THE WHITTAKER-HENDERSON METHOD OF GRADUATION

By A. W. JOSEPH, M.A., B.Sc., F.I.A. Actuary, Wesleyan and General Assurance Society

Mrelphinstone, in his recent paper(1) to the Faculty of Actuaries, has reawakened interest in the method of graduation devised by Sir Edmund T. Whittaker (2,3) some 32 years ago. Except for Professor A. C. Aitken who, in a paper(4) in the Proceedings of the Royal Society of Edinburgh and a note(5) in the Transactions of the Faculty of Actuaries, gave a brilliant alternative solution of the equations on which Whittaker's method depends, English and Scottish writers have paid little attention to the method. Robert Henderson's paper (6) published in 1924 stimulated American actuaries, and their investigations have continued up to the present time. The book by Kingsland Camp (reviewed J.I.A. Lxxvir, 327) gives numerous practical developments of Robert Henderson's work. Students should not overlook a most valuable paper (7) by Charles A. Spoerl which deals comprehensively with almost every aspect of the subject.

The method is allied to graduation by summation formulae, but has the advantages that the run of the coefficients when the formula is extended in linear compound form is theoretically very good and, unlike summation formulae, special methods are not needed to deal with the ends of the series to be graduated. The present note, which does not pretend to be original, gives an account of the method, links up the work of Aitken and Henderson and leads to the formulae which have been found to be of most use in practice. It is thought that the tables in Appendices I and II are new.

It is desired to graduate a sequence of values $u_{x}^{\prime \prime}(a \leqslant x \leqslant b)$. The graduated values are $u_{x}(a \leqslant x \leqslant b)$. If, as is usual, third differences are regarded as giving a criterion of smoothness the expression $\sum_{x=a}^{b-3}\left(\Delta^{3} u_{x}\right)^{2}$ may be taken as a measure of the roughness of the graduated values. $\sum_{x=a}^{b}\left(u_{x}-u_{x}^{\prime \prime}\right)^{2}$ is a measure of the distortion caused by the graduation. Whittaker's method is to minimize the expression

$$
\sum_{x=a}^{b-3}\left(\Delta^{3} u_{x}\right)^{2}+\epsilon \sum_{x=a}^{b}\left(u_{x}-u_{x}^{\prime \prime}\right)^{2}
$$

where ϵ is a constant chosen to give a balance between roughness and distortion. The equations so derived take the form

$$
u_{x}-u_{x}^{\prime \prime}=\frac{1}{\epsilon} \Delta^{6} u_{x-3} \quad(a+3 \leqslant x \leqslant b-3)
$$

and six other equations, three at each end.
The six equations at the ends can, however, also be brought into the form $u_{x}-u_{x}^{\prime \prime}=\frac{1}{\epsilon} \Delta^{6} u_{x-3}$ by the device of introducing three additional values of u_{x} at each end (i.e. values for $x=a-3, a-2, a-1, b+1, b+2, b+3$) chosen such

100

that $\Delta^{3} u_{x}=0$ for $x=a-3, a-2, a-\mathrm{I}, b-2, b-\mathrm{I}, b$. The equations to be solved are therefore

$$
u_{x}-u_{x}^{\prime \prime}=\frac{\mathbf{I}}{\epsilon} \Delta^{6} u_{x-3} \quad(a \leqslant x \leqslant b)
$$

and the six terminal equations $\Delta^{3} u_{x}=0$.
Whittaker (2) and Lidstone (8) showed that these equations implied that the sum and the first two moments of the graduated and ungraduated values were equal. In symbols

$$
\sum_{x=a}^{b} x^{r} u_{x}=\sum_{x=a}^{b} x^{r} u_{x}^{\prime \prime} \quad(r=0, \mathbf{1}, 2)
$$

Whittaker expanded the equations in powers of ϵ, which he assumed would be small, and solved the equations, powers of ϵ above the first being ignored. This solution had its advantages because it was easy to derive graduated values corresponding to different values of ϵ and thus to choose the value of ϵ which seemed most suitable.

Aitken ${ }^{(4)}$ gave an exact solution of Whittaker's equations. He showed that the data $u_{x}^{\prime \prime}$ could be extended at either end by quantities which lay on two parabolas, one for each end. The graduated values u_{x} could then be expressed in terms of the original data and the additional data by an infinite series

$$
u_{x}=k_{0} u_{x}^{\prime \prime}+k_{1}\left(u_{x+1}^{\prime \prime}+u_{x-1}^{\prime \prime}\right)+k_{2}\left(u_{x+2}^{\prime \prime}+u_{x-2}^{\prime \prime}\right)+\ldots
$$

where k_{0}, k_{1}, \ldots were the coefficients of the expansion of $\frac{-\epsilon E^{3}}{(E-1)^{6}-\epsilon E^{3}}$ in the form

$$
k_{0}+k_{1}\left(E+E^{-1}\right)+k_{2}\left(E^{2}+E^{-2}\right)+\ldots
$$

Aitken tabulated the values of k for various values of ϵ. He found that they diminished rapidly and could be ignored after a certain number of terms depending on ϵ.
The six roots of $(E-1)^{6}-\epsilon E^{3}=0$ may be associated in pairs whose product is unity and may be denoted by $\alpha, \mathrm{I} / \alpha, \beta, \mathrm{I} / \beta, \gamma, \mathrm{I} / \gamma$, where, to fix the values, α, β, γ are those roots whose absolute magnitude is less than unity.

The additional data to be added at either end may be obtained by the infinite series

$$
\begin{array}{ll}
u_{x}^{\prime \prime}=j_{1} u_{x-1}^{\prime \prime}+j_{2} u_{x-2}^{\prime \prime}+\ldots & (x>b) \\
u_{x}^{\prime \prime}=j_{1} u_{x+1}^{\prime \prime}+j_{2} u_{x+2}^{\prime \prime}+\ldots & (x<a)
\end{array}
$$

where j_{1}, j_{2}, \ldots are the coefficients of the expansion of

$$
\mathrm{I}-\frac{(\mathrm{I}-E)^{3}}{(\mathrm{I}-\alpha E)(\mathrm{I}-\beta E)(\mathrm{I}-\gamma E)}
$$

in the form $j_{1} E+j_{2} E^{2}+\ldots$.
Aitken tabulated the values of j_{1}, j_{2}, \ldots, which diminish rapidly in the same way as the values of k_{1}, k_{2}, \ldots.

It will be found that the values of u_{x} outside the range $a \leqslant x \leqslant b$ are equal to the values $u_{x}^{\prime \prime}$ which have been added at each end.

Aitken's original papers should be consulted for a full description of his method. It will be seen, however, that it is a very practical method. First the values $u_{b+1}^{\prime \prime}, u_{b+2}^{\prime \prime}, u_{b+3}^{\prime \prime}, u_{b+4}^{\prime \prime}$ are calculated by the formula involving the j 's. Since they lie on a parabola second differences are constant, which is a check on the calculations. Further values $u_{b+5}^{\prime \prime}$, etc., which also lie on the parabola, may easily be obtained by finite differences. A similar process is repeated at the other end. u_{a}, u_{u+1}, etc., are then calculated by the formula involving the
k 's. The method has the advantage that the terminal conditions are automatically satisfied. There are two objections to the method.
(r) If there are few terms in the data to be graduated, the j expansion for computing $u_{b+1}^{\prime \prime}, u_{b+2}^{\prime \prime}$, etc., will stretch beyond the data and involve the values $u_{a-1}^{\prime \prime}, u_{a-2}^{\prime \prime}$, etc., which have yet to be computed.
(2) The k formula is somewhat confusing to use.

Henderson(6) gave an ingenious way of solving Whittaker's equations. In effect, as was pointed out by Joffe (9), Henderson discovered that $\mathrm{I}-\frac{\mathrm{I}}{\epsilon} \Delta^{6} E^{-3}$ can be factorized into
where

$$
\begin{gathered}
{\left[\mathrm{I}+n \Delta E^{-1}+\frac{n(n+\mathrm{I})}{2} \Delta^{2} E^{-2}+\frac{n(n+\mathrm{I})^{2}(n+2)}{4(2 n+3)} \Delta^{3} E^{-3}\right]} \\
{\left[\mathrm{I}-n \Delta+\frac{n(n+\mathrm{I})}{2} \Delta^{2}-\frac{n(n+\mathrm{I})^{2}(n+2)}{4(2 n+3)} \Delta^{3}\right]} \\
\frac{\mathrm{I}}{\epsilon}=\frac{n(n+\mathrm{I})^{3}(n+2)^{3}(n+3)}{\mathrm{I} 6(2 n+3)^{2}}
\end{gathered}
$$

Thesc factors are really

$$
\left\{\left(\mathrm{r}-\alpha E^{-1}\right)\left(\mathrm{r}-\beta E^{-1}\right)\left(\mathrm{r}-\gamma E^{-1}\right)\right\}\{(\mathrm{r}-\alpha E)(\mathrm{r}-\beta E)(\mathrm{r}-\gamma E)\}
$$

multiplied by an appropriate constant, thus

$$
\begin{align*}
& \begin{aligned}
\mathrm{I}-n \Delta+\frac{n(n+\mathrm{I})}{2} \Delta^{2} & -\frac{n(n+\mathrm{I})^{2}(n+2)}{4(2 n+3)} \Delta^{3} \\
& =\frac{(n+\mathrm{I})(n+2)^{2}(n+3)}{4(2 n+3)}(\mathrm{I}-\alpha E)(\mathrm{I}-\beta E)(\mathrm{I}-\gamma E)
\end{aligned} \\
& \quad v_{x}=\left[\mathrm{I}-n \Delta+\frac{n(n+\mathrm{I})}{2} \Delta^{2}-\frac{n(n+\mathrm{I})^{2}(n+2)}{4(2 n+3)} \Delta^{3}\right] u_{x}
\end{align*}
$$

If
the equation $\left(\mathrm{x}-\frac{1}{\epsilon} \Delta^{6} E^{-3}\right) u_{x}=u_{x}^{\prime \prime}$ becomes

$$
\begin{equation*}
u_{x}^{\prime \prime}=\left[\mathrm{I}+n \Delta E^{-1}+\frac{n(n+1)}{2} \Delta^{2} E^{-2}+\frac{n(n+1)^{2}(n+2)}{4(2 n+3)} \Delta^{3} E^{-3}\right] v_{x} \tag{2}
\end{equation*}
$$

Formula (2) may be written

$$
\begin{align*}
v_{x}=\frac{4(2 n+3)}{(n+1)(n+2)^{2}(n+3)} u_{x}^{\prime \prime} & +\frac{n(3 n+5)}{(n+1)(n+2)} v_{x-1} \\
& -\frac{n(3 n+4)}{(n+2)^{2}} v_{x-2}+\frac{n(n+1)}{(n+2)(n+3)} v_{x-3} \tag{3}
\end{align*}
$$

and enables $v_{a}, v_{a+1}, \ldots, v_{b}$ to be calculated in succession provided three starting values $v_{a-3}, v_{a-2}, v_{a-1}$ are given.

Formula (r) may be written

$$
\begin{align*}
u_{x} & =\frac{4(2 n+3)}{(n+1)(n+2)^{2}(n+3)} v_{x}+\frac{n(3 n+5)}{(n+1)(n+2)} u_{x+1} \\
& -\frac{n(3 n+4)}{(n+2)^{2}} u_{x+2}+\frac{n(n+1)}{(n+2)(n+3)} u_{x+3}, \tag{4}
\end{align*}
$$

and enables

$$
u_{b}, u_{b-1}, u_{b-2}, \ldots, u_{a}, u_{a-1}, u_{a-2}, u_{a-3}
$$

to be calculated in succession provided three starting values $u_{b+3}, u_{b+2}, u_{b+1}$ are given.

The solution would be complete if the six starting values were known. Three of them may be obtained quite easily. For if

$$
\left.\begin{array}{l}
u_{b+1}=v_{b-2}+(n+3) \Delta v_{b-2}+\frac{(n+2)(n+3)}{2} \Delta^{2} v_{b-2}, \\
u_{b+2}=v_{b-2}+(n+4) \Delta v_{b-2}+\frac{(n+3)(n+4)}{2} \Delta^{2} v_{b-2}, \tag{5}\\
u_{b+3}=v_{b-2}+(n+5) \Delta v_{b-2}+\frac{(n+4)(n+5)}{2} \Delta^{2} v_{b-2},
\end{array}\right\}
$$

then the operation (4) produces

$$
\left.\begin{array}{l}
u_{b-2}=v_{b-2}+n \Delta v_{b-2}+\frac{(n-1) n}{2} \Delta^{2} v_{b-2}, \\
u_{b-1}=v_{b-2}+(n+1) \Delta v_{b-2}+\frac{n(n+1)}{2} \Delta^{2} v_{b-2}, \tag{6}\\
u_{b}=v_{b-2}+(n+2) \Delta v_{b-2}+\frac{(n+1)(n+2)}{2} \Delta^{2} v_{b-2},
\end{array}\right\}
$$

and it is clear that the terminal conditions $\Delta^{3} u_{b-2}=\Delta^{3} u_{b-1}=\Delta^{3} u_{b}=0$ are satisfied. It is by no means as easy to ensure that the other terminal conditions $\Delta^{3} u_{a-3}=\Delta^{3} u_{a-2}=\Delta^{3} u_{a-1}=0$ are satisfied. There are three ways to proceed.
(A) Use Aitken's method to obtain starting values $u_{a-3}^{\prime \prime}, u_{a-2}^{\prime \prime}, u_{a-1}^{\prime \prime}$. As has been pointed out, these values are also $u_{a-3}, u_{a-2}, u_{a-1}$. Then $v_{a-3}, v_{a-2}, v_{a-1}$ can be computed from formula (I) combined with

$$
\Delta^{3} u_{\alpha-9}=\Delta^{3} u_{\alpha-2}=\Delta^{3} u_{\alpha-1}=0 .
$$

(B) It is evident from Aitken's tables that the j-coefficients are so small at a sufficient distance from the end of the table that the contribution of $u_{x}^{\prime \prime}$ to a starting value u_{a-1} may be neglected if $x-a$ exceeds a certain minimum value. It is possible to work backwards from arbitrary figures (which may be zeros) at this distance, using suitable recurrence relations, to correct starting values at $a-1, a-2, a-3$. The following analysis shows how this is done.

Since, for $x<a$,

$$
u_{x}=u_{x}^{\prime \prime} \quad \text { and } \quad u_{x}^{\prime \prime}=\left[\mathrm{I}-\frac{(\mathrm{I}-E)^{3}}{(\mathrm{r}-\alpha E)(\mathrm{I}-\beta E)(\mathrm{r}-\gamma E)}\right] u_{x}^{\prime \prime}
$$

the proper recurrence relation is

$$
\begin{equation*}
\{(\mathrm{r}-\alpha E)(\mathrm{r}-\beta E)(\mathrm{r}-\gamma E)\} u_{x}=\{(\mathrm{r}-\alpha E)(\mathrm{r}-\beta E)(\mathrm{1}-\gamma E)\} u_{x}^{\prime \prime}+\Delta^{3} u_{x}^{\prime \prime} \tag{7}
\end{equation*}
$$

The recurrence relation for $u_{x}(a \leqslant x \leqslant b)$ is different from (7), being

$$
\left(\mathrm{I}-\frac{\mathrm{I}}{\epsilon} \Delta^{6} E^{-3}\right) u_{x}=u_{x}^{\prime \prime} .
$$

The values u_{a}, u_{a+1}, u_{a+2} obtained from (7) will therefore not be correct, but once u_{a-1} is reached correct values of u_{x} are obtained.

Since (7) is not in itself a convenient relation to use recourse may be had to a sequence $u_{x}^{\prime \prime \prime}$ formed from the simpler relation

$$
\begin{align*}
& u_{x}^{\prime \prime \prime}=\frac{4(2 n+3)}{(n+1)(n+2)^{2}(n+3)} \cdot u_{x}^{\prime \prime}+\frac{n(3 n+5)}{(n+1)(n+2)} u_{x+1}^{\prime \prime \prime} \\
&-\frac{n(3 n+4)}{(n+2)^{2}} u_{x+2}^{\prime \prime \prime}+\frac{n(n+1)}{(n+2)(n+3)} u_{x+3}^{\prime \prime \prime} \tag{8}
\end{align*}
$$

which is similar to formula (4).
This is the same as

$$
\left[\mathrm{I}-n \Delta+\frac{n(n+\mathrm{I})}{2} \Delta^{2}-\frac{n(n+1)^{2}(n+2)}{4(2 n+3)} \Delta^{3}\right] u_{x}^{\prime \prime \prime}=u_{x}^{\prime \prime}
$$

or

$$
\begin{equation*}
(1-\alpha E)(\mathrm{x}-\beta E)(\mathrm{x}-\gamma E) u_{x}^{\prime \prime \prime}=\frac{4(2 n+3)}{(n+1)(n+2)^{2}(n+3)} u_{x}^{\prime \prime} . \tag{9}
\end{equation*}
$$

Then for $x<a$

$$
\begin{aligned}
u_{x}^{\prime \prime} & =\left[\mathrm{r}+\frac{\Delta^{3}}{(\mathrm{I}-\alpha E)(\mathrm{r}-\beta E)(\mathrm{r}-\gamma E)}\right] u_{x}^{\prime \prime} \\
& =\frac{(n+1)(n+2)^{2}(n+3)}{4(2 n+3)}\left\{(\mathrm{r}-\alpha E)(\mathrm{I}-\beta E)(\mathrm{I}-\gamma E)+\Delta^{3}\right\} u_{x}^{\prime \prime \prime} .
\end{aligned}
$$

Also from (9) for $x<a$

$$
u_{x}^{\prime \prime}=\frac{(n+1)(n+2)^{2}(n+3)}{4(2 n+3)}\{(1-\alpha E)(\mathrm{I}-\beta E)(\mathrm{r}-\gamma E)] u_{x}^{\prime \prime \prime} .
$$

Hence for $x<a \quad \Delta^{3} u_{x x}^{\prime \prime \prime}=0$.
Hence

$$
u_{x}=\left[\mathrm{I}-n \Delta+\frac{n(n+\mathrm{I})}{2} \Delta^{2}\right] u_{x}^{m} \text { for } x<a .
$$

From (1)

$$
v_{x}=\left[\mathrm{I}-n \Delta+\frac{n(n+\mathrm{I})}{2} \Delta^{2}\right] u_{x} \quad \text { for } x<\alpha
$$

Hence v_{a-1} may be expressed in terms of u_{a-1}, u_{a} and u_{a+1}, and, by the use of

$$
\Delta^{3} u_{a-3}=\Delta^{3} u_{a-2}=0,
$$

in terms of $u_{a-3}, u_{u_{-2}}$ and u_{a-1}. Substitution of u_{x} in terms of $u_{x}^{\prime \prime \prime}$ gives v_{a-1} in terms of $u_{a-3}^{\prime \prime \prime}, u_{a-2}^{\prime \prime \prime}, u_{a-1}^{\prime \prime \prime}, u_{a}^{\prime \prime \prime}$ and $u_{a+1}^{\prime \prime \prime}$. By means of

$$
\Delta^{3} u_{a-3}^{\prime \prime \prime}=\Delta^{3} u_{a-2}^{\prime \prime \prime}=\Delta^{3} u_{a-1}^{\prime \prime \prime}=0,
$$

v_{a-1} may then be expressed in terms of $u_{a}^{\prime \prime \prime}, u_{a+1}^{\prime \prime \prime}$ and $u_{a+2}^{\prime \prime \prime}$. A similar procedure may be followed for v_{a-2} and v_{a-3}, and when the algebra is carried through the relations obtained are

$$
\begin{aligned}
& v_{a-1}=\left[1-(2 n+1) \Delta+\frac{(2 n+1)(2 n+2)}{2} \Delta^{2}\right] u_{a}^{\prime \prime \prime}, \\
& v_{a-2}=\left[1-(2 n+2) \Delta+\frac{(2 n+2)(2 n+3)}{2} \Delta^{2}\right] u_{a}^{\prime \prime \prime}, \\
& v_{a-3}=\left[1-(2 n+3) \Delta+\frac{(2 n+3)(2 n+4)}{2} \Delta^{2}\right] u_{a}^{\prime \prime \prime} .
\end{aligned}
$$

104

The method, therefore, is to use formula (8) to obtain $u_{a}^{\prime \prime \prime}, u_{a+1}^{\prime \prime \prime}, u_{a+2}^{\prime \prime \prime}$, starting with three zero values of $u_{x}^{\prime \prime \prime}$ sufficiently far away from u_{a}^{m} and then to obtain $v_{a-1}, v_{a-2}, v_{a-3}$ from the relationship just given.
(C) If any three arbitrary values (usually guessed approximations to the true values) of $v_{a-3}, v_{a-2}, v_{a-1}$, are taken as starting values, a set of graduated values will be obtained, but the set will differ from the correct values all the way up the table and the values $\Delta^{3} u_{a-3}, \Delta^{3} u_{a-2}, \Delta^{3} u_{a-1}$ will not, as they should, be zero. u_{x} may, however, be corrected by subtracting from it a sequence u_{x}^{\prime} obtained by graduating by the Whittaker-Henderson process data consisting of $b-a+1$ zeros with the condition that

$$
\Delta^{3} u_{a-3}^{\prime}=\Delta^{3} u_{a-3}, \quad \Delta^{3} u_{a-2}^{\prime}=\Delta^{3} u_{a-2}, \quad \Delta^{3} u_{a-1}^{\prime}=\Delta^{3} u_{a-1}
$$

In theory there is no difficulty in finding the sequence u_{x}^{\prime}. With any three starting values $u_{b-2}^{\prime}, u_{b-1}^{\prime}, u_{b}^{\prime}$ take

$$
\begin{aligned}
& v_{b-2}^{\prime}=u_{b-2}^{\prime}-n \Delta u_{b-2}^{\prime}+\frac{n(n+1)}{2} \Delta^{2} u_{b-2}^{\prime} \\
& v_{b-1}^{\prime}=u_{b-2}^{\prime}-(n-1) \Delta u_{b-2}^{\prime}+\frac{(n-1) n}{2} \Delta^{2} u_{b-2}^{\prime} \\
& v_{b}^{\prime}=u_{b-2}^{\prime}-(n-2) \Delta u_{b-2}^{\prime}+\frac{(n-2)(n-1)}{2} \Delta^{2} u_{b-2}^{\prime}
\end{aligned}
$$

These are the counterparts of the relations (6) and will ensure that the terminal conditions are satisfied at the b end.

The column v_{x}^{\prime} may now be calculated as far as $v_{a b-3}^{\prime}$ by the formula

$$
v_{x-3}^{\prime}=\frac{(n+3)(3 n+4)}{(n+1)(n+2)} v_{x-2}^{\prime}-\frac{(n+3)(3 n+5)}{(n+1)^{2}} v_{x-1}^{\prime}+\frac{(n+2)(n+3)}{n(n+1)} v_{x}^{\prime}
$$

which is another way of expressing formula (3), where $u_{x}^{\prime \prime}$ is zero and v_{x}^{\prime} takes the place of v_{x}.

The column u_{x}^{\prime} may be calculated as far as u_{a-3}^{\prime} by means of the formula (4) (dashed letters taking the place of undashed), and $\Delta^{3} u_{a-3}^{\prime}, \Delta^{3} u_{a-2}^{\prime}, \Delta^{3} u_{a-1}^{\prime}$ obtained.

The same process may be carried out starting from three values u_{b-2}^{\prime}, $u_{b-1}^{\prime}, u_{b}^{\prime}$ linearly independent from the first choice of these quantities, and again a third time starting from the three values $u_{b-2}^{\prime}, u_{b-1}^{\prime}, u_{b}^{\prime}$ linearly independent from the first two choices of these quantities.

The resulting three sets of values $\Delta^{3} u_{a-3}^{\prime}, \Delta^{3} u_{a-2}^{\prime}, \Delta^{3} u_{a-1}^{\prime}$ may be combined linearly to produce $\Delta^{3} u_{a-3}, \Delta^{3} u_{a-2}, \Delta^{3} u_{a-1}$. The same linear combination of the u^{\prime} sequences produces the corrective sequence u^{\prime} which is being sought.

It would be a convenience if those three linearly independent columns of u_{x}^{\prime} could be replaced by one column. This, in fact, can be done by the device of taking $u_{b-2}^{\prime}, u_{b-1}^{\prime}, u_{b}^{\prime}$ as $\mathrm{I}, \mathrm{o}, \mathrm{o}$. For then it will be found that
become

$$
v_{b-4}^{\prime}, v_{b-3}^{\prime}, v_{b-2}^{\prime}, v_{b-1}^{\prime}, v_{b}^{\prime}
$$

$$
\frac{(n+3)(n+4)}{2}, \frac{(n+2)(n+3)}{2}, \frac{(n+1)(n+2)}{2}, \frac{n(n+1)}{2}, \frac{(n-1) n}{2}
$$

respectively, and

$$
u_{b-4}^{\prime}, \quad u_{b-8}^{\prime}, \quad u_{b-2}^{\prime}, \quad u_{b-1}^{\prime}, \quad u_{b}^{\prime}, \quad u_{b+1}^{\prime}, \quad u_{b+2}^{\prime}, \quad u_{b+3}^{\prime}
$$

become $6,3, \mathrm{r}, \mathrm{o}, \mathrm{o}, \mathrm{r}, 3,6$ respectively. These values, of course, solve the equation $\epsilon u_{x}^{\prime}-\Delta^{6} u_{x-3}^{\prime}=0$ and the terminal equations

$$
\Delta^{3} u_{b-2}^{\prime}=\Delta^{3} u_{b-1}^{\prime}=\Delta^{3} u_{b}^{\prime}=0 .
$$

But they also satisfy $\Delta^{3} u_{b-3}^{\prime}=\Delta^{3} u_{b-4}^{\prime}=0$. Hence by cutting off the last term the series could be considered as the u_{x}^{\prime} series, where

$$
u_{b-2}^{\prime}=3, \quad u_{b-1}^{\prime}=\mathrm{I}, \quad u_{b}^{\prime}=0,
$$

and by cutting off the last two terms as the u_{x}^{\prime} series, where

$$
u_{b-2}^{\prime}=6, u_{b-1}^{\prime}=3, u_{b}^{\prime}=\mathrm{x} .
$$

If, to change the notation, we write $w_{1}=0, w_{2}=0, w_{3}=1, w_{4}=3, w_{5}=6$, etc., the general term to solve the equation $\epsilon w_{r}-\Delta^{6} w_{r-3}=0$, as can easily be verified, is $w_{r}=(r-1)_{(2)}+(r+2)_{(8)} \varepsilon+(r+5)_{(4)} \epsilon^{2}+(r+8)_{(20)} \epsilon^{3}+\ldots$ This formula is not, however, very convenient to use because the coefficients of the powers of ϵ rapidly become large.

Before showing how method (C) may be applied in practice we will consider what values of n are suitable to choose for the Whittaker-Henderson process. The essentials are that the coefficients of the recurrence formula (3) should be simple and that ϵ should be sufficiently small for the formula to have a good smoothing coefficient. Aitken gives the smoothing coefficient as $\frac{1}{270}$ for $\epsilon=\cdot 01, \frac{1}{180}$ for $\varepsilon=\cdot 02, \frac{1}{105}$ for $\varepsilon=\cdot 05$. The only satisfactory value of n is 3 giving $\epsilon=\cdot 009$; formula (3) then becomes

$$
v_{x}=\cdot 06 u_{x}^{\prime \prime}+2 \cdot \mathrm{I} v_{x-1}-1 \cdot 56 v_{x-2}+\cdot 4 v_{x-3} .
$$

A further advantage of this choice of n is that $u_{b-2}, u_{b-1}, u_{b}, u_{b+1}, u_{b+2}, u_{b+3}$ are the immediate successors of v_{b-2}, v_{b-1}, v_{b} by constant second differences. In the remainder of this note ϵ will be taken as 000 .

In Appendix I the values of w_{r} are given from $r=\mathrm{I}$ to $r=45$ for $\epsilon=\cdot 009$. In order to illustrate the use of this table the case where $b-a+1=20$ will be taken.

$$
\begin{aligned}
\text { If } \quad u_{a+x}^{\prime} & =w_{22-x}(0 \leqslant x \leqslant 19) \\
\Delta^{3} u_{a-3}^{\prime} & =-1526 \cdot 5 \mathrm{I} 85, \quad \Delta^{3} u_{a-2}^{\prime}=-966 \cdot 6765, \quad \Delta^{3} u_{a-1}^{\prime}=-613 \cdot 7618 . \\
\text { If } \quad u_{a+x}^{\prime} & =w_{21-x}(0 \leqslant x \leqslant \mathrm{I} 9) \\
\Delta^{3} u_{a-3}^{\prime} & =-966 \cdot 6765, \quad \Delta^{3} u_{a-2}^{\prime}=-613 \cdot 7618, \quad \Delta^{3} u_{a-1}^{\prime}=-391 \cdot 4920 . \\
\text { If } \quad u_{a+x}^{\prime} & =w_{20-x}(0 \leqslant x \leqslant 19) \\
\Delta^{3} u_{a-3}^{\prime} & =-613 \cdot 7618, \quad \Delta^{3} u_{a-2}^{\prime}=-391 \cdot 4920, \quad \Delta^{3} u_{a-1}^{\prime}=-251 \cdot 3352 .
\end{aligned}
$$

Suppose the values of w_{r} from 22 to 3 , from 21 to 2 and from 20 to 1 are multiplied respectively by A_{1}, B_{1}, C_{1}, and added, so as to give

$$
\Delta^{3} u_{a-3}^{\prime}=\mathrm{I}, \quad \Delta^{3} u_{a-2}^{\prime}=0, \quad \Delta^{3} u_{a-1}^{\prime}=0 ;
$$

by A_{2}, B_{2}, C_{2}, and added, to give

$$
\Delta^{3} u_{a-8}^{\prime}=0, \quad \Delta^{3} u_{a-2}^{\prime}=1, \quad \Delta^{3} u_{a-1}^{\prime}=0 ;
$$

by A_{3}, B_{3}, C_{3}, and added, to give

$$
\Delta^{3} u_{a-3}^{\prime}=0, \quad \Delta^{3} u_{a-2}^{\prime}=0, \quad \Delta^{3} u_{a-1}^{\prime}=1
$$

then in matrix notation

$$
\left[\begin{array}{ccc}
-1526 \cdot 5185 & -966 \cdot 6765 & -613 \cdot 7618 \\
-966 \cdot 6765 & -613 \cdot 7618 & -391 \cdot 4920 \\
-613 \cdot 7618 & -391 \cdot 4920 & -251 \cdot 3352
\end{array}\right]\left[\begin{array}{lll}
A_{1} & A_{2} & A_{3} \\
B_{1} & B_{2} & B_{3} \\
C_{1} & C_{2} & C_{3}
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right],
$$

yielding

$$
\left[\begin{array}{lll}
A_{1} & A_{2} & A_{3} \\
B_{1} & B_{2} & B_{3} \\
C_{1} & C_{2} & C_{3}
\end{array}\right]=\left[\begin{array}{rrr}
\mathrm{I} \cdot 023419 & -2.75634 \mathrm{I} & \mathrm{r} \cdot 7942 \mathrm{I} 8 \\
-2.75634 \mathrm{I} & 7.170701 & -4.438437 \\
\mathrm{r} \cdot 7942 \mathrm{I} 8 & -4.438437 & 2.528060
\end{array}\right] .
$$

Table 1．Application of Whittaker－Henderson process to ${ }^{10}{ }^{5} q_{x}$ assured lives 1927－29，durations 3 and over，all classes combined

x	$u_{0}^{\prime \prime}$	v_{x}	Δv_{x}	$\Delta^{2} v_{x}$	u_{x}	Δu_{x}	$\Delta^{2} u_{x}$	$\triangle^{3} u_{x}$
423 ${ }^{\frac{1}{2}}$		350		－	483．3	$35 \cdot 6$	－2．4	$1 \cdot 7$
$43 \frac{1}{2}$		400			518.9	33.2 32.5 3	-7	
${ }_{4}^{44 \frac{1}{2}}$	526	450 4926	－	－	$552 \cdot 1$ 584	$32 \cdot 5$ 34.0	$1 \cdot 5$ $3 \cdot 5$	$2 \cdot$
466	624	529.9		－	6186	37.5		
4772	595 650	$560 \cdot$ 585			$656 \cdot 1$ $698 \cdot 8$			
$49 \frac{1}{2}$	803	6159		－	7477	－		
$50 \frac{1}{2}$	870	656.4			803.5			
$5{ }^{512}$	862	703.5		－	867.3		－	
${ }_{53} 5 \frac{1}{2}$	954 r，020 20，	757.0 816.0 80		二	$94 \cdot 9$ $\mathbf{r}, 026 \cdot 5$			
$54 \frac{1}{2}$	r，099	$880 \cdot 0$	－		1，126．4	－	－	
556	r，159 r，399	r， $947 \% 4$	－	二	$\mathbf{1}, 242 \cdot 6$ $\mathbf{r}, 376 \cdot 3$			
578	x，627	x，128．6			1，527．8			
${ }^{588}$	ז，675	1，247．2	－	－	1，697．3	－	－	
690	$\xrightarrow{1,915}$	$\xrightarrow{\mathrm{r}, 384 \cdot 2} \mathrm{r}, 528.1$			$1,885.3$ $2,092.0$	－	－	
$6{ }_{6}{ }^{\frac{1}{2}}$	－	I，528• $\mathrm{r}, 690 \cdot 5$		－	2，092 $2,317 \times 1$		二	
$62 \frac{1}{2}$	2，601	I， $876 \cdot$	212.6	15.2	2，559＇4	$258 \cdot 2$	15.2	
$63 \frac{1}{2}$ 64	2，916	2，088．6	$227 \cdot 8$	15^{2}	2，817．6	273.4	－	
$\stackrel{642}{-}$	$\xrightarrow{3,0,597}$	$\frac{2,316 \cdot 4}{2,559 \cdot 4}$	243.0 258.2	$\begin{aligned} & \begin{array}{l} 152 \\ 15.2 \end{array} \end{aligned}$	3，091．0	二	－	
－	－	2，817 ${ }^{6}$	273.4	－	－	－	－	
－	－	3，091．0	－	－	－	－	－	

The twenty values of $u_{x}^{\prime \prime}$ in Table r are ungraduated values of $10^{5} q_{x}$ for the combined years 1927，1928， 1929 of the British Offices＇mortality investigation， durations 3 and over，all classes combined．They are part of the figures graduated by Spencer＇s summation formula in Actuarial Statistics，H．Tetley，r，2ro－II． Table I shows the working of the Whittaker－Henderson process．

The starting values $350,400,450$ for $v_{a-3}, v_{a-2}, v_{a-1}$ are rough guesses at the true values．

Since an error in computation is carried on to each subsequent value it is important to correct errors immediately．A convenient way to do this is to check by the formula

$$
v_{x-3}=-\cdot 15 u_{x}^{\prime \prime}+3.9 v_{x-2}-5.25 v_{x-1}+2 \cdot 5 v_{x},
$$

immediately after a fresh value v_{x} has been calculated by

$$
v_{x}=2 \cdot I v_{x-1}-I \cdot 56 v_{x-2}+\cdot 4 v_{x-3}+\cdot 06 u_{x}^{\prime \prime}
$$

A similar check should, of course, be imposed as the u_{x} column is formed.
The multipliers A, B, C to give the values

$$
\Delta^{3} u_{a-3}^{\prime}=\mathrm{I} \cdot 7, \quad \Delta^{3} u_{a-2}^{\prime}=2 \cdot 2, \quad \Delta^{3} u_{a-1}^{\prime}=2 \cdot 0
$$

are

$$
\begin{aligned}
{\left[\begin{array}{l}
A \\
B \\
C
\end{array}\right]=\left[\begin{array}{lll}
A_{1} & A_{2} & A_{3} \\
B_{1} & B_{2} & B_{3} \\
C_{1} & C_{2} & C_{3}
\end{array}\right]\left[\begin{array}{l}
1 \cdot 7 \\
2 \cdot 2 \\
2 \cdot 0
\end{array}\right] } & =\left[\begin{array}{rrr}
\mathrm{I} \cdot 023419 & -2 \cdot 75634 \mathrm{I} & \mathrm{I} \cdot 7942 \mathrm{I} 8 \\
-2 \cdot 75634 \mathrm{I} & 7 \cdot 17070 \mathrm{I} & -4 \cdot 438437 \\
1 \cdot 794218 & -4 \cdot 438437 & 2 \cdot 528060
\end{array}\right]\left[\begin{array}{l}
\mathrm{r} \cdot 7 \\
2 \cdot 2 \\
2 \cdot 0
\end{array}\right] \\
& =\left[\begin{array}{r}
-7357019 \\
2 \cdot 2128885 \\
-1 \cdot 6582708
\end{array}\right] .
\end{aligned}
$$

The calculation of the corrections to u_{x} of Table I is shown in Table 2.
Table 2. Calculation of corrections to u_{x}

(x)	$\begin{gathered} -7357019 \\ \times\left(w_{22} \text { to } w_{8}\right) \end{gathered}$ (2)	$\begin{array}{r} 2 \cdot 2128885 \\ \times\left(w_{21} \text { to } w_{2}\right) \end{array}$ (3)	-1.6582708 $\times\left(w_{20}\right.$ to $\left.w_{1}\right)$ (4)	$\begin{gathered} \text { Col (2)+ } \\ \mathrm{Col}(3)+ \\ \mathrm{Col}(4) \\ (5) \end{gathered}$	u_{x} (6)	$\begin{gathered} \text { Graduated } \\ \text { Value } \\ \operatorname{Col}(6)- \\ \operatorname{Col}(5) \\ (7) \end{gathered}$
451 $\frac{1}{2}$	-6,2357	11,932.8	-5,658.4	$38 \cdot 7$	584.6	546
$46 \frac{1}{2}$	$-3,967 \cdot 2$	7,550.9	$-3,555 \cdot 2$	$28 \cdot 5$	618.6	590
47 ${ }^{\frac{1}{2}}$	-2,510.4	4,744 3	-2,215.6	$18 \cdot 3$	656.1	638
$48 \frac{1}{2}$	- $1,577.3$	2,956•6	- 1,370.0	$9 \cdot 3$	698.8	689
49 ${ }^{\frac{1}{2}}$	-983.0	1,828.2	-842.8	2.4	$747 \cdot 7$	745
$50 \frac{1}{2}$	-607.8	1,124.7	- 518.9	-2.0	803.5	805
515	-373.9	692.5	-323.0	-4.4	867.3	872
$52 \frac{1}{2}$	- 230.2	$43{ }^{\circ} \mathrm{O}$	-205.9	-5.1	$940 \cdot 9$	946
$53 \frac{1}{2}$	- 143.3	2748	$-136 \cdot 1$	-4.6	1,026.5	1,03x
$54 \frac{1}{2}$	-91.3	$18 \mathrm{I} \cdot 6$	$-93 \cdot 8$	-3.5	1,126.4	1,130
$55 \frac{1}{2}$	-60.4	125.2	$-67 \cdot 1$	-2.3	1,242.6	1,245
$56 \frac{1}{2}$	-41.6 -29.8	89.5 65.2	-48.9	-1.0	1,376.3	1,377
$57 \frac{1}{2}$ 588	-29.8 -21.7	65.2 47.4	-35.5 -25.0	- $\cdot 1$	1,527.8	1,528
$59 \frac{1}{2}$	- 15.7	47.4 33	- 25.6	r.1	1,697 I, 88.3	1,697
$60 \frac{1}{2}$	- II.I	$22 \cdot 1$	-9.9	$1 \cdot 1$	2,092.0	2,091
$6 \mathrm{~T} \frac{1}{2}$	$-7 \cdot 4$	13.3	-5.0	$\cdot 9$	2,317.1	2,356
$62 \frac{1}{2}$	-4.4	6.6	-1.7	$\cdot 9$	2,559*4	2,558
$63 \frac{1}{2}$	$-2 \cdot 2$	$2 \cdot 2$	-	0	2,817.6	2,818
$64 \frac{1}{2}$	- 7	\bigcirc	-	-7	3,091.0	3.092
						28,598

The values of $A_{1}, B_{1}, C_{1}, A_{2}, B_{2}, C_{2}, A_{3}, B_{3}, C_{3}$ for all values of r from io to 40 inclusive are given in Appendix II. From this table the values of A, B, C for a particular case may easily be calculated in the manner shown above.

Three final checks may be made. The sum and the first two moments of the graduated and ungraduated values should be equal to one another. With $55^{\frac{1}{2}}$ as origin these moments are

	Sum	First moment	Second moment
$u^{\prime \prime}$	28,597 u	28,598	70,990
20,979	462,593		
462,686			

An alternative way of forming the corrected graduated sequence is to correct the starting values $v_{a-3}, v_{a-2}, v_{a-1}$ by means of A, B, C and the columns of v_{n}^{\prime} also given in Appendix I.

The correction v^{\prime} to be made is given by

$$
\left[\begin{array}{c}
v_{a-3}^{\prime} \\
v_{a-2}^{\prime} \\
v_{a-1}^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
102,977 \cdot 75 & 65,760 \cdot 896 & 42,072 \cdot 450 \\
65,760 \cdot 896 & 42,072 \cdot 450 & 26,956 \cdot 247 \\
42,072 \cdot 450 & 26,956 \cdot 247 & 17,279 \cdot 455
\end{array}\right]\left[\begin{array}{r}
-\cdot 7357019 \\
2 \cdot 2128885 \\
-1 \cdot 6582708
\end{array}\right]=\left[\begin{array}{r}
-6 \cdot 9 \\
20 \cdot 5 \\
44 \cdot 4
\end{array}\right]
$$

The starting values $v_{a-3}, v_{a-2}, v_{a-1}$ should therefore be taken as $356 \cdot 9$, $379 \cdot 5,405 \cdot 6$ respectively. It is thought, however, that the method of making corrections to u_{x} given earlier is simpler than repeating the whole WhittakerHenderson process with the corrected starting values.

It is more usual, but not quite as accurate, to obtain the corrective sequence u^{\prime} by remembering that w_{r} may be expressed as

$$
A \alpha^{r}+B \beta^{r}+C \gamma^{r}+D \alpha^{-r}+E \beta^{-r}+F \gamma^{-r} .
$$

Since $|\alpha|,|\beta|,|\gamma|<\mathrm{I}$ the terms $A \alpha^{r}+B \beta^{r}+C \gamma^{r}$ become progressively less important as r grows and therefore for large r
i.e.

$$
(\mathrm{1}-\alpha E)(\mathrm{I}-\beta E)(\mathrm{I}-\gamma E) w_{r} \doteqdot \mathrm{o},
$$

$$
w_{r}-2 \cdot I w_{r+1}+1 \cdot 56 w_{r+2}-\cdot 4 w_{r+3} \doteqdot 0, \quad \text { when } \epsilon=\cdot 009 .
$$

From the table of w_{r} in Appendix I it is easy to confirm that this relation holds.
u_{x}^{\prime}, which is compounded linearly from w_{r}, where, however, increasing x corresponds to decreasing r, satisfies the relation

$$
\begin{equation*}
u_{x}^{\prime}-2 \cdot 1 u_{x-1}^{\prime}+1 \cdot 56 u_{x-2}^{\prime}-\cdot 4 u_{x-3}^{\prime} \div 0, \tag{io}
\end{equation*}
$$

and the relation will be more accurate at the a end of the sequence than at the b end. Knowing $\Delta^{3} u_{a-3}^{\prime}, \Delta^{3} u_{a-2}^{\prime}, \Delta^{3} u_{a-1}^{\prime}$, we can calculate the initial values $u_{a-3}^{\prime}, u_{a-2}^{\prime}, u_{a-1}^{\prime}$ very easily.

Thus in our example $\Delta^{3} u_{a-3}^{\prime}=1 \cdot 7, \Delta^{3} u_{a-2}^{\prime}=2 \cdot 2, \Delta^{3} u_{a-1}^{\prime}=2 \cdot 0$, so that $\Delta^{4} u_{a-2}^{\prime}=-.2$ and $\Delta^{5} u_{a-3}^{\prime}=-7$.

Writing (10) in the form
we have

$$
\begin{gathered}
u_{x}^{\prime}+3 \Delta u_{x-1}^{\prime}+6 \Delta^{2} u_{x-2}^{\prime}+\frac{20}{3} \Delta^{3} u_{x-3}^{\prime} \doteqdot 0 \\
u_{a+2}^{\prime}+3 \Delta u_{a+1}^{\prime}+6 \Delta^{2} u_{a}^{\prime}+\frac{20}{3} \Delta^{3} u_{a-1}^{\prime} \doteqdot 0, \\
\Delta u_{a+1}^{\prime}+3^{2} u_{a}^{\prime}+6 \Delta^{3} u_{a-1}^{\prime}+\frac{20}{3} \Delta^{4} u_{a-2}^{\prime} \doteqdot 0, \\
\Delta^{2} u_{a}^{\prime}+3 \Delta^{3} u_{a-1}^{\prime}+6 \Delta^{4} u_{a-2}^{\prime}+\frac{20}{3} \Delta^{5} u_{a-3}^{\prime} \doteqdot 0 .
\end{gathered}
$$

Therefore

$$
\begin{aligned}
& \Delta^{2} u_{a}^{\prime} \doteqdot-3(2 \cdot 0)-6(-\cdot 2)-\frac{20}{3}(-7)=-6 \cdot 0+1 \cdot 2+4 \cdot \dot{6}=-\cdot 1 \dot{3}, \\
& \Delta u_{a+1}^{\prime} \doteqdot-3(-\cdot 1 \dot{3})-6(2 \cdot 0)-\frac{20}{3}(-\cdot 2)=\cdot 4-12 \cdot 0+1 \cdot \dot{3}=-10 \cdot 2 \dot{6}, \\
& u_{a+2}^{\prime} \doteqdot-3(-10 \cdot 2 \dot{6})-6(-\cdot 1 \mathrm{j})-\frac{20}{3}(2 \cdot 0)=30 \cdot 8+\cdot 8-13 \cdot \dot{3}=18 \cdot 2 \dot{6}, \\
& u_{a+1}^{\prime} \doteqdot 18 \cdot 2 \dot{6}+10 \cdot 2 \dot{6}=28 \cdot 5 \dot{3}, \\
& u_{a}^{\prime} \doteqdot 28 \cdot 5 \dot{3}+10 \cdot 2 \dot{6}-\cdot 1 \dot{3}=38 \cdot \dot{6},
\end{aligned}
$$

and subsequent values may be obtained by application of (io).
Except for the last few values, which are in any case small, there is good agreement between the values found by this method and the earlier method of p. 107.

It is of interest to note that

$$
\begin{aligned}
{\left[\begin{array}{l}
v_{a-3}^{\prime} \\
v_{a-2}^{\prime} \\
v_{a-1}^{\prime}
\end{array}\right]=} & {\left[\begin{array}{ccc}
102,977.75 & 65,760 \cdot 896 & 42,072 \cdot 450 \\
65,760.896 & 42,072 \cdot 450 & 26,956 \cdot 247 \\
42,072 \cdot 450 & 26,956 \cdot 247 & 17,279 \cdot 455
\end{array}\right] } \\
& {\left[\begin{array}{rrr}
1.023419 & -2.75634 \mathrm{I} & 1.794218 \\
-2.75634 \mathrm{I} & 7.170701 & -4.438437 \\
1.794218 & -4.438437 & 2.528060
\end{array}\right]\left[\begin{array}{l}
1 \cdot 7 \\
2 \cdot 2 \\
2 \cdot 0
\end{array}\right] } \\
& {\left[\begin{array}{rrr}
-382.921 & 974.010 & -749.383 \\
-299.685 & 785.901 & -599.526 \\
-239.755 & 635.396 & -472.958
\end{array}\right]\left[\begin{array}{l}
1 \cdot 7 \\
2.2 \\
2.0
\end{array}\right] . }
\end{aligned}
$$

C. A. Spoerl on p. 412 of his paper(7) indicates that unless the number of terms to be graduated (i.e. $b-a+1$) is small the matrix to calculate v_{a-3}^{\prime}, $v_{a-2}^{\prime}, v_{a-1}^{\prime}$ is approximately

$$
\left[\begin{array}{lll}
-383 \frac{1}{3} & 975 & -750 \\
-300 & 786 \frac{2}{3} & -600 \\
-240 & 636 & -473 \frac{1}{3}
\end{array}\right]
$$

With Spoerl's matrix $\left[\begin{array}{lll}v_{a-3}^{\prime} & v_{a-2}^{\prime} & v_{a-1}^{\prime}\end{array}\right]=\left[\begin{array}{lll}-6.7 & 20.7 & 44.5\end{array}\right]$ instead of $\left[\begin{array}{ccc}-6.9 & 20.5 & 44.4\end{array}\right]$.

In conclusion it may be said that the Whittaker-Henderson method is simple to apply, gives good results and overcomes difficulties about graduating the ends. If the sequence to be graduated has 40 terms or fewer method (C) should be used. If the sequence to be graduated has more than 40 terms method (A) or (B) should be used. As a supplement to the tables given by Aitken the values of j and k have been computed for $\epsilon=.009$ and are shown

110

The Whittaker-Henderson Method of Graduation

in Appendix III. The values of j have been calculated by the recurrence formula $j_{x}=2 \cdot 1 j_{x-1}+1 \cdot 56 j_{x-2}+\cdot 4 j_{x-3}$, starting from $j_{1}=\cdot 9, j_{2}=\cdot 45, j_{3}=\cdot 14 \mathrm{I}$. Since

$$
\begin{aligned}
& \frac{-\cdot 009 E^{3}}{(E-\mathrm{I})^{6}-\cdot 009 E^{3}} \\
& \quad \equiv \frac{3}{506}\left(\frac{13-2 \cdot 7 E-10 \cdot 44 E^{2}+.5 \cdot 2 E^{3}}{\mathrm{I}-2 \cdot \mathrm{I} E+1 \cdot 56 E^{2}-\cdot 4 E^{3}}+\frac{13-2 \cdot 7 E^{-1}-10 \cdot 44 E^{-2}+5 \cdot 2 E^{-3}}{\mathrm{I}-2 \cdot \mathrm{I} E^{-1}+1 \cdot 56 E^{-2}-\cdot 4 E^{-3}}\right),
\end{aligned}
$$

the values of k have been calculated by the same recurrence formula, viz.

$$
k_{x}=2 \cdot \mathrm{I} k_{x-1} \overline{\#} \mathrm{I} \cdot 56 k_{x-2}+4 k_{x-3} .
$$

The starting values are

$$
k_{0}=\cdot 1541502, \quad k_{1}=\cdot 1458498, \quad k_{2}=\cdot 1241502, \quad k_{3}=\cdot 0948498 .
$$

These values are also given to 5 places of decimals by C. A. Spoerl (7), p. 46r).

REFERENCES

(i) Elphinstone, M. D. W. (1950). Summation and some other Methods of Gradua-tion-The Foundations of Theory, T.F.A. xx, 13.
(2) Whittaker, E. T. (1919). Proc. Edinb. Math. Soc. xli, 63.
(3) Whittaker, E. T. and Robinson, G. (1924). The Calculus of Observations, $4^{\text {th }}$ ed., pp. 303 et seq.
(4) Aitken, A. C. (1925). Proc. R. Soc. Edinb. xlvi, 36.
(5) Aitken, A. C. (x926). T.F.A. xi, 31,
(6) Henderson, Robert (1924). A new method of graduation. T.A.S.A. xxv, 29.
(7) Spoerl, C. A. (x937). The Whittaker-Henderson graduation formula A. T.A.S.A. xxxvili, 403.
(8) Lidstone, G. J. (1926). T.F.A. XI, 27.
(9) Joffe, S. A. (1924). T.A.S.A. xxv, 292.

APPENDIXI

Values of $v_{r}^{\prime}, w_{r},-\Delta w_{r-1},-\Delta^{3} w_{r-3}($ see p. 105) $\epsilon=.009$

r	v_{r}^{\prime}	w_{r}	$-\Delta w_{r-1}$	$-\Delta^{3} w_{r-3}$
45	874,794,380	272,830,760	-99,247,090	- 13,137,119
44	556,538,820	173,583,670	-63,140,170	$-8,357,383$
43	354,972,160	110,443,500	-40,170,369	$-5,316,453$
42	225,268,730	70,273,131	-25,557,951	-3,381,894
4 I	143,327,290	44,715,180	- 16,261,986	-2,151,260
40	91,196,953	28,453,194	- 10,347,915	- 1,368,472
39	58,030,520	18,105,279	-6,585,104	-870,584.8
38	36,927,760	11,520,175	-4,190,76 ${ }^{\circ}$ \%	- 553,913.7
37	23,499,466	7,329,410.0	$-2,667,010 \cdot 8$	-352,497 1
36	14,953,781	4,662,399.2	- $1,697,170 \cdot 3$	-224,37r.7
35	9,514,877.0	2,965,228.9	- $1,079,826.9$	- 142,850.61
34	6,053,129.6	1,885,402•○	-686,855.2	-90,965.22
33	3,849,876.6	1,198,546.8	-436,734.11	- $57,928 \cdot 8 \mathrm{x}$
32	2,447,809.5	$76 \pm, 812 \cdot 69$	-277,578.24	-36,884:95
31	1,555,844 3	$484,234 \cdot 45$	- $176,351.18$	-23,475.54
30	988,640.85	307,883.27	- 112,009.07	- 14,929.642
29	628,152.48	195,874.20	-71,142.50	$-9,484 \cdot 389$
28	399,178.20	124,73r $\cdot 70$	-45,205.572	-6,017182
27	253,812.69	79,526-128	-28,753.033	-3,812.299
26	161,549.65	50,773.095	- 18,317.676	$-2,412.776$
25	102,977.75	32,455*419	- 11,694.618	- $1,526.5185$
24	65,760.896	20,760.801	$-7,484 \cdot 336$	-966.6765
23	42,072.450	13,276.465	-4,800.5725	-613.76x8
22	26,956.247	8,475.8925	-3,083.4855	- 391.4920
21	17,279*455	5,392.4070	$-1,980 \cdot 1603$	-251.3352
20	11,064.090	3,412-2,467	- 1,268.327r	- 162.58112
19	7,061•1379	2,143.9196	-807.8291	- 105.93441
18	$4,480 \cdot 1913$	1,336•0905	-509.91222	-69.37035
17	2,818.6626	$826 \cdot 17828$	- 317.92975	-45.45334
$\times 6$	1,754.5482	508.24853	- 195.31763	-29.60911
15	1,079.5141	312.93090	-118.15885	- 19.02129
14	657.34946	194.77205	-70.60918	- 11.93694
13	398.21115	$124 \cdot 16287$	-42.08080	-7.23858
12	242.58391	82.08207	-25.48936	-4.18749
II	151.15660	$56 \cdot 59271$	- 16.13650	-2.27432
10	$98 \cdot 282.42$	40.45621	-10.97113	-
9	$67 \cdot 62235$	29.48508	-8.08008	-
8	$49 \cdot 149$	21.405	-6.324	
7	$37 \cdot 035$	15.081	-5.072	
6	28.15	10.009	-4.009	
5	21	6	-3	-
4	15	3	-2	-
3	10	1	- 1	-
2	6	-	\bigcirc	-
1	3	-	-	-

APPENDIX II

Values of $A_{1} \quad A_{2} \quad A_{3}$ for $r=10$ to $r=40$ (see p. 107) $\epsilon=\cdot 009$.
$\begin{array}{lll}B_{1} & B_{2} & B_{3} \\ C_{1} & C_{2} & C_{3}\end{array}$

$r=10$	$\begin{array}{r} -11.6956 \\ 34.5017 \\ -26.3009 \end{array}$	$\begin{array}{r} 34.5017 \\ -99.6586 \\ 73.6818 \end{array}$	$\begin{array}{r} -26 \cdot 3009 \\ 73.6818 \\ -52.3941 \end{array}$
$r=11$	$\begin{array}{r} -9.93412 \\ 27.83043 \\ -19.78984 \end{array}$	$\begin{array}{r} 27 \cdot 83043 \\ -76 \cdot 23024 \\ 52 \cdot 43918 \end{array}$	$\begin{array}{r} -19.78984 \\ 52.43918 \\ -34.47291 \end{array}$
$r=12$	$\begin{array}{r} -7.74108 \\ 20.551234 \\ -13.48458 \end{array}$	$\begin{array}{r} 20 \cdot 51234 \\ -52.84668 \\ 33.24638 \end{array}$	$\begin{array}{r} 13.48458 \\ 33.24638 \\ -19.52950 \end{array}$
$r=13$	$\begin{array}{r} -5.34571 \\ 13.17992 \\ -7.74211 \end{array}$	$\begin{array}{r} 13 \cdot 17992 \\ -3 \mathrm{r} \cdot 06859 \\ 16.81497 \end{array}$	$\begin{array}{r} -7.74211 \\ 16.8 \times 497 \\ -7.67411 \end{array}$
$r=14$	$\begin{array}{r} -3.08502 \\ 6.70030 \\ -3.05792 \end{array}$	$\begin{array}{r} 6.70030 \\ -12.98263 \\ 4.19810 \end{array}$	$\begin{array}{r} -3.05792 \\ 4.19810 \\ .71976 \end{array}$
$r=15$	$\begin{array}{r} -\mathrm{r} 21969 \\ 1.67446 \\ .28709 \end{array}$	$\begin{array}{r} 1.67446 \\ .16620 \\ -4.17819 \end{array}$	$\begin{array}{r} .28709 \\ -4.17819 \\ 5.70762 \end{array}$
$r=16$	$\begin{array}{r} 11451 \\ -\mathrm{r} .66658 \\ 2.27663 \end{array}$	$\begin{array}{r} -1.66658 \\ 8.17843 \\ -8.59765 \end{array}$	$\begin{array}{r} 2.27663 \\ -8.59765 \\ 7.79367 \end{array}$
$r=17$	$\begin{array}{r} 90872 \\ -3.43177 \\ 3.11086 \end{array}$	$\begin{array}{r} -3.43177 \\ 11.72587 \\ -9.86347 \end{array}$	$\begin{array}{r} 3.11086 \\ -9.86347 \\ 7.75712 \end{array}$
$r=\mathrm{r} 8$	$\begin{array}{r} 1.24107 \\ -3.93501 \\ 3.09468 \end{array}$	$\begin{array}{r} -3.93501 \\ 11.92604 \\ -8.96728 \end{array}$	$\begin{array}{r} 3.09468 \\ -8.96728 \\ 6.41064 \end{array}$
$r=19$	$\begin{array}{r} 1.23726 \\ -3.58514 \\ 2.56299 \end{array}$	$\begin{array}{r} -3.58514 \\ 10.04960 \\ -6.90281 \end{array}$	$\begin{array}{r} 2.56299 \\ -6.90281 \\ 4.49333 \end{array}$
$r=20$	$\begin{array}{r} \mathrm{r} \cdot 023419 \\ -2.756341 \\ \mathrm{r} 7942 \mathrm{r} 8 \end{array}$	$\begin{array}{r} -2 \cdot 756341 \\ 7 \cdot 170701 \\ -4.438437 \end{array}$	$\begin{array}{r} 1 \cdot 794218 \\ -4.438437 \\ 2.528060 \end{array}$
$r=21$	$\begin{array}{r} 7190502 \\ -1.7787468 \\ 1.0131444 \end{array}$	$\begin{array}{r} -1 \cdot 7787468 \\ 4 \cdot 1755023 \\ -2 \cdot 1540443 \end{array}$	$\begin{array}{r} 1.0131444 \\ -2 \cdot 1540443 \\ \cdot 8727821 \end{array}$
$r=22$	$\begin{array}{r} 4054314 \\ -.8619869 \\ -349262.4 \end{array}$	$\begin{array}{r} -.8619869 \\ 1.5826931 \\ -.3488539 \end{array}$	$\begin{array}{r} 3492624 \\ -3488539 \\ -.3208520 \end{array}$
$r=23$	$\begin{array}{r} \cdot \mathrm{I} 39496 \mathrm{I} \\ -\cdot 1393329 \\ -\cdot 1281489 \end{array}$	$\begin{array}{r} -1393329 \\ -.3177598 \\ .8497134 \end{array}$	$\begin{array}{r} -.1281489 \\ -8497134 \\ -1.0229985 \end{array}$
$r=24$	$\begin{array}{r} -.0510534 \\ .3385185 \\ -.4075537 \end{array}$	$\begin{array}{r} \cdot 3385185 \\ -14589837 \\ 1 \cdot 4606225 \end{array}$	$\begin{array}{r} -.4075537 \\ 1.4606225 \\ -1.2914604 \end{array}$

APPENDIX II (contimued)

$r=25$	$\begin{array}{r} -1648840 \\ .5909239 \\ -.5224861 \\ \hline \end{array}$	$\begin{array}{r} 5909239 \\ -1.9622497 \\ \mathrm{I} \cdot 626751 \mathrm{I} \end{array}$	$\begin{array}{r} -522486 I \\ I \cdot 626751 I \\ -I \cdot 2677380 \end{array}$
$r=26$	$\begin{array}{r} -.2047829 \\ .6375879 \\ -.4968765 \\ \hline \end{array}$	$\begin{array}{r} \cdot 6375879 \\ -\mathrm{r} \cdot 9075580 \\ \mathrm{r} \cdot 4245976 \end{array}$	$\begin{array}{r} -4968765 \\ \mathrm{I} \cdot 4245976 \\ -\mathrm{I} \cdot 01264 \mathrm{I} 7 \end{array}$
$r=2.7$	$\begin{array}{r} -.2031963 \\ -5825853 \\ -.4141171 \\ \hline \end{array}$	$\begin{array}{r} .5825853 \\ -1.6198802 \\ 1 \cdot 1077916 \end{array}$	$\begin{array}{r} -4141171 \\ \times \cdot 1077916 \\ -7187928 \end{array}$
$r=28$	$\begin{array}{r} -1643643 \\ \cdot 4396859 \\ -\cdot 2852911 \end{array}$	$\begin{array}{r} \cdot 4396859 \\ -\mathrm{r} \cdot 1371688 \\ \cdot 7017488 \end{array}$	$\begin{array}{r} -2852911 \\ \cdot 7017488 \\ -\cdot 3986019 \end{array}$
$r=29$	$\begin{array}{r} -\cdot 11380194 \\ \cdot 27992593 \\ -\cdot 15900137 \end{array}$	$\begin{array}{r} \cdot 27992593 \\ -\cdot 653 \pm 6340 \\ \cdot 33546077 \end{array}$	$\begin{array}{r} -15900137 \\ \cdot 33546077 \\ -\cdot 13472292 \end{array}$
$r=30$	$\begin{array}{r} -.06311900 \\ \cdot 13316834 \\ -.05348115 \end{array}$	$\begin{array}{r} \cdot 133 I 6834 \\ -\cdot 24 \mathrm{II} I 43 \\ \cdot 050258 \mathrm{r} 8 \end{array}$	$\begin{array}{r} -05348 \mathrm{II5} \\ .050258 \mathrm{I} 8 \\ .05296274 \end{array}$
$r=31$	$\begin{array}{r} -.021586037 \\ .020285184 \\ .021376799 \end{array}$	020285184 -054790388 -•136076854	$\cdot 021376799$ $-\cdot 136076854$ $\cdot 160966058$
$r=32$.008775914 -.055864247 .066082125	$\begin{array}{r} -.055864247 \\ \cdot 238487654 \\ -\cdot 236736093 \end{array}$	$\begin{array}{r} \cdot 066082125 \\ -\cdot 236736093 \\ \cdot 208771400 \end{array}$
$r=33$	$\begin{array}{r} .025441938 \\ -.091144543 \\ .080378001 \end{array}$	$\begin{array}{r} -.091144543 \\ \cdot 302096073 \\ -.249593772 \end{array}$	$\begin{array}{r} \cdot 080378001 \\ -.249593772 \\ \cdot 193690223 \end{array}$
$r=34$ $r=35$	$\begin{array}{r} \cdot 034924270 \\ -\cdot .08448583 \\ \cdot 08415847 \mathrm{I} \\ .025068468 \\ -.07216358 \mathrm{I} \\ \cdot .05 \mathrm{I} 48459 \mathrm{I} \end{array}$	$\begin{array}{r} -\cdot 108448583 \\ \cdot 324618969 \\ -\cdot 242263572 \\ -\cdot 072163581 \\ \cdot 199820866 \\ -\cdot 135774162 \end{array}$	$\begin{array}{r} \cdot 084158471 \\ -\cdot 242263572 \\ \cdot 172841211 \\ -\quad .051484591 \\ -\cdot 135774162 \\ \cdot 086200612 \end{array}$
$r=36$.035398934 -.09335338 r .059268410	$\begin{array}{r} -.093353381 \\ \cdot 240136215 \\ -\cdot 146789023 \end{array}$	$\begin{array}{r} \cdot 059268410 \\ -\cdot 146789023 \\ \cdot 084282322 \end{array}$
$r=37$	OI 52907306 -.0378702825 $\cdot 0217441014$	-. 0378702825 -0881i11953 -. 0449236878	.0217441014 -.0449236878 .0168847347
$r=38$.0098706395 -.0203929110 .0076647513	-. 0203929110 -O358527353 --0059649682	.00766475 I 3 -.0059649682 -.0095648 I 3 I
$r=39$	$\begin{array}{r} .00320034417 \\ -.00249061586 \\ -.00399369696 \end{array}$	-. 00249061586 --01077296469 -02309031302	$\begin{array}{r} -.00399369696 \\ .02309031302 \\ -.02642948268 \end{array}$
$r=40$	$\begin{array}{r} -.00182768320 \\ .01056709550 \\ -.01209523956 \\ \hline \end{array}$	-01056709550 -.04508287969 -04475798080	$\begin{array}{r} -.01209523956 \\ .04475798080 \\ -.04047115369 \\ \hline \end{array}$

${ }^{114}$ The Whittaker－Henderson Method of Graduation

APPENDIX III
Coefficients j_{r} and k_{r} for $\epsilon=.009$

r	j_{r}	k_{r}
0	－	－ 1542
1	＇9	－1458
2	$\cdot 45$	－1242
3	－141	－0948
4	－． 0459	－0638
5	－－1364	－0358
6	－． 1583	． 0135
7	－－1381	－．0020
8	－． 0977	－． 0109
9	－． 0529	－． 0144
10	－．0140	－．0140
11	－014］	－． 0113
12	． 0302	－． 0077
13	－0359	－．0041
14	－0339	－－0011
15	－0272	－0010
16	－0187	－002I
17	－0103	． 0025
18	－0034	－0023
19	－．0014	－0019
20	－．0042	－0012
21	－．0053	－0007
22	－．005 1	－0002
23	－．0041	－．0001
24	－．0028	－．0003
25	－－0015	－．0004
26	－．0005	－．0004
27	． 0003	－．0003
28	－0007	－．0002
29	－0008	－．0001
30	－0008	－0000
3 I	－0006	－0000
32	． 0004	． 0001
33	． 0002	． 0001
34	． 0001	－0001
35	－0001	－
36	－．0001	－
37	－． 0001	二
38	－．0001	二
40	－．0001	二

