

Introduction Who are we?

- John Campbell
- Daniel Clarke
- Darren Farr
- Cameron Heath
- Gladys Hosken
- Gillian James
- Andrew Newman
- David Simmons
- Hannes Van Rensburg

The Actuarial Profession making financial sense of the fu

Introduction

What are we going to talk about?

- Definitions of a 1-in-200 Andrew Newman
- Aid for arriving at a true 1-in-200 John Campbell
- Modelling Dependency Gladys Hoskins & Darren Farr

Paper also covers

- Generic ICA model structure & risks to be considered
- Regulatory best practices
- Literature review

Introduction

What are we NOT going to talk about?

- The views expressed in this paper should be regarded as being our personal views and in particular, should not necessarily be regarded as being those of our employers.
- Rating Agency capital charges
- Individual entities' capital models

The Actuarial Profession making financial sense of the full

Introduction

What do we want from you?

- Your opinions
- Your views
- Your thoughts
- Your comments
- Your observations

The Actuarial Profession making financial sense of the fu

Definitions

Initial thoughts

- Probability theory is key in pricing insurance contracts
- Even more so in deriving distributions of outcomes
- Conceptual problems (human)
- Definitions initial attempt to place into context

Conventional Thinking

Reasonable foreseeable adverse events:

- Living memory 60-80 years
- Working memory 20-40 years
- Depends who you ask
- Traditional thinking of insurance capital
- MCR = best estimate plus a prudence

Conventional Thinking

Size of Loss:

- Biggest loss expected to occur with 0.5% probability
- Exceedance probability akin to Cat model output
- Combination of events not considered, can extend idea to "Killer" scenario
- Correlations
- Useful check to capital modelling output
- Lloyd's RDS model

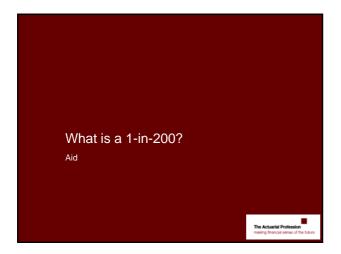
- Time changes everything
 - Environment
 - Technology
- Biased by anchoring and past experience
- · Extremity of events for capital (Non-occurrence)
- Combination of events

The Actuarial R

Definitions 1-in-200 Companies

1-in-200 equally well-capitalised companies (relative to their risk) will fail over the next 1 year

- Ignores the systematic events impacting entire markets
- Global nature of business
- · Failure of standalone risk assessment
- Change in dependency structures in . extreme event
- Massive regulatory issue is inter company correlations


Definitions

1-in-200 Chance

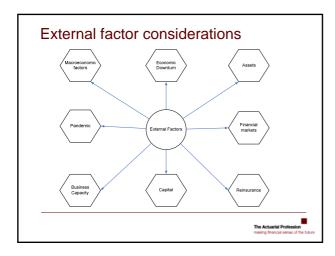
Capitalised to withstand the events of the next 1 year with a probability of 199 out of 200

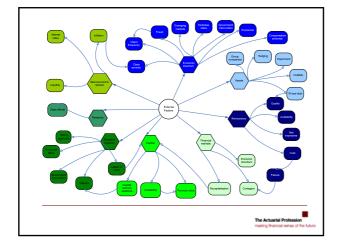
- Up to date economic and risk environment
- Incorporate year and company definitions
- Holistic paradigm includes return period as well as systematic impacts, giving consideration to:
 Common risk drivers
 - Extrapolation of reasonable foreseeable events
 - Size of loss

The Actuarial Profession

Estimating a 1-in-200 position

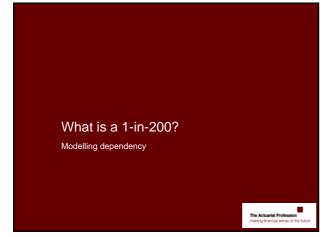
1. Set expectations


- Understand where a 1-10 or 1-20 loss may lie
 - Internal data
 - External data
 - Understand the business
 - Changes over time


Estimating a 1-in-200 position

- 2. Choose the distribution
 - Consider the choice of a multi-modal distribution
 - Shift of the type of subjectivity inherent in the fit
- 3. Test expectations
 - RDS
 - External factors

The Actuarial Profession making financial sense of the future



Estimating a 1-in-200 position

- 5. Sense Checks
 - Input v Output
 - As if / Only if
 - 'Pre-historic' events
 - Scenario testing
 - Reverse scenario testing
 - How fast does the distribution tail off

6. Control Cycle

The Actuarial Profession making financial sense of the fu

Modelling dependency

- Interdependencies are one of the key drivers of the 1-in-200 year value.
- The model must find a robust way of dealing with such complex interdependencies.
- 4 approaches are considered:
 - 1. Linear correlation
 - 2. Copulas
 - 3. Cause & Effect
 - 4. Multi-state model

The Actuarial Profession making financial sense of the fu

Linear correlation

PRO:

- Relatively simple to create and explain.
- CONS:
 - Can't cope with one-way dependencies.
 - Insufficient data.
 - Large correlation matrix causes issues.
 - Can't handle tail-only dependencies.
 - 1-in-200 v 1-in-10 problem with lack of linearity and level of correlation.

The Actuarial Profession making financial sense of the fi

Copulas

PROS:

- Non-linear cross-element correlations.
- Mitigates issues with one-way & tail-only dependencies and extrapolation to 1 in 200.
- CONS:
 - Insufficient data even more of a problem.
 - Lack of transparency.
 - Loss of focus.
 - Computational challenge.

"Cause & Effect" Model (1)

PROS:

- Draws out a number of 'common causes' and correlates risk types through the causes, rather than to each other.
- Incorporates qualitative information.
- Aids thought process.
- One-way and tail dependencies.
- More intuitive, so may be easier to explain.

The Actuarial Profession making financial sense of the fu

"Cause & Effect" Model (2)

CONS:

- Efficiency of estimates.
- Potential 'causes'.
- Loss of focus on extreme events.
- More subjective.
- Increased complexity.

The Actuarial Profession making financial sense of the fu

Multi-state model (1)

CONCEPT

- Two or more sets of distributions & correlation factors per risk element.
- Each set associated with an external event / 'state'.
- For each iteration simulate the state to determine the distributions and correlation set for that iteration.
- Most iterations based on the main / 'benign' distribution set; remainder based on the alternative / 'extreme' distribution sets.
- Thinking explicitly focussed on extreme events.

Multi-state model (2)

PROS:

- As per the "Cause & Effect" model.
- Transparent.
- Focused on extreme shocks.
- CONS:
 - Highly subjective.
 - Is it Solvency II acceptable?

The Actuarial Profession making financial sense of the fut

	PROS	CONS
Linear correlation	Relatively simple to build	Too simplistic to explain complex dependencies
Copulas	Reduces issues with one- way & tail-only dependencies	Lack of transparency; determination of the family of copulas may be difficult
"Cause & effect"	More intuitive; incorporates qualitative information	Doesn't necessarily focus on improving estimates of 1-in-200 year events
Multi-state model	Transparent; focused on extreme shocks	Highly subjective; is it Solvency II acceptable?

In practice, a model may use a combination of these approaches to best capture the complex relationships between the different risk sources.

