 

48,184 

7,790 

37,090 

1.160 

32.066 

966 

39.450 

1,326 

73,660 

2,774 

120,743 

3.245 

433,095 
5,993 

6,537 

564 

14,116 

1,062 
24,670 

1,607 
36,610 

2,157 

48,448 

2,352 
37,244 

1,481 
31,853 

1,085 

38,826 

1,338 
73,619 

2,683 

121,166 
5,349 

433,090 

12,361 

51% 49% 

39% 61% 

55% 45% 

66% 34% 

76% 24% 

78% 22% 

89% 11% 

99% 1% 

100% 0% 

61% 39% 

48% 52% 

Proportion 

reserve of 

error 
due to 

Process 
Reserve 



It is interesting to compare these results with those for the basic chain-ladder, which 

had considerably more uncertainty being added by the reserving process. 

The results are again displayed graphically below: 
I 

Components of Reserve Variability 
class s boostrapped Log-Linear regression 

The other area which Bootstrapping can be useful in investigating the bias of methods 
such as Log-linear regression. Section 6.2.1.2 and 6.5.1.5 described how the process 
of transforming from estimated log-payments to estimated payments introduced bias 
into the reserving process for this model. 

How big do we expect this bias to be? Section 6.2.1.2 detailed an adjustment to the 
biased payments, involving a daunting-looking infinite series, The series can be 
simplified to a few terms, for sizes of n (number of observations), p (number of 
parameters) and small model variance, of the orders of magnitude we are usually 
dealing with in a reserving context. This reduces to: 

Corrected Payments / Uncorrected payments = m / (m+1) 

where m = n - p 

In other words our uncorrected payments are about I/m too big, or around 1% in the 
context of the models looked at in section 6.2. 
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To examine the bias, we need to Bootstrap the actual v. fitted payments, rather than 
the actual v. fitted log-payments, as was done previously. This was done again using a 
macro in a Lotus spreadsheet. The results are summarised below: 

Class 1 

Predicted 
SE 

1922 

1923 

1924 8,118 7,731 105% 

1925 19,664 18,833 104% 

Predicted 
SE 

1926 32,679 31,627 103% 

Predicted 

SE 
1927 28,579 27,944 102% 

Predicted 
SE 

1928 26,559 26,239 101% 

Predicted 
SE 

Predicted 
SE 

Predicted 
SE 

1931 116,965 114,965 102% 

Bootstrapped Log-Linear Regression 

(bootstrapping the actual payment) 

Ratio 
Pseudo 
Reserve 
to Pseudo 
Future 

Pseudo 
Future 
Data 
to year 
nine 

Pseudo 
Reserve 
to year 
nine 

Accident 
year 

Predicted 

SE 
Predicted 

SE 

1929 34,405 34,362 100% 

Predicted 
SE 

1930 68,605 67,841 101% 

Total 335,428 329,680 102% 

Note that the Pseudo-Reserve and Pseudo-data figures for the above table only go up 
to year nine, whereas the previous Bootstrapping table projected numbers up to year 
thirteen, so the two sets of numbers are not directly comparable.] 
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At first sight the results look as if they support the expected size of the bias. However, 
the treatment of negative claims comes back to haunt the Log-linear regression 
method. We have picked the Residuals from the entire triangle and applied them to all 
the actual fitted payments. This means that payments in the tail have some large 
negative payments. The model coped with this by setting such payments equal to the 
actual original fitted payment - this in itself introduced bias in to the reserving process. 

This bias will have caused some or all of the effects above. Time and materiality 
prevented the working party looking into this further. 
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6.5.3. Practical Limitations . 

The concepts of Bootstrapping are quite straightforward, the main limitation is the 
speed at which computers can perform the many calculations required. The heart of the 
Bootstrapping process is the construction of many sets of Pseudo-Data and the 
collating of the Pseudo-Reserves calculated from each. This is a very intensive number 
crunching process and needs a powerful PC if the calculations are to be carried out in a 
realistic time frame. The Bootstrapping calculations were performed on a speed- 
doubled 486 PC, operating at 66Mhz. 

The Bootstrapping of the Basic Chain-ladder reserving method was carried out in a 
Lotus version 2.01 spreadsheet with the Add-In @Risk. The spreadsheet comprised 

fifteen 10x40 triangles (quarterly data was used), that is 6,000 individual calculations. 

The re-sampling of the residuals involved a recalculation of a 10x40 triangle of past 
and future payments, each cell being a random sample from 216 residuals. The add-in 
@Risk provided the facility to enter the triangle of re-sampled residuals as random 
variables in cells, and then collated the results for some 60 cells of interest within the 
spreadsheet. This is clearly quite a number intensive spreadsheet! For each class 5,000 
simulations were performed (i.e. 30 million individual calculations), which took about 
ten hours. Similar work has been done for smaller, annual. triangles for which around 
40,000 simulations can be performed in about ten hours. Though time-consuming, the 
calculations are not beyond the scope of today’s more powerful PCs. 

The Bootstrapping of the Log-Linear method was not performed with the assistance of 
@Risk. This was because the results could not be produced for each new set of 
Pseudo-Data simply by recalculating the spreadsheet, because part of the process 
involved performing regression on the Log-Payments each time. Instead a simple 
macro was set up to run through a loop, each time selecting a new set of Pseudo-Data, 
performing the regression, calculating the reserves and storing the results in a table. 
This was equally time-consuming, and again about 5.000 simulations could be 
performed in ten hours. 

The time constraints are clearly quite large, but, especially when annual payments are 
being considered, need not pose a problem. Although it is helpful to have packages 
such as @Risk to collate simulation results, the production of statistics regarding 
Pseudo-Reserves and Pseudo-Data generally can still be performed in any 
straightforward spreadsheet in a reasonable time frame. 
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6.6. Summary of Results 

The following tables bring together the results of using the three stochastic methods, 
and Bootstrapping using the Basic Chain-Ladder on the three classes of data described 
in 6.1. 

The modellers were asked to predict the payments over the next three years, and an 
ultimate reserve. The tables show these predictions together with the actual payments 
made over the three years, and the latest estimate of reserves required, excluding 

IBNR. 

It is interesting to compare the accuracy of the predicted payments, and whether the 
ultimate reserve looks reasonable in the light of three years development. However the 
main purpose of this entirely unrealistic was to draw out the practical aspects 
of these methods, and readers should not draw any conclusions as to the value of these 
methods purely on the strength of the results shown here. In particular the results are 
subject to a great deal of subjective judgement as the modeller is required to make a 
number of assumptions in interacting with the models. In practice these would be made 
on the basis of much additional information, some of which may be prompted by 
skilled analysis of the diagnostics from using one or more of these statistical methods. 
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7. Features of the Statistical Reserving Techniques 
or 

when can they be used? 

Modelling Method 
Features Log- Log- Operational Bootstrapping 

Incremental Incremental Time 
Claims Claims II 

Model 
Developed to X X X 
represent 
underlying 
Claims Process 

Separation of 
Different 
Sources of 
Variability 
Allows 
Projection X 
Beyond the 
Range of the 
Available Data 

Independent of 
Distributional X X 
Assumptions 

Handles 
Negative X X X 
Claims 
Adequately 

Requires 
Numbers as X X X 
well as 
Amounts 
Predicts future 
Cash Flow X 

Note: ( ) indicates basic approach can be extended to provide feature 
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8. Benchmarking Statistic Reserving Techniques 

or 
How should we judge the success of a reserving technique? 

It is important to reiterate that the use of a particular reserving approach should not be 
judged solely on the accuracy of its prediction, nor whether its standard error range 
encompassed the ultimate result. Clearly these are important measures, but the benefits 
to the practitioner of a particular reserving methodology embrace wider 
considerations. These include 

Do the diagnostic assist the pratitioner to identify features in the data 
requiring further investigation? 

Is the method robust from year to year? 

Does the method lend itself to a study analysis of the changes from one 
valuation to the next? (an "Analysis of surplus) 

Does the method aid the lay manager in making business decisions? 

8.1 Why Methods Don’t Always Predict the Future Accurately 

Some of the more common reasons for a method failing to predict the future 
accurately are: 

1. Future is not like the past. 

2. Assumptions are wrong. 

Note: The simple chain ladder also contains lots of implicit assumptions which 
users should be aware of - Thomas Mack’s paper [6] is well worth studying. 

3. Paid and incurred may be giving different pictures. 

4. May have ignored problems with the data / modelled the wrong data. 
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9. Other Methods & Further Reading 
or 

Where Now? 

9.1. Further Reading 

The numbers refer to references made in the relevant sections of the paper. Otherwise 
papers are shown for the purposes of further reading. 

[1]CHRISTOFIDES S.( 1990) “Regression models based on Log-Incremental 

[2]EFRON B. (1979) “Bootstrap Methods, Another Look at the Jackknife” 

[3]FINNEY D.J. (1941) “On the distribution of a Variate whose logarithm is 

payments”, Institute of Actuaries Reserving Manual 
Volume II 

(the 1977 Rietz Lecture), The Annals of Statistics Vol 7 
No 1, pages l-26 

Normally distributed”, JRSS Supplement 7, pages l55- 
61 

[4]FREEMAN D.A. & PETERS S.C. (1984) “Bootstrapping a Regression 
Equation: Some Empirical Results”, Journal of the 
American Statistical Association Vol 79 No 385, pages 
97- 106 

[5]HARRISON P.J. & STEPHENS C.F. (1976) “Bayesian Forecasting”, Journal 
of the Royal Statistical Society (B) 38 

[6]MACK T. (1993) “Measuring the Variability of Chain Ladder Reserve 
Estimates”, Casualty Actuarial Society 

[7]MCCULLAGH P. & NELDER J. A. (1983) “Generalized Linear Models”, 
Chapman & Hall 

[8]MURPHY D.M. (1993) “Unbiased Loss Development Factors”, Casualty 
Actuarial Society 

Variance in Claim Reserving Page99 

99 



[9]RENSHAW A.E. (1989) “Chain-ladder and Interactive modelling”, JIA 116 Part III 

[lO]TAYLOR G.C. “Regression Models in Claims Analysis I: Theory” 

[1l]VERRALL R.J. (1989) “A State-Space Representation of the Chain-Ladder Linear 
Model”, JIA 116 Part III, pages 589-611 

The chain ladder model parameters are fitted using a Bayesian approach 

[ 12]VERRALL R.J. (1991) “Chain-Ladder and Maximum Likelihood”, JIA 118 Part 
III, pages 489-499 

[13]VERRALL R.J. (1991) “On the Unbiased Estimation of Reserves from Loglinear 
Models”, Insurance: Mathematics and Economics, Vol 10 
No. 1, Pages 75-80 

[l4]VERRALL R.J. (1993) “Statistical Methods for the Chain-Ladder Technique”, City 
University 

[l5]VERRALL R.J. (1993) “Negative Incremental Claims: Chain-Ladder and Linear 
Models”, JIA 120 Part I, pages 171-185, 

The practical problem of handling negative incremental claims when modelling 
with a log incremental model is addressed. A statistical estimate of the “correct” 
adjustment is given. 

[16]WRIGHT T.S. (1990) “A Stochastic Method for Claims Reserving in General 
Insurance”, JIA 117 Part III, pages 677-733 

[17]ZEHNWIRTH B. (1990) “Probabilistic Development Factor Models with 
applications to loss reserve variability, prediction intervals 
and risk based capital”, CAS Loss Reserve Seminar 1990 

[18]WRIGHT T.S. (1992) “Stochastic Claims Reserving when Past Claim Numbers 
are Known”, PCAS 1992 

[19]REID D.H. (1978) “Claim Reserves in General Insurance”, JIA 105 

[20]TAYLOR G.C. (1981) “Speed of Finalization of Claims and Claims Run-Off 
Analysis”, ASTIN Bulletin 12, pages 8l- 100 

[21]TAYLOR G.C. (1983) “An Invariance Principle for the Analysis of Non-Life 
Insurance Claims”, JIA 110, pages 205-242 
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Appendix 1: Generalized Linear Models (“GLMs”) 

When we construct a model. we are trying to find a mathematical structure which 
describes features of a set of data. In a stochastic model, we assume that the model has 
a systematic element and a random element. GLMs comprise models whose systematic 
and random components have a certain structure. 

Consider modelling a set of data as a realisation of a set of random variables 

(Y1 ,Y2 ,.... Yn) = X, with expected values(µ1 ,µ2 ,..... µn) = = E . GLMs are then 
characterised by three features: 

1. The Yi’s have a distribution belonging to the exponential family. This 

includes Normal, Poisson, Binomial, Gamma and X2 distributions amongst others. 

2. There is a set of factors affecting the model through what is called a 

Linear Predictor, , where ( 1, 2,... . . . n) = and: 

for j= 1,... ..p, where xij are a series of factors affecting 

the model. 

3. The linear predictor, , is connected to the model by what is called a 
Link function. such that. 

=g( ) 

g has to satisfy certain conditions, such as being monotonic and 
differentiable. 

A simple example of a GLM may make the above characteristics clearer. Consider the 
classical linear model (otherwise known as the General Linear Model): 
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for where
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This is a particular case of a GLM where: 

1. The distribution is Normal. 

2. The predictor is i= Xij ßj, for i=,2 ,..... n 
J=I 

3. The Link function is “identity”, that is = g( ) = . 

GLMs cover a variety of familiar techniques, such as regression, analysis of variance, 
analysis of contingency tables and so on. With the range of possible distributions and 
Link functions, they also provide a much wider set of models which can be applied in a 
reserving context, premium rating or a variety of other actuarial applications. 
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Appendix 2: Glossary 

Below is a brief list of terms commonly used in the statistical techniques described in 
this paper, and their associated definitions 

Akike Information Criterion (AIC) A discriminatory statistic to indicate the level of 
significance of the number of parameters used in 
a model relative to the number of degrees of 
freedom available. The measure contains a 
penalty factor if too many parameters are used. 

Bayes Information Criterion (BIC) A variant on AIC, which is generally believed to 
be more powerful. 

General Linear Models 

Generalized Linear Models 

Kalman Filter 

Log-Space 

Operational Time 

special case of the Generalized Linear Model 
with the Link function set equal to the identity. 
This corresponds to a linear model with a normal 
error structure. 

Linear Model applied to data transformed by the 
link function 

In the claims reserving context, this filter is used 
as a smoothing algorithm. It may be thought of 
as the recursive use of Bayes theorem. With 
conventional approaches to development pattern 
modelling. one must assume either that all years 
have the same development pattern, or else that 
individual years, or groups of years are 
independent. Use of the Kalman filter allows the 
fitted pattern to change or adapt smoothly across 
years. 

the original claims data is transformed by taking 
logarithms of the incremental payments, and 
regression is then performed on this. The data is 
now said to be in “Log-Space”. 

Operational time ( ) is defined as the proportion 
of all claims closed to date. 
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Standard Deviation 

Standard Error standard deviation of the estimate, allowing for 
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root mean square deviation of a statistic 

parameter uncertainty 
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Appendix 3: Charts of the over/(under) Provision of Claims against 
Adjusted Previous Year’s Underwriting Result 

Note: ADJUSTMENT has simply added over/(under) provision emerging in year 1+1 
back into the underwriting result in year 1. 

Chi Squared = 7.1 
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Note: ADJUSTMENT has simply added over/(under) provision emerging in year 1+1 
back into the underwriting result in year 1. 

Chi Squared = 8.5 
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Note: ADJUSTMENT has simply added over/(under) provision emerging in year 1 + 1 
back into the underwriting result in year 1. 

Chi Squared = 6.25 
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Note: ADJUSTED has simply added over/(under) provision emerging in year 1+1 
back into the underwriting result in year 1. 

Chi Squared = 5.1 
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Note: ADJUSTED has simply added over/(under) provision emerging in year 1+1 
back into the underwriting result in year 1. 

Chi Squared = 36.0 
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Appendix 4: Graphs of the development of the Total Claims Estimate, 
grouped by Accounting Class and Size of Business 
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Appendix 5: Charts of Analysis For Operational Time 
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