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THE WHITTAKER-HENDERSON METHOD
OF GRADUATION

By A. W. JOSEPH, M.A,, B.Sc., F.L.A,
Actuary, Wesleyan and General Assurance Society

Mr ELPHINSTONE, in his recent paper(:) to the Faculty of Actuaries, has
reawakened interest in the method of graduation devised by Sir Edmund T.
Whittaker (2,3) some 32 years ago. Except for Professor A. C. Aitken who, in
a paper(s) in the Proceedings of the Royal Society of Edinburgh and a note(s) in
the Transactions of the Faculty of Actuaries, gave a brilliant alternative solution
of the equations on which Whittaker’s method depends, English and Scottish
writers have paid little attention to the method, Robert Henderson’s paper(6)
published in 1924 stimulated American actuaries, and their investigations have
continued up to the present time. The book by Kingsland Camp (reviewed
J.LA. Lxxvii, 327) gives numerous practical developments of Robert Hender-
son’s work. Students should not overlook a most valuable paper (7) by Charles
A. Spoerl which deals comprehensively with almost every aspect of the
subject.

Tj‘he method is allied to graduation by summation formulae, but has the
advantages that the run of the coefficients when the formula is extended in
linear compound form is theoretically very good and, unlike summation
formulae, special methods are not needed to deal with the ends of the series to
be graduated. The present note, which does not pretend to be original, gives
an account of the method, links up the work of Aitken and Henderson and
leads to the formulae which have been found to be of most use in practice. It
is thought that the tables in Appendices I and II are new.

It is desired to graduate a sequence of values u, (¢ <x<b). The graduated
values are u, (@ <x <b). If, as is usual, third differences are regarded as giving

b-3
a criterion of smoothness the expression Y, (A%,)? may be taken as a measure
xr=a

of the roughness of the graduated values. ¥, (u,—u,)* is 2 measure of the

T=aq
distortion caused by the graduation. Whittaker’s method is to minimize the
expression b—3 b
2 (A% +e T (uy~ug),
x=a Tr=q

where ¢ is a constant chosen to give a balance between roughness and distortion.
The equations so derived take the form

I
uw——u;=EA“uw_3 (a+3<x0<b=3),

and six other equations, three at each end.

The six equations at the ends can, however, also be brought into the form

1 . . . .
ux—ugzéA"ux_3 by the device of introducing three additional values of u,
at each end (i.e. values for x=a—3,a—2,a~1,b+1, b+2, b+ 3) chosen such
7-2
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that A*y,=oforx=a—13,a—2,a—1,b—2,b— 1, b. The equations to be solved
are therefore .
Uy — U= EA“uz_s (a<x<b),

and the six terminal equations A%x, =o.

Whittaker(2) and Lidstone(®) showed that these equations implied that the
sum and the first two moments of the graduated and ungraduated values were
equal. In symbols b b

> xXu,= >, x'u, (r=o,1,2).
r=a Tr=a

Whittaker expanded the equations in powers of ¢, which he assumed would
be small, and solved the equations, powers of € above the first being ignored.
This solution had its advantages because it was easy to derive graduated values
corresponding to different values of € and thus to choose the value of € which
seemed most suitable.

Aitken(s) gave an exact solution of Whittaker’s equations. He showed that
the data u; could be extended at either end by quantities which lay on two
parabolas, one for each end. The graduated values #,, could then be expressed
in terms of the original data and the additional data by an infinite series

up=kouy+ Ry (U +ug_y) Hh(ugatug g)+...,
3

. . € .
where &, k;, ... were the coefficients of the expansion of m—_ef:* in the

form kot h (E+E-Y) +hy(E2+E-2)+....

Aitken tabulated the values of & for various values of e. He found that they
diminished rapidly and could be ignored after a certain number of terms
depending on e.

The six roots of (E—1)® —eE? =0 may be associated in pairs whose product
is unity and may be denoted by «, 1/a, £, 1/8, v, 1/, where, to fix the values,
a, [, v are those roots whose absolute magnitude is less than unity.

The additional data to be added at either end may be obtained by the
infinite series

Uy =jrty g +jatly ot... (¥>0)
Uy =Ji Uy + alprat .. (x<a),
where J, Js, ... are the coefficients of the expansion of
(1-E)

I—
(1—2E)(1 - PE)(1 - yE)
in the form j,E +/,E%+....

Aitken tabulated the values of f,, ,, ..., which diminish rapidly in the same
way as the values of &, &,, ...

It will be found that the values of #,, outside the range a <x <5 are equal to
the values #, which have been added at each end.

Aitken’s original papers should be consulted for a full description of his
method. It will be seen, however, that it is a very practical method. First the
values w4, Uy.9, Upeg, Upeq are calculated by the formula involving the j’s.
Since they lie on a parabola second differences are constant, which is a check
on the calculations. Further values #;_;, etc., which also lie on the parabola,
may easily be obtained by finite differences. A similar process is repeated at
the other end. u,, #,,,, €tc., are then calculated by the formula involving the
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k’'s. The method has the advantage that the terminal conditions are auto-
matically satisfied. There are two objections to the method.

(r) If there are few terms in the data to be graduated, the j expansion for
computmg Uy,q, W, 19, €tc., will stretch beyond the data and involve the values
U,_y, 4, s, etc., which have yet to be computed.

(2) The k formula is somewhat confusing to use.
Henderson(6) gave an ingenious way of solving Whittaker’s equations. In

. . 1
effect, as was pointed out by Joffe(s), Henderson discovered that 1 —EAG E-3

can be factorized into
2
l: +nAE_1+n(n+ I)AzE__ n(n+1) (n+2)A3E-3:|

4(2n+3)

n(n+1) \, n(n+1Pm+2)

[ T A T ) A]’
where 1 n(n +1P(n+2P3 (n+3)
€ 16 (21 + 3)? ’

These factors are really

{(1—aE) (1 - PET) (1 — yE)}{(1 —2E) (1~ PE) (1 ~ yE)}
multiplied by an appropriate constant, thus

nA+n(n+ 1)A2 n(n+1)? (n+2)A3

4(2n+3)
=t ‘)%:i);("“)(x —aE) (1 - FE) (1 — yE).
_ n(n+1),, n(n+1)2(n+2)
If vx—[l—nA-l- P A% — (2n+3) ) (I)
the equation (1 —é AGE-3) , =, becomes
ul= [1 +ndB-1 MO D popa ’1_-—.—(’:2 ‘121(’;; A 3E~8] @)

Formula (2) may be written
_ 4(2n+3) W e 3nts)
T (n+1)(n+2?(n+3) " (n+1)(nt2) O
_n@3nt4) n(n+1)

(n+2)? e +(n+2)(zrz+3) o8 (3)
and enables v,, 9,.,..., ¥, t0o be calculated in succession provided three
starting values v,_5, 9,_s, ¥,_, are given.

Formula (1) may be written
sent3) _ n(m+s)
TrrnmraR@mes) ) (at2) ot
_n(3n+4) n(n+1)
(n+2)2 Ugig +(n+2)(n+3) 2+8 > (4')

UpyUp s Up—gy ey Ug Uy, Ug 05Uy g

and enables
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to be calculated in succession provided three starting values w3, %5, Upg
are given,

The solution would be complete if the six starting values were known.
Three of them may be obtained quite easily. For if

n+42)(n+
Upi1 =Vpg+(n+3) Ay 5+ (—22‘(‘—3) A?yy_,,

Upro=Tpg+(n+4)Avy_ o+

~

@304 p 4, ®

+4)(n+
Up3=Tpg+ (n+5)Av, 5+ W Ay _y,

then the operation (4) produces

n—1)n
Up o=V g+ 1AV 5+ g‘% APy, s,
, n(n+1
Upy =Vyg+(n+1)Avy 5+ —~—~——( 3 )A27Jb_2 , 8 (6)

+1)(n+2
U, =Vyp+m+2)Av, 5+ (n)—-;(‘"‘*) A?y,_s,

and it is clear that the terminal conditions A%u, ,=A3%, ; =A3u,=0 are
satisfied. Itis by no means as easy to ensure that the other terminal conditions
A3y, =A%, ,=A3, ,=o0 are satisfied. There are three ways to proceed.

”

(A) Use Aitken’s method to obtain starting values u; g, g, #; . Ashas
been pointed out, these values are also #,_s, %, g, #5-1. Then v, g, v, 5, Vg
can be computed from formula (1) combined with

3 —_ A3 —AS —
Ay, o=Nu, ,=A%, ;=o.

(B) It is evident from Aitken’s tables that the j-coefficients are so small at
a sufficient distance from the end of the table that the contribution of u; to
a starting value #, , may be neglected if x—a exceeds a certain minimum
value. It is possible to work backwards from arbitrary figures (which may be
zeros) at this distance, using suitable recurrence relations, to correct starting
values at @ — 1, a— 2, @ — 3. The following analysis shows how this is done.
Since, for x<a,

_ (-Er 1.,
(1=aE)(: — FE) i —7E) ]

u,=uy; and u;= [1

the proper recurrence relation is

{1 — o) (x = PE) (1 ~ yE)} = {(1 — ) (x — BE) (1 — yENul + A% (7)
The recurrence relation for #, (@ <x<b) is different from (7), being

(I —~§A6E*3) Uy =1y

The values u,, #,.4, #,., Obtained from (7) will therefore not be correct, but
once #,_, is reached correct values of #, are obtained.



The Whittaker-Henderson Method of Graduation 103

Since (7) is not in itself a convenient relation to use recourse may be had
to a sequence #,, formed from the simpler relation

o 4(2n+3) I L
T ntr)(n+2(n+3) ° (nt1)(nt2) o7
_n(3n+4) . n(n+1)
(n+2)? u”+2+(n+z)(n+3)u”+3’ ®

which is similar to formula (4).
This is the same as
2
E b MO g D) g
2 4@n+3)

or

(s —aB) s~ BB~y BYi = A PR . ()
Then for x <a

n A3 n
"’”:[I+(1—aE)(I—ﬂE)(I—'yE)] “e

_(mtn)(n+2)(nt3) 85"
= 4("2n+3) {(x~aE) (1 - BE) (1 —vE) + A%} uj.

Also from (g) for x<a
s (n+1)(n+2)2(n+3)
Uy=

{(1~aE)(x ~ E) (1 ~ YE)] .

4(2n+3)
Hence for x<a Aduy=o.
Hence um=[1—nA+7—[—(-1—12iE—)A2]u’,’c’ for x <a.
From (1)

‘vw=[1 —nA+11(—n—2j——I)A2] u, forx<a

Ir%ence v,_1 I0ay be expressed in terms of u,_;, u, and u,,,, and, by the use
0

A3y, g =A%u, ,=o0,

i

in terms of u,_,, #4_p and #,_;. Substitution of #, in terms of u; gives v,_,

1 "

in terms of u,_g, Uy _g, Uy—y, Uy and #g,,. By means of
mn " "
Aduy g =Nu, 4 = A%u; , =0,
¥,_; may then be expressed in terms of w7, 44, and #5,,. A similar pro-
cedure may be followed for v,_, and v,.5, and when the algebra is carried
through the relations obtained are

Vg1= |:1 —(2n+1)A+(EﬁiIl2(£’i?)A2:| ",
Va2 = [I —(2n+2)A+(”"*'2)___2(2_’§_'{_'§_)A2] u/g,

Vgg= [I —-(2n+3)A+(2n+3)2_____(_2—"__+ﬁ'_)A2] ul.
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The method, therefore, is to use formula (8) to obtain u, g, g,
starting with three zero values of U sufficiently far away from u’" and then to

obtain ¥,_;, ¥4_s, Us-g from the relat1onsh1p just given.

(C) If any three arbitrary values (usually guessed approximations to the
true values) of v,_3, U4_s, U4_1, are taken as starting values, a set of graduated
values will be obtained, but the set will differ from the correct values all the
way up the table and the values A%w,_g, A%, o, A%, _, will not, as they should,
be zero. u, may, however, be corrected by subtracting from it a sequence u;
obtained by graduating by the Whittaker-Henderson process data consmtmg
of b~ a+ 1 zeros with the condition that

Al =A%, 5, A%, ,=A%u, ,, Adu, =N, ,.
In theory there is no difficulty in finding the sequence u}. With any three
starting values u;_,, u;_ , u; take

n(n+1)A2 ,

? z s
Vy_p =ty o — AUy o+ Uy_o,

n—
7’1;—1=”1’;—2“(”‘1)A”z;—2+( Dn "ty Uy_gs

’ ’ / n - 2 n - I 14
% =t p—(n—2) Aua_z+()—;(——~)A2 Uy
These are the counterparts of the relations (6) and will ensure that the
terminal conditions are satisfied at the b end.
The column v/, may now be calculated as far as vj,_s by the formula

, _(+3)Gnty) , _(n+3)@rts) , | (et2)(nt3)

3T (n+1)(n+2) Vo2~ (n+1)? Yot n(n+1)y
which is another way of expressing formula (3), where u, is zero and v/, takes
the place of v,,.

The column #;, may be calculated as far as #;,_; by means of the formula (4)
(dashed letters taklng the place of undashed), and A3u,_;, Adu,_,, Adu,_,
obtained.

The same process may be carried out starting from three values u;_,,
u, 3, 4, linearly independent from the first choice of these quantities, and
again a third time starting from the three values #]_,, u;_,, %, linearly in-
dependent from the first two choices of these quantities.

The resulting three sets of values A%, 3, A%y, ,, A%, , may be combined
linearly to produce A%y, 5, A%u, o, A%u, ,. The same linear combination of
the %’ sequences produces the corrective sequence ' which is being sought.

It would be a convenience if those three linearly independent columns of
u, could be replaced by one column. This, in fact, can be done by the device
of taking u;_,, u,_,, u,’as 1, 0, 0. For then it will be found that

’ ’ 4 7’ 7
Vp—1> Vp—3s Vp—2s Up—1> U
become

(n+3)(n+4) (@+2)(n+3) E+)R+2) nrk+1) @B-Dn
2 ’ 2 ’ 2 ’ 2 ' 2
respectively, and

’ s 4 s ’ ’ ¥ »
Up—g> Up—gy Up—g, UWyons Uy, Uprys Uypgs Uy
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become 6, 3, 1, 0, 0, I, 3, 6 respectively. These values, of course, solve the
equation euy — A%/, ;=0 and the terminal equations

A%y o =A%, =A%y =0,
But they also satisfy A%y, ,==A%;_,=0. Hence by cutting off the last term
the series could be considered as the %), series, where
Uy2=3, =1, %=0,
and by cutting off the last two terms as the w, series, where
Uy _o=0, 1, =3, wy=1.

If, to change the notation, we write w; =0, w, =0, Wy =1, W, = 3, W; =6, etc.,
the general term to solve the equation ew, — ASw,_, =0, as can easily be verified,
is w,=(r — X)) + (7 +2)ge + (7 + §)ape® + (7 + 8)ppe® + .... This formula is not,
however, very convenient to use because the coeflicients of the powers of €
rapidly become large.

Before showing how method (C) may be applied in practice we will con-
sider what values of # are suitable to choose for the Whittaker-Henderson
process. The essentials are that the coefficients of the recurrence formula (3)
should be simple and that ¢ should be sufficiently small for the formula to
have a good smoothing coefficient. Aitken gives the smoothing coefficient as
w5 for €=-01, y&5 for €=-02, 155 for e='05. The only satisfactory value
of n is 3 giving € =-00g; formula (3) then becomes

V= 06Uy, -+ 2: 10, 4~ 1560, 5+ 40, 5.

A further advantage of this choice of # is that uy_g, #,_y, %y, Uy, Upiar Ypis
are the immediate successors of v,_,, U5y, U, Dy constant second differences.
In the remainder of this note € will be taken as -00g.

In Appendix I the values of w, are given from =1 to r=45 for e=-009.
In order to illustrate the use of this table the case where —a+ 1 =20 will be
taken.

If g o=wy s(0<x<19)

A%, o= —1526-5185, Adu,_,= —0966-6765, Ay, ;= —613618.
I o), ,=wy ,(o<x<19)

A3y, o= —g66-6465,  Adu,_,= —6137618, Adu, ;= —1391-4920.
I wp o=ty (o<a< 19)

A%, = —6137618, A% _,= —301°4920, Adu, ;= —251'3352.

Suppose the values of @, from 22 to 3, from 21 to 2 and from 20 to 1 are
multiplied respectively by 4,, B;, C, and added, so as to give

Nl _a=1, A% ,=0, A3, ;=o0;
by 4,, B,, C,, and added, to give

A% o=o0, A%, _,=1, A, ;=o0;
by 4,, B;, C;, and added, to give

APy _y=0, A, z=o0, Ay, ,=1;
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then in matrix notation
—1526:5185 —~g66+6765 —6137618 4, A, A, I 0 o
~g66-67605 —~6137618 —1391°4920 B; B, Bii=lo 1 o},
—613-7618 —391°4920 -—251'3352] LGy Cy C3] lo o 1

yielding
A, Ay 4y 1023419 —2756341 1794218
B, B, By|=|-2756341 7170701 ~4438437|.
c, C, Cy 1794218  —4-438437 2528060

Table 1. Application of Whittaker-Henderson process to 10%g, assured
lives 192%-29, durations 3 and over, all classes combined

x A Ty Ay, APy, Uy Ay, A, | Bdu,
42% — 350 — — 4833 356 | —24 | 17
43% — 400 — - 5189 332 | — 7| 22
443 — 450 - — 552°1 325 5 | 20
45% 526 492°6 — — 5846 340 35 | —
463 624 529'9 — - 618:6 37°s — —
47% 595 5600 — — 6561 - — —
48% 650 5854 — — 6988 _— — —_
49% 803 6159 — — 7477 — — —
50% 870 656°4 — — 803'5 — — —
51% 862 703°5 — — 8673 — — —
52% 954 757'0 - — 940°0 — — —
53% 1,020 816-0 — — 1,026°5 — — —
54% 1,099 8800 — — 1,126°4 — — —
55% 1,159 947°4 — — 1,242°6 —_ — —
564 1,399 | 1,027°1 — — 1,376°3 — — —
574 1,627 1,1286 — — 1,527-8 —_— — —_—
58% 1,675 | 1,2472 - — 1,697'3 —_— — —
59% 1,015 | 1,3842 — — 1,885°3 — — —
60} 1,925 1,528 1 — — 2,092°0 —_ —_ —
gli 2,366 1,690°5 —_— —_ 2,317°X _8 — —

2 2,601 1,876°0 2126 15°2 2,559'4 2582 152 —
634 2,916 2,088:6 2278 "';'i?;— 2,817'6 2734 — _
64% 3,011 2,316°4 243'0 152 3,091°0 —_ —_ —
— | 28,597 | 2,559:¢ | 2582 | 152 — — — —
— — 2,817°6 | 2734 — — — — —
- — 3,091'0 — — — — — —

The twenty values of u,, in Table 1 are ungraduated values of 10%, for the
combined years 1927, 1928, 1929 of the British Offices’ mortality investigation,
durations 3 and over, all classes combined. They are part of the figures graduated
by Spencer’s summation formula in Actuarial Statistics, H. Tetley, 1, 210~11.
Table 1 shows the working of the Whittaker-Henderson process.

The starting values 350, 400, 450 for v,_s, V4 s, V4, are rough guesses at
the true values,

Since an error in computation is carried on to each subsequent value it is
important to correct errors immediately. A convenient way to do this is to
check by the formula

Uy 5= — 15Uy +3'90, p— 5250, 4 +2°57,,
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immediately after a fresh value v, has been calculated by
Up=2'10, 1 — 1'560, 4+ 40, g+ 0bul.

A similar check should, of course, be imposed as the #, column is formed.
The multipliers 4, B, C to give the values

A% _g=17, A, ,=22, A%, =20

are
A Ay Ay A [17] [ 17023419 —2-756341 17942187 [17
B|=|B; B, By| |22|=| —2756341 7170701 —4438437| |22
Cl LG G, Cgl L20o] L 17794218 —4:438437  2:528060] |20
[ —7357019
=| 22128883
| — 16582708

The calculation of the corrections to u, of Table 1 is shown in Table 2.

Table 2. Calculation of corrections to u,

Col (2)+ Graduated
x —+7357019 | 2-2128885 | —1'6582708 | Col (3)+ Uy Value
X (2029 tO Wg) | X (Wyy to Wa) | X (g to wy) | Col (4) Col (6)~

Col (5)

(x) () (3) (4) (s) ()] 1¢))
45% —6,235'7 11,932°8 ~5,658'4 38+ 5846 546
463 —3,967°2 7,550°9 —3,555°2 285 618-6 590
47% —2,510°4 4,744'3 —2,215°6 183 6561 638
48% —1,577'3 2,956'6 —1,370'0 93 698-8 689
49% —9830 1,8282 —842-8 24 7477 745
50% —607'8 1,124°7 —5189 —~2'0 803°5 8o
51} —373'9 692°5 —323-0 —44 8673 872
52% ~230°2 431°0 —205°'9 —51 940'9 946
534 —143'3 2748 —136°1 —46 1,026°5 1,031
54% —91°3 181-6 ~93-8 —3'5 1,126°4 1,130
55% —~ 604 1252 —671 —23 1,242°6 1,245
563 —41°6 89'5 —489 —r1o 1,3763 1,377
57% —29'8 652 —35°'5 -1 1,527°8 1,528
58% —217 474 ~25'0 7 1,697'3 1,697
50% —157 334 ~16'6 11 1,885°3 1,884
60} — 111 22'1 —9g9 11 2,092°0 2,091
613 —7'4 1373 -5'0 9 2,317°1 2,316
623 —44 66 -1 ‘9 2,559'4 2,558
631 —2°2 2'2 o o 2,817°6 2,818
643 -7 ° o -7 3,091°0 3'092
28,598

The values of 4y, By, Cy, 43, By, C,, 4,, By, C, for all values of r from 10
to 4o inclusive are given in Appendix II. From this table the values of 4, B, C
for a particular case may easily be calculated in the manner shown above.
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Three final checks may be made. The sum and the first two moments of
the graduated and ungraduated values should be equal to one another. With
55% as origin these moments are

Sum First Second

moment moment

u’ 28,597 70,990 462,593
u 28,598 70,979 462,686

An alternative way of forming the corrected graduated sequence is to correct

the starting values v,_g, ¥,_s, ¥4y by means of 4, B, C and the columns of
v,, also given in Appendix I.
The correction v’ to be made is given by

Vg—g| [102,977°75 65760896 42,072:4501[ —-7357019] [—69
Vg2 |=| 65,760:896 42,072:450 26,956-247 22128885 | ={ 20'3
Vg1 42,072'450  26,956-247 17,279'455 11 —1-6582708 444

The starting values v,_5, ¥,_9, Uq_y should therefore be taken as 356-9,
379°5, 4056 respectively. It is thought, however, that the method of making
corrections to u, given earlier is simpler than repeating the whole Whittaker-
Henderson process with the corrected starting values.

It is more usual, but not quite as accurate, to obtain the corrective sequence %’
by remembering that @, may be expressed as

Ao™+ B+ Cy"+ Do~ + Ef—" + Fy—.

Since ||, | #|, | Y| <1 the terms Aa” + Bf"+ Cy" become progressively less
important as r grows and therefore for large »

. (1 —aE)(1-pE)(1—vE)w,=o,

e Wy — 27 1Wyq + 1§56, 5 — "4W,, 550, When e=-009.

From the table of w, in Appendix I it is easy to confirm that this relation
holds.

4}, which is compounded linearly from w,, where, however, increasing x
corresponds to decreasing #, satisfies the relation

U —2* Yl + 1°560g, o — 41y 30, (10)
and the relation will be more accurate at the @ end of the sequence than at the
b end. Knowing A, ;, A%, ,, A%u;, ;, we can calculate the initial values
Up_g, Uy o, Uy 4 Very easily.

Thus in our example A3 =17, A3} ,=22, A% =20, so that
Aty 5= —-2 and ASu;_g= —-7.
Writing (10) in the form
W+ 300,y +6A2u],_, + 22NN =0,
U+ 300G g + 6A, + 223, =0,
Augy + 30%0 + 673, +22AN,_,==0,
A2l 4+ 3A%_y +6A%,_ o +22A%,_=o0.

we have
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Therefore
A= —3(2:0)—6(—2)—2—7)= —60+12+46=—"13
Aug = —3(—-13)—6(20) ~ & (—2)="4—12:0+1'3= — 1026,
Uy o= —3(—1026)—6(—-13)— 2 (2:0)=30-8 +-8—13-3=18-26,
Uy =1826 + 1026 =28-53,
u,=2853 + 1026 —'13 =386,
and subsequent values may be obtained by application of (10).
Except for the last few values, which are in any case small, there is good
agreement between the values found by this method and the carlier method

of p. 107.
It is of interest to note that

4

Vg-3| [102,977°75  65,760-896 42,072'450

v o |=1 65760896 42,072:450 26,956-247

U1l L 42,072:450  26,956-247 17,279455
1023419 —275634I 1794218 Iy
—2756341 7170701 —4'438437 2'2
| 1794218 —4438437  2-528060] |20
[ —382:921 974010 —749'383 17

=1 —299685 785901 —599:526 22 |.

| —239'755 635396 —472:958] |20

C. A. Spoerl on p. 412 of his paper(7) indicates that unless the number of
terms to be graduated (i.e. b—a+1) is small the matrix to calculate v/,_,,
v, _g, Vs is approximately

—383% 975 —750
—300 %862 —600

—240 636 —473%

With Spoerl’s matrix [v;3 Vo @p4]=[—6% 207 44-5] instead of
[-6'9 205 44°4]. . ,

In conclusion it may be said that the Whittaker-Henderson method is
simple to apply, gives good results and overcomes difficulties about graduating
the ends. If the sequence to be graduated has 4o terms or fewer method (C)
should be used. If the sequence to be graduated has more than 40 terms
method (A) or (B) should be used. As a supplement to the tables given by
Aitken the values of j and % have been computed for e=-00g and are shown
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in Appendix I11. The valuesof j have been calculated by the recurrence formula
Jo =215y ¥ 15055+ 4]53, starting from j; =9, j,="45, j3="141. Since

—-00QK3
(E—1)*—-00gFE3
_3 (13 —29E —10°44F% 4+ 52E% 13 —2-7E-'~10-44L% + 528
T506\ 1—2-1E+1-56E%— 4F° 1—21E 4 1-56E-2— B3 J°
the values of k have been calculated by the same recurrence formula, viz.
ky=21k, 4 #1 56k, _sH 4k, g.
The starting values are

ky=-1541502, ky=-1458498, k,=-1241502, k;="0048498.
These values are also given to 5 places of decimals by C. A. Spoerl (¢, p. 461).
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ITI
APPENDIX I
Values of v, w,, —Aw,_,, —Adw,_; (see p. 105) =009

r v, w, —Aw,_, — A%, 4
45 | 874,794,380 272,830,760 —99,247,090 — 13,137,119
44 | 556,538,820 173,583,670 —63,140,170 —8,357,383
43 | 354,072,160 110,443,500 —40,170,369 —5,316,453
42 | 225,268,730 70,273,131 —25,557,951 3,381,804
41 | 143,327,290 44,715,180 — 16,261,986 —2,151,260
40| 91,196,953 28,453,194 —10,347,915 — 1,368,472
39| 58,030,520 18,105,279 ~—6,585,104 —870,584'%
38 | 36,927,760 11,520,175 ~—4,190,765'0 —553,913'7
37| 23,499,466 7,329,410°0 —2,667,010'8 —352,497'1
36| 14,953,781 4,662,3992 —1,697,170'3 —224,371'7
35| 9,514,877°0 2,905,228'9 —1,079,826°9 —142,850'61
34 6,053,129°'6 1,885,402°0 —~686,855°2 ~90,965°22
33| 3,849,876'6 1,198,546-8 —436,734°11 —57,928'81
32| 2,447,809'5 761,812-69 —277,578'24 —36,884°93
31 1,555,844°3 484,234°45 —176,351°18 ~23,475°54
30 988,640'85 307,883°27 —112,009'07 —14,929°642
29 628,152°48 195,874°20 —71,142°50 —9,484°38¢
28 399,178:20 124,731*70 —45,205°572 —6,017°182
27 253,812:69 79,526°128 —28,753°033 —3,812°299
26 161,549'65 50,773°095 —18,317676 —2,412°7'76
25 102,977'75 32,455'419 —11,694618 —1,526°5185
24 65,760-896 20,760°801 —7,484°336 — 9666765
23 42,072°450 13,2776°465 —4,800°5725 —613-7613
22 26,956-247 8,475'8925 —3,083:4855 —391°4920
21 17,2'79°455 5,392°4070 —1,980-1603 —251'3352
20 11,064°090 3,412°2467 —1,268-3271 —162:58112
19 7,061°1379 2,143°9196 —807-8291 —105°93441
18 4,480°1913 1,336-0905 —509:91222 —69:37035
17 2,818:6626 826-17828 — 31792975 — 4545334
16 1,754°5482 50824853 —195°31763 —29'60911
15 1,079°514% 312°93090 —118'15885 — 1902129
14 65734946 19477203 —+70:60918 —11-93604
13 39821115 12416287 —42-08080 —7:23858
12 24258391 82:08207% —25°48936 — 418749
11 15115660 5650271 — 1613650 —2'27432
10 98-28242 40°45621 — 1097113 —

9 67:62235 29:48508 —8-08008 —

8 49°149 21408 —6324 —

7 37035 15°081 —5'072 —

6 2815 10009 — 4°009 —

5 21 6 —3 —

4 15 3 -2 —

3 10 1 -1 —_

2 6 o o —

1 3 o —_ —_—
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APPENDIX II

Values of A; A4, A, forr=10 to r=40 (see p. 107) €=-009.

B, B, B
G G G
r=10 — 116956 34°5017 — 263009
345017 —99+6586 736818
—26°3009 73:6818 —52°3941
r=1I —9'93412 2783043 — 1978084
27°83043 —76'23024 52°43918
— 1978984 52°43918 —34°47291
r=12 —774108 20°51234 — 1348458
20°'51234 — 5284668 3324638
— 1348458 3324638 —19°52950
r=13 —5°34571 13°17992 —7'74211
13°17992 —31°06859 16-81497
— 774211 16-81497 ~7:67411
r=14 — 308502 6+70030 —3°05792
670030 —12'98263 419810
—3'05792 4'19810 719’76
r=15 — 121969 1:67446 28709
1°67446 ‘16620 — 417819
+28709 — 417819 570762
r=16 *11451 — 166658 227663
— 166658 817843 —8:59765
227663 — 859765 779367
r=17 ‘90872 - 343177 3'11086
—3'43177 1172587 —9'86347
311086 —9:86347 775712
r=18 1°24107 —3'93501 300468
—3'93501 11492604 —8:96728
309468 —8-96728 6°41064
r=19 1°23726 —1358514 256299
—3'58514 1004960 — 690281
2:56299 — 690281 4'49333
r=20 1°023419 —2756341 1794218
—2756341 7:170701 —4°438437
1794218 — 4438437 2528060
r=21 *7190502 - 17787468 1°0131444
— 17787468 4'1755023 —2°1540443
1°0131444 —2°'1540443 8727821
r=22 4054314 —-8619869 3492624
—+8619869 1°5826931 -+3488539
*3492624 —+3488539 —+3208520
r=23 *1394961 —'1393329 —-1281489
—*1393329 ~3178598 ‘8497134
—+1281489 8497134 — 10229985
r=24 — 0510534 *3385185 —°4075537
3385185 —1°458983%7 1°4606225
—*4075537 1-46062235 — 12914604
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APPENDIX II (continued)
r=25 —-1648840 *5909239 —+5224861
*5909239 — 19622497 16267511
—+5224861 146267511 — 12677380
r=26 —-2047829 6375879 — 4968763
"6375879 — 19075580 1'4245976
—+49687635 1°4245976 — 10126417
r=27 —+2031963 5825853 — 4141371
5825853 — 16198802 1°10%77916
— 4141171 1'1077916 — 7187928
r=28 —~+1643643 *4396859 —2852911
*4396859 — 11371688 7017488
~+2852911 7017488 —+3986019
r=29 ~-11380194 *27992593 — 15900137
*27992593 —+65316340 "33546077
— 15900137 *33546077 — 13472292
r=30 —+06311900 13316834 —+05348115
‘13316834 — 24113143 ‘05025818
—05348115 05025818 05296274
r=31 ~+021586037 +020285184 021376799
1020285184 054790388 —-136076854
021376799 —~+136076854 160966058
r=32 +008775914 —+055864247 066082125
—+055864247 *238487654 —+236736093
066082125 —+236736003 208771400
r=33 +025441938 ~ 091144543 080378001
— 091144543 *302006073 ~ 249593772
080378001 —'249593'772 193690223
r=34 *034924270 —-108448583 -084158471
—+108448583 324618969 —+242263572
084158471 —+242263572 *172841211
r=35 +025068468 —+0%72163581 051484591
—+072163581 *199820866 —+135774162
051484591 —~ 135774162 086200612
r=36 +035398934 —+003353381 +059268410
—+003353381 240136215 —+146789023
059268410 — 146789023 084282322
r=37 ‘0152907306 —~+0378702825 ‘0217441014
—+0378%702825 0881111953 —+0449236878
0217441014 —+0449236878 -0168847347
r=38 0098706395 ~ 10203929110 +0076647513
-~ 0203929110 0358527353 — 0059649682,
*0076647513 —+0059649682 —+0005648131
=39 100320034417 — 00249061586 — 00399369696
—+00249061586 — 01077296469 102309031302
—+00399369696 102309031302 — 02642948268
r=40 —-00182768320 01056709550 —+01209523956
01056709550 — 04508287969 04475798080
—+01209523956 *04475798080 — 04047115369
8

AJ
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APPENDIX III

Coeflicients j, and &, for e=-009

T jr kr
o — ‘1542
1 ‘9 ‘1458
2 ‘45 1242
3 “141 -0948
4 — 0459 -0638
5 —-1364 ‘0358
6 —-1583 ‘0135
7 —-1381 -— 0020
8 —+0977 —+0109
9 —'0529 —'0144
10 —+0140 — 0140
11 *0141 —-0113
12 ‘0302 — 0077
13 *0359 — 0041
14 *0339 — ‘0011
15 ‘0272 ‘0010
16 ‘0187 ‘0021
17 ‘0103 *0025
18 10034 ‘0023
19 — 0014 } Q019
20 — 0042 ‘0012
21 —-0053 0007
22 —+0051 *0002
23 — 0041 — 0001
24 —-0028 —+0003
25 —0015 — 0004
26 —+0005 — 0004
27 ‘0003 — 0003
28 *000%7 - +0002
29 -0008 —+0001
30 0008 *0000
31 -0006 *0000
32 ‘0004 *000L
33 0002 ‘0001
34 0001 *0001
35 — 0001 —
36 — 0001 —
37 — 0001 —
38 —+0001 —
39 —+0001 —
40 —+0001 —






