

Traditional method of projecting populations

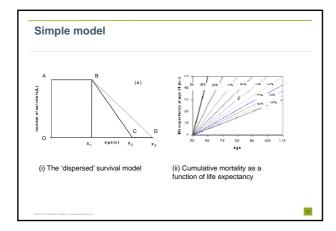
- Project age-sex mortality rates
- Breakdown current population by age-sex
- The projected population for the following year is the current population plus assumed net immigration for the period plus births less deaths determined by mortality rates

1

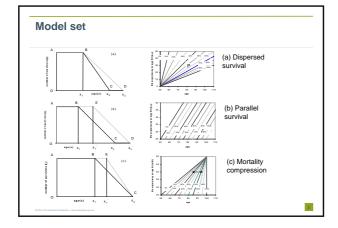
2

· Continue projection for required number of years

Key demographic questions

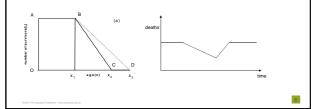

- How do populations age and grow?
- Is there any upper limit to age?
- Are there other methods we can use to project populations?
- Are these methods more accurate?
- What size of difference will it make?

```
© 2010 The Actuarial Profession + www.actuaries.org.uk
```


Aspects discussed

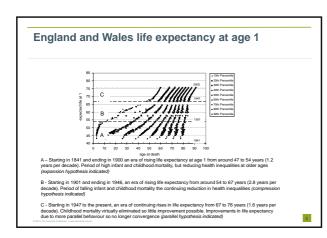
- Simple conceptual model which can be tested against data
- Empirical results from England and Wales
- Evidence that survival approach gives more accurate results than mortality based approach

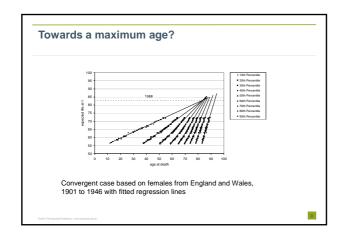
3



General observations

- Wide range of simply derived results
- leading to testable hypotheses
- and simple dynamics:




Empirical results

- Applied to England and Wales from 1800 to 2003
- Looked for evidence of which model worked best in different time periods
- Looked for evidence of maximum age
- Used results to project UK population and compare accuracy

7

Converging percentiles	Age of death where convergence occurs	Required expected future lifetime at age 1	Calendar Year this occurs
10 th and 20 th	83.91	83.16	1988
20 th and 30 th	84.06	83.24	1989
30 th and 40 th	86.14	84.96	1994
40 th and 50 th	88.47	87.46	2003
50 th and 60 th	92.28	92.58	2019
60 th and 70 th	98.82	103.19	2055
70 th and 80 th	102.89	110.86	2080
80 th and 90 th	106.05	117.8	2103
d 90 th	nce pattern cea	117.8 uses after 1946 and a the data so must lo	so no maximun

4

Population forecasting based on survival

Procedure:

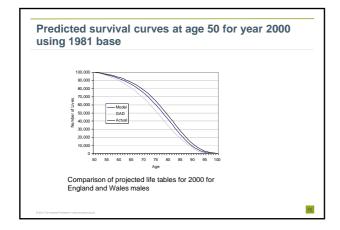
- 1. Establish relationship between the percentiles and the expectation of life at a given age (we use age 50)
- 2. Establish nature of linear relationship between calendar year and expectation of life
- 3. Project forward expectation of life using the relationship found in stage 2
- 4. Derive survival percentiles using the projected expectation of life and the relationship derived in stage 1

12

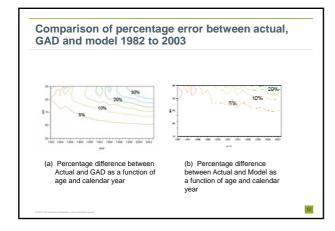
13

14

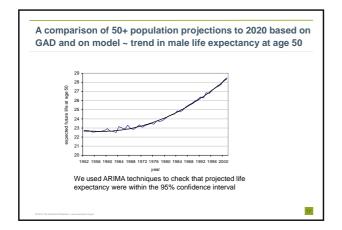
5. Derive mortality from resultant life tables and proceed as normal


Gompertz Makeham equation

- A problem with using the full life table is the volume of data required.
- A more suitable solution can thus be to determine a function that fits the data so that only a few parameters are required.
- The function chosen to fit the data is a form of the Gompertz-Makeham Model which gives a very good fit to the data
- The Gompertz-Makeham Model provides a function for the force of mortality and is defined as:


 μ_x = A + Bc^x or μ_x = A + Be^{γx} where γ = ln(c)
- Where x = age and A, B and c are parameters

Validity testing using retro-projections based on 1981


- To show suitability of the projections we compare projections from our model, with the GAD projection and actual survival from a 1981 base
- GAD's published projection was obtained by constructing life tables using the projected mortality rates at the time
- We use a survival approach but otherwise the same starting data as GAD's

age	GAD 2020	Model	Diff	Diff %	
50-59	3,788,205	3,809,512	21,306	0.56%	
60-69	3,014,841	3,111,925	97,084	3.22%	
70-79	2,324,314	2,504,966	180,653	7.77%	
80-89	978,574	1,164,099	185,525	18.96%	
total	10,105,934	10,590,502	484,568	4.79%	

Conclusions

- We have offered a new way of charting the development of populations through an analysis of trends in human survival based on ordinary life tables
- We sought to explain the various different shapes of survival curves starting with a simple model. This conjectured three basic patterns of survival: (a) 'divergent', (b) 'convergent' or (c) 'parallel'
- There is currently no convergence towards a maximum age although this was not true before 1946. Extended survival patterns among the oldest old is one of the reasons

19

20

Conclusions

- Population projections based on survival trends rather than mortality trends produced more accurate projections of the England an Wales populations than GAD projections to 2003 from a 1981 base
- Population projections to 2020 using our model show 0.6m more people aged 50+ than GAD projections
- There is scope to develop the model in a range of applications and across countries