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WHICH COMES FIRST, PROBABILITY OR STATISTICS?

BY I. J. GOOD, M.A., PH.D.

T H E title of this note was selected so as to provide an excuse for discussing
some rather general matters. Let us first consider the question of which of
probability and statistics came first historically. This question is like the one
about eggs and chickens. The question whether eggs or chickens came first could
in principle be given a meaning by using arbitrarily precise definitions of eggs
and chickens, and even then probably nobody would be able to answer the
question. The question whether probability or statistics came first is not as
bad as the one about eggs and chickens, but it still depends on arbitrary
definitions.

Some of the ideas of probability and statistics must be very old. Cicero
described probability as 'the guide to life', and insurance was practised by the
ancient Romans. (A table of life expectancies was constructed by Domitius
Ulpianus.) Even animals behave as if they accepted some of the principles of
scientific induction, so that inductive behaviour can be said to date back to a
time before there were any human beings.

A substantial use of mathematics in the theory of probability was apparently
not made until 1654 in correspondence between Pascal and Fermat, published
in 1679. A much more convincing use of mathematics was made in Huygens's
dissertation, published in 1657. Slight anticipations of the mathematical
theory are mentioned in Todhunter's History of the Mathematical Theory of
Probability. For example, a commentary of 1477 on Dante's Purgatorio
refers to the probability of various throws with three dice. Galileo made
similar calculations before 1642, published in 1718; apparently there were
delays in publication in those days! Both Pascal and Galileo were stimulated
by questions put to them by gamblers, who had accumulated statistical data
for which they requested explanations. Cardan, himself a gambler, made
similar calculations perhaps a hundred years earlier even than Galileo. As

explicitly formulated the method of basing the calculation of probabilities on
the abstraction of equally probable cases. Clearly Cardan and other gamblers
knew that the limiting relative frequencies of successes ought to be equal to
the proportion of equally probable ways of getting a success, otherwise they
would not have asked for explanations. In other words, even before the
mathematical theory of probability was founded, it seems that many people
must have had a rough idea of the strong law of large numbers, although this
law was not properly deduced from the usual axioms until 1917 (by Cantelli,
generalizing work of Borel and Hausdorff).

It is at least conventional then to say that the mathematical theory of
probability was founded in the middle of the seventeenth century.

Fermat and Pascal, and the other writers mentioned, started the mathe-
matical theory of probability in order to explain the results of some statistics
obtained experimentally, so that it could be contended that statistics came first.
But since we have dated probability by mathematical probability, the reasonable
question is 'When did mathematical statistics start?' It seems fair to say that
it started with either (a) de Moivre's work on life annuities (1718) (the earlier

pointed out by Miss F. N. David (Biometrika, 42 (1955), 1-55), Cardan had
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work of Halley (1693) was mathematically trivial) or (b) the 'theory of errors'
or combination of observations. The latter subject was developed greatly by
Laplace and Gauss, about 1819-27, but it had its origins in work by Thomas
Simpson (1757), Lagrange (about 1770) and Daniel Bernoulli (1777). Daniel
Bernoulli used the method of maximum likelihood, but did not discover the
method of least squares because he did not use the normal law of errors.

Apparently, then, the mathematical theory of statistics started at least sixty
years later than that of probability. In fact, mathematical statistics is largely
based on mathematical probability, so that mathematical probability is
practically bound to take both historical and logical precedence. A possible
loophole in this statement is that statistics is not entirely predictive and in-
ferential ; some of it is concerned merely with the reduction of a great deal of
data to manageable form. If there are enough data for the theory of probability
to be in effect ignored, then the statistical problems tend to become mathe-
matically rather trivial.

The question now arises whether statistics requires any theory or technique
outside the theory of probability. It will be more interesting to consider the
slightly different question whether statistics requires anything outside the
'theory of rational behaviour', by which is meant the theory of probability
and utility.

In order to give statistics the best chance of belonging to the theory of
rational behaviour we may take this theory in its most general sense, i.e. with
a subjectivistic or multisubjectivistic interpretation, both for the probabilities
and the utilities. Such a theory is more general than a 'necessary' theory in
which probabilities measure objective rational degrees of belief called credi-
bilities, usually assumed to be precise and sometimes determinable. (Necessary
theories of probability were adopted by H. Jeffreys and R. Carnap, and also by
J. M. Keynes, who, however, retracted in his biography of F. P. Ramsey,
Essays in Biography (1933).) Moreover, a necessary theory is more general
than a frequentist theory, in which probabilities are all limiting frequencies.

A subjectivistic theory breaks up into three parts :*

(1) Axioms  } Theory
 }(2) Rules of application Technique.

(3) Suggestions

(In fact, any applied theory of probability, or applied scientific theory in
general, can be broken up into three such parts.) The axioms give rise to an
abstract theory that can be applied only if rules of application are given. The
axioms and rules together make up the theory of probability, and then there is
an indefinite number of 'suggestions' (discussed below) that are better
regarded as belonging to the 'technique' of probability rather than to the
theory proper. The axioms can be expressed in terms of propositions, for
which we use the symbols E, F, G and H. (Some mathematicians prefer to
base the axioms on sets instead of on propositions, but this seems to me to
make the axioms more abstract without gain of generality.) Symbols of the
form P (E |F ),U (A \ H )are introduced and are read 'the probability of E
given F ' and ' the utility of A given H', where A is an act and H is a proposition
that is to be interpreted later as a description of an assumed state of the world.

* Cf. Probability and the Weighing of Evidence (1950, written, for the most part, in
1946). Similar views had previously been expressed by F. P. Ramsey and Bruno de
Finetti.
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P (E |F ),for all propositions E and F,is a real number between 0 and 1,
while U (A | H) is also a real number. (These assumptions are made for the
sake of simplicity. B. O. Koopman (1940), inspired by J. M. Keynes, worked
out a more general theory, but without utilities, in which probabilities are
non-numerical and only partially ordered, even inside the abstract theory.)
A typical axiom is

P (E and F|G)=P (E|G ).P (F |E and G ).

A typical rule of application is that a judgment

P'(E|F)>P'(G|H), (1)
meaning that the degree of belief in Ε given F would be greater than that in G
given H, permits the inequality

P ( E | F ) > P ( G | H ) (2)

to be used in the abstract theory; and conversely that (2) implies the 'discern-
ment' (1). The principle of rational behaviour is one of the rules of application.
It is the recommendation to maximize expected utility.

The purpose of the theory is to increase the size of a body of beliefs or
preferences between acts and to detect inconsistencies in it, and thereby to
bring some degree of objectivity into our beliefs and decisions. The purpose
of a subjectivistic theory is to increase objectivity.

The definitions of probability and utility are implicit in the theory as a
whole, i.e. in the axioms and rules of application. Rigorous explicit definitions
are not given.

Suggestions are 'vague rules'. For example,

(i) the theorems of probability, such as the laws of large numbers, can be
used to help the judgment ;

(ii) if an inconsistency is found, it should be resolved by means of honest
and detached judgment;

(iii) occasional inconsistencies may be tolerated, such as when we regard
the probability of a mathematical theorem as neither 0 nor 1 (of. Probability
and the Weighing of Evidence, p. 49, and also G. Polya's work on plausible
inference) ;

(iv) numerical probabilities can be introduced either by imagining idealized
games of chance, or (equally idealized) infinite sequences of trials performed
under essentially the same circumstances;

(v) lower bounds for very small probabilities can be estimated by the
'device of imaginary results' in which one imagines a sequence of successful
trials sufficient to bring the probability up above ½, and then applies Bayes's
theorem in reverse to get a bound on the initial probability (cf. Probability and
the Weighing of Evidence, pp. 35 and 70, for a fuller explanation of this
device).

We may now ask why the theory of rational behaviour is not sufficient for
statistics. The answer is that in statistics we usually aim at precise statements
for summarizing evidence. We cannot always arrive at precise statements in
the theory of rational behaviour because in this theory we deal primarily with
inequalities, not with equations. To overlook this fact is like imagining that
lengths can be found to an infinite number of places of decimals, a mistake
that is not made in an engineering specification in which tolerances are
specified.
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It is possible, however, to regard statistics as belonging to the technique of

rational behaviour. The principles of statistics are mostly suggestions in the
technique of rational behaviour or of probability.

No principle of statistics is uncontroversial when expressed too precisely,
unless it is already a part of the theory of rational behaviour. For if it were
uncontroversial and precise, it would have been adjoined to the axioms of the
subject.

The theories of probability and of rational behaviour are extensions of
ordinary logic and must take logical precedence over statistics. This pre-
cedence of probability and utility is sometimes overlooked when people take
the apparent precision of statistical principles too seriously. They are then
liable to forget to check the consistency of each application with their own
honest judgments, and they think they are thereby exhibiting a noble
objectivity.

It is often said that the foundations of probability are controversial. But
the controversy is perhaps illusory and is concerned only with matters of
terminology, such as whether the word 'probability' should be given a very
wide meaning or no meaning at all. The controversies in statistics are more
real unless it is admitted that the principles of statistics are usually imprecise.
It is difficult for statisticians to make such an admission when one of the main
aims of statistics is the avoidance of vagueness.

Let us consider some examples of statistical principles. For each of them
we shall run into trouble by regarding them as golden rules leading to precise
probability statements or decisions.

(i) Maximum likelihood. I recently won a one-cent bet by guessing the
name of the last entry in a dictionary of 50,000 American scientists. (It was
Zygmund.) The maximum-likelihood estimate of the number of names of
American scientists known to me, on this evidence, is 50,000—clearly an un-
reasonable estimate. Fisher would recommend that the principle of maximum
likelihood should be used with common sense. Another way of saying the
same thing would be that initial probabilities and utilities should be taken into
account. (For an example where maximum likelihood gets into trouble even
for large samples see Lindley, J.R. Statist. Soc., 1947.)

(ii) Tail-area probabilities. One of the earliest attempts to avoid the use of
more than the minimum of judgment was the use of tail-area probabilities
(the so-much-or-more method). A typical example is the use of x2 by Karl
Pearson (1900). An earlier use was by Laplace (1773) in a memoir on the
inclination of the orbits of comets. There was an earlier, but rather trivial,
example by Arbuthnot (1712). But presumably gamblers must have used the
method in a rough and ready way, even before 1654, for deciding whether to
draw swords on their opponents for cheating.

To prove that the use of tail-area probabilities as the final summary of
statistical evidence is controversial, it is sufficient to refer to a paper by
Neyman & E. S. Pearson (1928), in which it was emphasized that likelihoods
on non-null hypotheses are relevant as well as those on the null hypothesis.
It is possible to regard this emphasis as constituting a slight swing back to the
Bayes-Laplace philosophy. (An example to show that the probability distri-
bution of a statistic on the null hypothesis is not enough for determining the
choice of which statistic to use is that the reciprocal of Student's t has the
same distribution as t itself when the sample is of size 2.)

(iii) Large-sample theory, or asymptotic properties of statistics. A good



Which comes first, Probability or Statistics?  253

deal of modern statistical theory is concerned with the asymptotic properties
of statistics. One controversial question is how large samples have to be
in order to make these asymptotic properties relevant.

(iv) The likelihood-ratio method. In this method a statistic is chosen that is
equal to the ratio of maximum likelihoods among the class of simple statistical
hypotheses being tested and among the class of all simple statistical hypotheses
entertained. Though intuitively appealing and having desirable large-sample
properties, a small-sample example was produced by Stein in which the
method leads to absurd conclusions (see, for example, J. Neyman, Lectures
and Conferences on Mathematical Statistics and Probability (1952)).

(v) Unbiased statistics. Unbiased statistics can take values outside the
range of what is possible. For example, if a multinomial distribution has
category chances pt, p2,..., pm, and if in a sample of size Ν the frequencies
of the m classes are n1; n2, ..., nm, then an unbiased estimate of  is

This estimate would vanish if each ni were either 0 or 1, but the minimum
possible value of the population parameter is 1/m. It is tempting to replace
by 1/m those values of the statistic that turn out to be less than 1/m. Some
statisticians would do this without noticing that they were now using a biased
statistic.

It is sometimes argued that unbiased statistics have an advantage if it is
intended to average over a number of experiments. Two questions then arise:
(a) How many experiments ? (b) Would a modified Bayes-Laplace philosophy
do just as well if not better? (By the 'modified Bayes-Laplace philosophy' we
mean the philosophy described in the present note. It differs from the ordinary
Bayes-Laplace philosophy in that it leaves room for individual judgment
instead of assuming uniform initial distributions, i.e. Bayes postulates.) No
modified Bayes-Laplace estimate can lie outside the possible range of values
of the population parameter. Applications of the modified Bayes-Laplace
philosophy do not yet belong to orthodox statistics. They are not intended to
lead to precise results.

(vi) Deciding on significance tests before taking a sample. In elementary
text-books the advice is often given to decide on one's tests of significance before
taking a sample. This may be good advice to those whose judgment you do not
trust. Or a statistician may use the principle for himself as a precaution
against wishful thinking, or as a guarantee against accusations of prejudice
rather than judgment. But consider the following example. A sample of
100 readings is taken from some distribution for which the null hypothesis is
that the readings are independently distributed with a normal distribution of
zero mean and unit variance. It is decided in advance of sampling to divide
this normal distribution up into ten equal areas, and to apply the x2 test to
the ten-category equiprobable multinomial distribution of frequencies with
which the readings fall into the ten areas. This would appear to be a very
reasonable statistic. But what if it leads to a non-significant result even though
one of the 100 readings was 20 standard deviations above the mean?

(vii) Confidence intervals. (Developed mainly by Neyman & Pearson
(1930-3). Suggested by E. G. Wilson, J. Amer. Statist. Ass. (1927). I am
indebted to Prof. S. S. Wilks for this last reference.) One of the intentions of
using confidence intervals and regions is to protect the reputation of the
statistician by being right in a certain proportion of cases in the long run.
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Unfortunately, it sometimes leads to such absurd statements, that if one of
them were made there would not be a long run. One objection, similar to the
one above concerning unbiased estimates, was given by M. G. Kendall,
Biometrika, 36 (1949), 101-16. For others see the discussion on H. Daniels,
'The theory of position-finding,' J. R. Statist. Soc. B, 13 (1951). A further
objection is admitted in Neyman's book, cited under heading (iv), namely,
that it can lead to absurdly long confidence intervals. Stein introduced a
sequential sampling procedure to overcome this last objection, but it can lead
to absurdly large samples.

A statistician can arrange to make confidence pronouncements that are
correct in at least 95 % of cases in the long run (if there is a long run). But if
his customer decides to separate off the pronouncements that relate to a sub-
class of the possible experimental results (such as those in which a random
variable is large), then it is no longer true that 95 % of the subclass will be
correct in general. In fact the judgment that the random variable is large is
an indirect statement about the initial probability distribution, and it will
imply that for this subclass the proportion of correct confidence interval
statements will probably fall below 95%. This argument shows what is
perhaps the main reason why the confidence method is a confidence trick, at
least if used too dogmatically.

(viii) Fiducial distributions. The use of fiducial distributions in statistical
inference is controversial if only because these distributions need not be
unique. (See J. G. Mauldon, J. R. Statist. Soc. B, 17 (1955), 79-95. There is
similar unpublished work by J. W. Tukey.)

(ix) Errors of the first and second kinds. The notion of the minimization of
sampling costs for a given consumer's risk was used by Dodge & Romig, Bell
Syst. Tech. J. 8 (1929), 613-31, and the subject was expanded by Neyman &
Pearson in 1933. (I am indebted to Prof. Wilks for the first of these references.)
As pointed out by Prof. Barnard at a recent British Mathematical Colloquium,
the notion of errors of the first and second kinds ignores questions of ' robustness '
of a significance test. One wants a test to be sensitive in detecting certain
types of departure from the null hypothesis but insensitive to other types of
departure, a compromise between robustness and sensitivity.

(x) The point of a significance test. What is the point of a significance test
anyway? A large enough sample will usually lead to the rejection of almost any
null hypothesis (of. Probability and the Weighing of Evidence, p. 90). Why
bother to carry out a statistical experiment to test a null hypothesis if it is
known in advance that the hypothesis cannot be exactly true? The only answer
is that we wish to test whether the hypothesis is in some sense approximately
true, or whether it is rejectable on the sort of size of sample that we intend to
take. These points are not usually made clear in text-books on statistics, and
in any event they have never been formulated precisely.

(xi) Is every significance test also an estimation problem? This is another
question on which there is controversy, but for our present purposes it is
rather a side issue.

(xii) On the use of random sampling numbers. In avoiding the use of the
Bayes-Laplace philosophy or of the modified Bayes-Laplace philosophy,
orthodox statisticians attempt to make use of only two types of probability.
These are (a) the tautological ones that occur in the definition of simple
statistical hypotheses, and (δ) probabilities obtained from random sampling
numbers or roulette wheels or in some other way that does not lead in practice



Which comes first, Probability or Statistics 255

to much dispute concerning the numerical values of the probabilities. (In
effect, nearly everybody accepts the null hypothesis that the random sampling
numbers are at least approximately equiprobably random. This is an example
where the distinction, made, for example, by Fisher, between non-rejection
and acceptance seems to disappear.) The usefulness of the method of randomi-
zation in the design of an experiment is indisputable ; nevertheless, it becomes
controversial if it is put forward as absolutely precise.

We consider the famous tea-testing experiment (see R. A. Fisher, The
Design of Experiments (1949), p. 11). A lady claims to be able to tell by tasting
whether the milk or tea is put first into a cup. An experiment is carried out
consisting of twenty trials, made up of ten M's and ten T's, where M means
'milk in first'and T means 'tea in first'.By means of random sampling
numbers it is arranged that all 2 0 ! / 1 0 ! 1 0 ! sequences are equally probable.
By this design it is possible to make precise probability statements about how
likely it is that the lady will make any given number of correct statements,
assuming the null hypothesis; namely, that she is deluded.

Suppose we choose the sequence MMMMMMMMMMTTTTTTTTTT,
and suppose that the lady gets all of her twenty statements correct. Do we
really believe that her success should be measured by a tail-area probability of
1/220< 1/1,000,000? For all we know the chance that she will guess that the
above order has occurred, for the wrong reason, is far greater than this. (In
fact, on the only occasion that I have seen this experiment performed, the
statistician actually cheated and used the above sequence to save himself
the trouble of randomizing.) A fluke of one in a million has occurred (if the
statistician was honest), but we do not know how much of it is relevant to the
main question of whether the lady can tell, and how much of it merely resides
in the particular sequence of M's and T's that happened to be selected. We
can, of course, use restricted randomization, so as to exclude the simplest
sequences, but we can never entirely overcome the objection.

Thus the precision obtained by the method of randomization can be
obtained only by ignoring information; namely, the information of what
particular random numbers (or Latin square, etc.) occurred.

(xiii) Does decision theory cover ordinary inference? Just as there is fairly
general agreement about the direct probabilities arising from random
sampling numbers, there is also fairly general agreement within firms con-
cerning certain utilities that occur in industrial processes. This is so when the
utilities can be expressed in monetary terms and when the amounts of money
are not large compared with the total capital of the firm. But in purely
scientific matters there is much less agreement; in fact, the utilities as judged
by a single individual will probably be bounded by upper and lower bounds
that are very unequal. In other words the utilities are vague. For this reason
the application of decision theory to scientific research is controversial (of.
Probability and the Weighing of Evidence, p. 40). But it does seem possible,
after all, to apply decision theory quite sensibly to pure science, for example,
by the use of the Type II minimax principle, which is an attempt to achieve
precision when judgments are vague (J. R. Statist. Soc. B, 17 (1955), 195-6).

This note is based on a lecture given to the American Statistical Association
and to the Society of Industrial Applied Mathematics, New York. The copy-
right is held by General Electric Company, who have kindly granted permission
to publish. The present version gives effect to improvements suggested by
Mr Wilfred Perks.




