THE WHITTAKER-HENDERSON METHOD OF GRADUATION

By A. W. JOSEPH, M.A., B.Sc., F.I.A. Actuary, Wesleyan and General Assurance Society

Mr ELPHINSTONE, in his recent paper(1) to the Faculty of Actuaries, has reawakened interest in the method of graduation devised by Sir Edmund T. Whittaker(2,3) some 32 years ago. Except for Professor A. C. Aitken who, in a paper(4) in the *Proceedings of the Royal Society of Edinburgh* and a note(5) in the *Transactions of the Faculty of Actuaries*, gave a brilliant alternative solution of the equations on which Whittaker's method depends, English and Scottish writers have paid little attention to the method. Robert Henderson's paper(6) published in 1924 stimulated American actuaries, and their investigations have continued up to the present time. The book by Kingsland Camp (reviewed *J.I.A.* LXXVII, 327) gives numerous practical developments of Robert Henderson's work. Students should not overlook a most valuable paper(7) by Charles A. Spoerl which deals comprehensively with almost every aspect of the subject.

The method is allied to graduation by summation formulae, but has the advantages that the run of the coefficients when the formula is extended in linear compound form is theoretically very good and, unlike summation formulae, special methods are not needed to deal with the ends of the series to be graduated. The present note, which does not pretend to be original, gives an account of the method, links up the work of Aitken and Henderson and leads to the formulae which have been found to be of most use in practice. It is thought that the tables in Appendices I and II are new.

It is desired to graduate a sequence of values $u_x''(a \le x \le b)$. The graduated values are $u_x(a \le x \le b)$. If, as is usual, third differences are regarded as giving a criterion of smoothness the expression $\sum_{x=a}^{b-3} (\Delta^3 u_x)^2$ may be taken as a measure of the roughness of the graduated values. $\sum_{x=a}^{b} (u_x - u_x'')^2$ is a measure of the

distortion caused by the graduation. Whittaker's method is to minimize the expression $\frac{b-3}{2}$ is the second bulk of the second sec

$$\sum_{x=a}^{b-3} (\Delta^3 u_x)^2 + \epsilon \sum_{x=a}^{b} (u_x - u_x'')^2,$$

where ϵ is a constant chosen to give a balance between roughness and distortion. The equations so derived take the form

$$u_x - u''_x = \frac{1}{e} \Delta^6 u_{x-3} \quad (a+3 \le x \le b-3),$$

and six other equations, three at each end.

The six equations at the ends can, however, also be brought into the form $u_x - u_x'' = \frac{1}{e} \Delta^6 u_{x-3}$ by the device of introducing three additional values of u_x at each end (i.e. values for x = a - 3, a - 2, a - 1, b + 1, b + 2, b + 3) chosen such

that $\Delta^3 u_x = 0$ for x = a - 3, a - 2, a - 1, b - 2, b - 1, b. The equations to be solved are therefore

$$u_x - u''_x = \frac{\mathbf{I}}{e} \Delta^6 u_{x-3} \quad (a \leq x \leq b),$$

and the six terminal equations $\Delta^3 u_x = 0$.

Whittaker⁽²⁾ and Lidstone⁽⁸⁾ showed that these equations implied that the sum and the first two moments of the graduated and ungraduated values were equal. In symbols b b

$$\sum_{x=a}^{b} x^{r} u_{x} = \sum_{x=a}^{b} x^{r} u_{x}'' \quad (r = 0, 1, 2).$$

Whittaker expanded the equations in powers of ϵ , which he assumed would be small, and solved the equations, powers of ϵ above the first being ignored. This solution had its advantages because it was easy to derive graduated values corresponding to different values of ϵ and thus to choose the value of ϵ which seemed most suitable.

Aitken(4) gave an exact solution of Whittaker's equations. He showed that the data u''_x could be extended at either end by quantities which lay on two parabolas, one for each end. The graduated values u_x could then be expressed in terms of the original data and the additional data by an infinite series

$$u_{x} = k_{0}u_{x}'' + k_{1}(u_{x+1}'' + u_{x-1}'') + k_{2}(u_{x+2}'' + u_{x-2}'') + \dots,$$

where k_0, k_1, \ldots were the coefficients of the expansion of $\frac{-\epsilon E^3}{(E-1)^6 - \epsilon E^3}$ in the form $k_0 + k_1(E + E^{-1}) + k_2(E^2 + E^{-2}) + \ldots$

Aitken tabulated the values of k for various values of ϵ . He found that they diminished rapidly and could be ignored after a certain number of terms depending on ϵ .

The six roots of $(E-1)^6 - \epsilon E^3 = 0$ may be associated in pairs whose product is unity and may be denoted by α , $1/\alpha$, β , $1/\beta$, γ , $1/\gamma$, where, to fix the values, α , β , γ are those roots whose absolute magnitude is less than unity.

The additional data to be added at either end may be obtained by the infinite series u'' = i u'' + i u'' + i u'' + (n > b)

$$u''_{x} = j_{1}u''_{x-1} + j_{2}u''_{x-2} + \dots \quad (x > b)$$

$$u''_{x} = j_{1}u''_{x+1} + j_{2}u''_{x+2} + \dots \quad (x < a)$$

where j_1, j_2, \ldots are the coefficients of the expansion of

$$\mathbf{I} - \frac{(\mathbf{I} - E)^3}{(\mathbf{I} - \alpha E)(\mathbf{I} - \beta E)(\mathbf{I} - \gamma E)}$$

in the form $j_1E + j_2E^2 + \dots$

Aitken tabulated the values of $j_1, j_2, ...,$ which diminish rapidly in the same way as the values of $k_1, k_2, ...$

It will be found that the values of u_x outside the range $a \le x \le b$ are equal to the values u''_x which have been added at each end.

Aitken's original papers should be consulted for a full description of his method. It will be seen, however, that it is a very practical method. First the values u'_{b+1} , u'_{b+2} , u''_{b+3} , u''_{b+4} are calculated by the formula involving the *j*'s. Since they lie on a parabola second differences are constant, which is a check on the calculations. Further values u''_{b+5} , etc., which also lie on the parabola, may easily be obtained by finite differences. A similar process is repeated at the other end. u_a , u_{a+1} , etc., are then calculated by the formula involving the

k's. The method has the advantage that the terminal conditions are automatically satisfied. There are two objections to the method.

(1) If there are few terms in the data to be graduated, the j expansion for computing u''_{b+1} , u''_{b+2} , etc., will stretch beyond the data and involve the values u''_{a-1}, u''_{a-2} , etc., which have yet to be computed.

(2) The k formula is somewhat confusing to use.

Henderson(6) gave an ingenious way of solving Whittaker's equations. In effect, as was pointed out by Joffe(9), Henderson discovered that $I = -\frac{1}{2}\Delta^{6}E^{-3}$ can be factorized into

$$\begin{bmatrix} \mathbf{I} + n\Delta E^{-1} + \frac{n(n+1)}{2}\Delta^2 E^{-2} + \frac{n(n+1)^2(n+2)}{4(2n+3)}\Delta^3 E^{-3} \end{bmatrix}$$
$$\begin{bmatrix} \mathbf{I} - n\Delta + \frac{n(n+1)}{2}\Delta^2 - \frac{n(n+1)^2(n+2)}{4(2n+3)}\Delta^3 \end{bmatrix},$$
$$\frac{\mathbf{I}}{\epsilon} = \frac{n(n+1)^3(n+2)^3(n+3)}{16(2n+3)^2}.$$

where

These factors are really

$$\{(\mathbf{I} - \alpha E^{-1})(\mathbf{I} - \beta E^{-1})(\mathbf{I} - \gamma E^{-1})\}\{(\mathbf{I} - \alpha E)(\mathbf{I} - \beta E)(\mathbf{I} - \gamma E)\}\$$
ed by an appropriate constant thus

multiplied by an appropriate constant, thus

$$\mathbf{I} - n\Delta + \frac{n(n+1)}{2}\Delta^2 - \frac{n(n+1)^2(n+2)}{4(2n+3)}\Delta^3$$

= $\frac{(n+1)(n+2)^2(n+3)}{4(2n+3)}(\mathbf{I} - \alpha E)(\mathbf{I} - \beta E)(\mathbf{I} - \gamma E).$

If

 $v_{x} = \left[1 - n\Delta + \frac{n(n+1)}{2}\Delta^{2} - \frac{n(n+1)^{2}(n+2)}{4(2n+3)}\Delta^{3} \right] u_{x},$ the equation $\left(\mathbf{I} - \frac{\mathbf{I}}{e} \Delta^{6} E^{-3}\right) u_{x} = u_{x}''$ becomes

$$u_x'' = \left[\mathbf{I} + n\Delta E^{-1} + \frac{n(n+1)}{2}\Delta^2 E^{-2} + \frac{n(n+1)^2(n+2)}{4(2n+3)}\Delta^3 E^{-3} \right] v_x$$
(2)

(1)

Formula (2) may be written

$$v_{x} = \frac{4(2n+3)}{(n+1)(n+2)^{2}(n+3)}u_{x}'' + \frac{n(3n+5)}{(n+1)(n+2)}v_{x-1} - \frac{n(3n+4)}{(n+2)^{2}}v_{x-2} + \frac{n(n+1)}{(n+2)(n+3)}v_{x-3}, \quad (3)$$

and enables $v_a, v_{a+1}, ..., v_b$ to be calculated in succession provided three starting values v_{a-3} , v_{a-2} , v_{a-1} are given.

Formula (1) may be written

$$u_{x} = \frac{4(2n+3)}{(n+1)(n+2)^{2}(n+3)}v_{x} + \frac{n(3n+5)}{(n+1)(n+2)}u_{x+1} - \frac{n(3n+4)}{(n+2)^{2}}u_{x+2} + \frac{n(n+1)}{(n+2)(n+3)}u_{x+3},$$
(4)

and enables

$$u_b, u_{b-1}, u_{b-2}, \dots, u_a, u_{a-1}, u_{a-2}, u_{a-3}$$

to be calculated in succession provided three starting values u_{b+3} , u_{b+2} , u_{b+1} are given.

The solution would be complete if the six starting values were known. Three of them may be obtained quite easily. For if

$$u_{b+1} = v_{b-2} + (n+3)\Delta v_{b-2} + \frac{(n+2)(n+3)}{2}\Delta^2 v_{b-2},$$

$$u_{b+2} = v_{b-2} + (n+4)\Delta v_{b-2} + \frac{(n+3)(n+4)}{2}\Delta^2 v_{b-2},$$

$$u_{b+3} = v_{b-2} + (n+5)\Delta v_{b-2} + \frac{(n+4)(n+5)}{2}\Delta^2 v_{b-2},$$
(5)

then the operation (4) produces

$$u_{b-2} = v_{b-2} + n\Delta v_{b-2} + \frac{(n-1)n}{2}\Delta^2 v_{b-2},$$

$$u_{b-1} = v_{b-2} + (n+1)\Delta v_{b-2} + \frac{n(n+1)}{2}\Delta^2 v_{b-2},$$

$$u_b = v_{b-2} + (n+2)\Delta v_{b-2} + \frac{(n+1)(n+2)}{2}\Delta^2 v_{b-2},$$
(6)

and it is clear that the terminal conditions $\Delta^3 u_{b-2} = \Delta^3 u_{b-1} = \Delta^3 u_b = 0$ are satisfied. It is by no means as easy to ensure that the other terminal conditions $\Delta^3 u_{a-3} = \Delta^3 u_{a-2} = \Delta^3 u_{a-1} = 0$ are satisfied. There are three ways to proceed.

(A) Use Aitken's method to obtain starting values u''_{a-3} , u''_{a-2} , u''_{a-1} . As has been pointed out, these values are also u_{a-3} , u_{a-2} , u_{a-1} . Then v_{a-3} , v_{a-2} , v_{a-1} can be computed from formula (1) combined with

$$\Delta^{3}u_{a-3} = \Delta^{3}u_{a-2} = \Delta^{3}u_{a-1} = 0.$$

(B) It is evident from Aitken's tables that the *j*-coefficients are so small at a sufficient distance from the end of the table that the contribution of u''_x to a starting value u_{a-1} may be neglected if x-a exceeds a certain minimum value. It is possible to work backwards from arbitrary figures (which may be zeros) at this distance, using suitable recurrence relations, to correct starting values at a-1, a-2, a-3. The following analysis shows how this is done.

Since, for x < a,

$$u_x = u''_x$$
 and $u''_x = \left[\mathbf{I} - \frac{(\mathbf{I} - E)^3}{(\mathbf{I} - \alpha E)(\mathbf{I} - \beta E)(\mathbf{I} - \gamma E)} \right] u''_x$

the proper recurrence relation is

$$\{(\mathbf{I} - \alpha E)(\mathbf{I} - \beta E)(\mathbf{I} - \gamma E)\}u_x = \{(\mathbf{I} - \alpha E)(\mathbf{I} - \beta E)(\mathbf{I} - \gamma E)\}u_x'' + \Delta^3 u_x''.$$
(7)

The recurrence relation for u_x ($a \le x \le b$) is different from (7), being

$$\left(\mathbf{I}-\frac{\mathbf{I}}{\epsilon}\Delta^{6}E^{-3}\right)u_{x}=u_{x}''.$$

The values u_a , u_{a+1} , u_{a+2} obtained from (7) will therefore not be correct, but once u_{a-1} is reached correct values of u_x are obtained.

Since (7) is not in itself a convenient relation to use recourse may be had to a sequence u_{x}^{w} formed from the simpler relation

$$u_{w}^{'''} = \frac{4(2n+3)}{(n+1)(n+2)^{2}(n+3)}u_{w}^{''} + \frac{n(3n+5)}{(n+1)(n+2)}u_{w+1}^{'''} - \frac{n(3n+4)}{(n+2)^{2}}u_{w+2}^{'''} + \frac{n(n+1)}{(n+2)(n+3)}u_{w+3}^{'''}, \qquad (8)$$

which is similar to formula (4).

This is the same as

$$\left[1 - n\Delta + \frac{n(n+1)}{2}\Delta^2 - \frac{n(n+1)^2(n+2)}{4(2n+3)}\Delta^3\right]u_x'' = u_x''$$

or

$$(\mathbf{I} - \alpha E)(\mathbf{I} - \beta E)(\mathbf{I} - \gamma E)u_x'' = \frac{4(2n+3)}{(n+1)(n+2)^2(n+3)}u_x''.$$
(9)

Then for x < a

$$u_x'' = \left[\mathbf{I} + \frac{\Delta^3}{(\mathbf{I} - \alpha E)(\mathbf{I} - \beta E)(\mathbf{I} - \gamma E)} \right] u_x''$$

= $\frac{(n+1)(n+2)^2(n+3)}{4(2n+3)} \{ (\mathbf{I} - \alpha E)(\mathbf{I} - \beta E)(\mathbf{I} - \gamma E) + \Delta^3 \} u_x'''$

Also from (9) for x < a

$$u_x'' = \frac{(n+1)(n+2)^2(n+3)}{4(2n+3)} \{ (1-\alpha E)(1-\beta E)(1-\gamma E) \} u_x'''.$$

x < a $\Delta^3 u_x''' = 0.$

Hence for x < a

Hence $u_x = \left[\mathbf{I} - n\Delta + \frac{n(n+1)}{2} \Delta^2 \right] u_x^m$ for x < a.

From (1)

$$v_x = \left[\mathbf{I} - n\Delta + \frac{n(n+1)}{2} \Delta^2 \right] u_x \text{ for } x < a$$

Hence v_{a-1} may be expressed in terms of u_{a-1} , u_a and u_{a+1} , and, by the use of $\Delta^3 u_{a-3} = \Delta^3 u_{a-2} = 0$,

in terms of u_{a-3} , u_{a-2} and u_{a-1} . Substitution of u_x in terms of u_x''' gives v_{a-1} in terms of u_{a-3}''' , u_{a-2}''' , u_{a-1}''' , u_a''' and u_{a+1}'' . By means of

$$\Delta^3 u_{a-3}''' = \Delta^3 u_{a-2}'' = \Delta^3 u_{a-1}'' = 0$$

 v_{a-1} may then be expressed in terms of u_a''' , u_{a+1}''' and u_{a+2}''' . A similar procedure may be followed for v_{a-2} and v_{a-3} , and when the algebra is carried through the relations obtained are

$$\begin{aligned} v_{a-1} &= \left[\mathbf{I} - (2n+1)\Delta + \frac{(2n+1)(2n+2)}{2}\Delta^2 \right] u_a''', \\ v_{a-2} &= \left[\mathbf{I} - (2n+2)\Delta + \frac{(2n+2)(2n+3)}{2}\Delta^2 \right] u_a''', \\ v_{a-3} &= \left[\mathbf{I} - (2n+3)\Delta + \frac{(2n+3)(2n+4)}{2}\Delta^2 \right] u_a'''. \end{aligned}$$

The method, therefore, is to use formula (8) to obtain $u_a^{'''}$, $u_{a+1}^{'''}$, $u_{a+2}^{'''}$, starting with three zero values of $u_a^{'''}$ sufficiently far away from $u_a^{'''}$ and then to obtain v_{a-1} , v_{a-2} , v_{a-3} from the relationship just given.

(C) If any three arbitrary values (usually guessed approximations to the true values) of v_{a-3} , v_{a-2} , v_{a-1} , are taken as starting values, a set of graduated values will be obtained, but the set will differ from the correct values all the way up the table and the values $\Delta^3 u_{a-3}$, $\Delta^3 u_{a-2}$, $\Delta^3 u_{a-1}$ will not, as they should, be zero. u_x may, however, be corrected by subtracting from it a sequence u'_x obtained by graduating by the Whittaker-Henderson process data consisting of b-a+1 zeros with the condition that

$$\Delta^3 u'_{a-3} = \Delta^3 u_{a-3}, \quad \Delta^3 u'_{a-2} = \Delta^3 u_{a-2}, \quad \Delta^3 u'_{a-1} = \Delta^3 u_{a-1}.$$

In theory there is no difficulty in finding the sequence u'_w . With any three starting values u'_{b-2} , u'_{b-1} , u'_b take

$$\begin{aligned} v'_{b-2} &= u'_{b-2} - n\Delta u'_{b-2} + \frac{n(n+1)}{2}\Delta^2 u'_{b-2}, \\ v'_{b-1} &= u'_{b-2} - (n-1)\Delta u'_{b-2} + \frac{(n-1)n}{2}\Delta^2 u'_{b-2}, \\ v'_{b} &= u'_{b-2} - (n-2)\Delta u'_{b-2} + \frac{(n-2)(n-1)}{2}\Delta^2 u'_{b-2}. \end{aligned}$$

These are the counterparts of the relations (6) and will ensure that the terminal conditions are satisfied at the b end.

The column v'_{a} may now be calculated as far as v'_{a-3} by the formula

$$v'_{x-3} = \frac{(n+3)(3n+4)}{(n+1)(n+2)}v'_{x-2} - \frac{(n+3)(3n+5)}{(n+1)^2}v'_{x-1} + \frac{(n+2)(n+3)}{n(n+1)}v'_{x},$$

which is another way of expressing formula (3), where u''_x is zero and v'_x takes the place of v_x .

The column u'_{w} may be calculated as far as u'_{a-3} by means of the formula (4) (dashed letters taking the place of undashed), and $\Delta^{3}u'_{a-3}$, $\Delta^{3}u'_{a-2}$, $\Delta^{3}u'_{a-1}$ obtained.

The same process may be carried out starting from three values u'_{b-2} , u'_{b-1} , u'_{b} linearly independent from the first choice of these quantities, and again a third time starting from the three values u'_{b-2} , u'_{b-1} , u'_{b} linearly independent from the first two choices of these quantities.

The resulting three sets of values $\Delta^3 u'_{a-3}$, $\Delta^3 u'_{a-2}$, $\Delta^3 u'_{a-1}$ may be combined linearly to produce $\Delta^3 u_{a-3}$, $\Delta^3 u_{a-2}$, $\Delta^3 u_{a-1}$. The same linear combination of the u' sequences produces the corrective sequence u' which is being sought.

It would be a convenience if those three linearly independent columns of u'_{α} could be replaced by one column. This, in fact, can be done by the device of taking u'_{b-2} , u'_{b-1} , u'_{b} is 1, 0, 0. For then it will be found that

$$v_{b-4}', v_{b-3}', v_{b-2}', v_{b-1}', v_b'$$

become

$$\frac{(n+3)(n+4)}{2}, \quad \frac{(n+2)(n+3)}{2}, \quad \frac{(n+1)(n+2)}{2}, \quad \frac{n(n+1)}{2}, \quad \frac{(n-1)n}{2}$$

respectively, and

$$u'_{b-4}, \quad u'_{b-3}, \quad u'_{b-2}, \quad u'_{b-1}, \quad u'_{b}, \quad u'_{b+1}, \quad u'_{b+2}, \quad u'_{b+3}$$

become 6, 3, 1, 0, 0, 1, 3, 6 respectively. These values, of course, solve the equation $eu'_x - \Delta^6 u'_{x-3} = 0$ and the terminal equations

$$\Delta^3 u'_{b-2} = \Delta^3 u'_{b-1} = \Delta^3 u'_{b} = 0.$$

But they also satisfy $\Delta^3 u'_{b-3} = \Delta^3 u'_{b-4} = 0$. Hence by cutting off the last term the series could be considered as the u'_a series, where

$$u_{b-2}'=3, \quad u_{b-1}'=1, \quad u_b'=0,$$

and by cutting off the last two terms as the u'_x series, where

$$u'_{b-2} = 6, u'_{b-1} = 3, u'_{b} = 1.$$

If, to change the notation, we write $w_1 = 0$, $w_2 = 0$, $w_3 = 1$, $w_4 = 3$, $w_5 = 6$, etc., the general term to solve the equation $ew_r - \Delta^e w_{r-3} = 0$, as can easily be verified, is $w_r = (r-1)_{(2)} + (r+2)_{(3)}e + (r+5)_{(14)}e^2 + (r+8)_{(20)}e^3 + \dots$ This formula is not, however, very convenient to use because the coefficients of the powers of erapidly become large.

Before showing how method (C) may be applied in practice we will consider what values of n are suitable to choose for the Whittaker-Henderson process. The essentials are that the coefficients of the recurrence formula (3) should be simple and that ϵ should be sufficiently small for the formula to have a good smoothing coefficient. Aitken gives the smoothing coefficient as $\frac{1}{270}$ for $\epsilon = \cdot 01$, $\frac{1}{180}$ for $\epsilon = \cdot 02$, $\frac{1}{105}$ for $\epsilon = \cdot 05$. The only satisfactory value of n is 3 giving $\epsilon = \cdot 000$; formula (3) then becomes

$$v_x = \cdot 06u''_x + 2 \cdot 1v_{x-1} - 1 \cdot 56v_{x-2} + \cdot 4v_{x-3}$$

A further advantage of this choice of n is that u_{b-2} , u_{b-1} , u_b , u_{b+1} , u_{b+2} , u_{b+3} are the immediate successors of v_{b-2} , v_{b-1} , v_b by constant second differences. In the remainder of this note ϵ will be taken as $\cdot \circ \circ \circ$.

In Appendix I the values of w_r are given from r=1 to r=45 for $\epsilon=\cdot009$. In order to illustrate the use of this table the case where b-a+1=20 will be taken.

If
$$u'_{a+x} = w_{22-x}$$
 ($0 \le x \le 19$)
 $\Delta^3 u'_{a-3} = -1526 \cdot 5185$, $\Delta^3 u'_{a-2} = -966 \cdot 6765$, $\Delta^3 u'_{a-1} = -613 \cdot 7618$.
If $u'_{a+x} = w_{21-x}$ ($0 \le x \le 19$)
 $\Delta^3 u'_{a-3} = -966 \cdot 6765$, $\Delta^3 u'_{a-2} = -613 \cdot 7618$, $\Delta^3 u'_{a-1} = -391 \cdot 4920$.
If $u'_{a+x} = w_{20-x}$ ($0 \le x \le 19$)
 $\Delta^3 u'_{a-3} = -613 \cdot 7618$, $\Delta^3 u'_{a-2} = -391 \cdot 4920$, $\Delta^3 u'_{a-1} = -251 \cdot 3352$.

Suppose the values of w_r from 22 to 3, from 21 to 2 and from 20 to 1 are multiplied respectively by A_1 , B_1 , C_1 , and added, so as to give

$$\Delta^3 u'_{a-3} = \mathbf{I}, \quad \Delta^3 u'_{a-2} = \mathbf{0}, \quad \Delta^3 u'_{a-1} = \mathbf{0};$$

by A_2 , B_2 , C_2 , and added, to give

$$\Delta^{3}u'_{a-3}=0, \quad \Delta^{3}u'_{a-2}=1, \quad \Delta^{3}u'_{a-1}=0;$$

by A_3 , B_3 , C_3 , and added, to give

$$\Delta^3 u'_{a-3} = 0, \quad \Delta^3 u'_{a-2} = 0, \quad \Delta^3 u'_{a-1} = 1;$$

then in matrix notation

 $\begin{bmatrix} -1526 \cdot 5185 & -966 \cdot 6765 & -613 \cdot 7618 \\ -966 \cdot 6765 & -613 \cdot 7618 & -391 \cdot 4920 \\ -613 \cdot 7618 & -391 \cdot 4920 & -251 \cdot 3352 \end{bmatrix} \begin{bmatrix} A_1 & A_2 & A_3 \\ B_1 & B_2 & B_3 \\ C_1 & C_2 & C_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix},$ vielding

 $\begin{bmatrix} A_1 & A_2 & A_3 \\ B_1 & B_2 & B_3 \\ C_1 & C_2 & C_3 \end{bmatrix} = \begin{bmatrix} 1 \cdot 023419 & -2 \cdot 756341 & 1 \cdot 794218 \\ -2 \cdot 756341 & 7 \cdot 170701 & -4 \cdot 438437 \\ 1 \cdot 794218 & -4 \cdot 438437 & 2 \cdot 528060 \end{bmatrix}.$

Table 1. Application of Whittaker-Henderson process to 10^5q_x assured lives 1927–29, durations 3 and over, all classes combined

<i>x</i>	<i>u</i> ″ _x	v_x	Δv_x	$\Delta^2 v_x$	u _x	Δu_x	$\Delta^2 u_{x}$	$\Delta^{3}u_{x}$
421		350		[483.3	35.6	-2.4	1.7
43 ¹ / ₂		400			518.9	33.2	7	2.2
44 ¹ / ₂		450			552'1	32.5	1.2	2.0
451	526	492.6			584.6	34.0	3.2	<u> </u>
46 <u>1</u>	624	529.9			618.6	37.5		
47 1	595	560.0		—	656.1			
48 1	650	585.4			698.8		—	
49 1	803	615.9			747.7	—	—	
501	870	656.4		—	803.5	—		
$51\frac{1}{2}$	862	703.5			867.3			i
521	954	757.0			940.9			
53 ¹ / ₂	1,020	816.0		—	1,026.5		—	
541	1,099	880.0		—	1,126.4			
551 561	1,159	947'4			1,242.6			
56 1	1,399	1,027.1			1,376.3	—	—	
$57\frac{1}{2}$ $58\frac{1}{2}$	1,627	1,128.6			1,527.8			
58 1	1,675	1,247.2			1,697.3			
59 1	1,915	1,384.2			1,885.3	—		
60 1	1,925	1,528.1			2,092.0			
611	2,366	1,690.2		—	2,317.1			
62 <u>1</u>	2,601	1,876.0	212.6	15.2	2,559.4	258.2	15.2	
631	2,916	2,088.6	227.8	15.2	2,817.6	273.4		
$64\frac{1}{2}$	3,011	2,316.4	242.0	15.2	3,091.0			1
	28,597	2,559.4	258.2	15.2				
		2,817.6	273.4	_		— —		
		3,091.0						

The twenty values of u''_x in Table 1 are ungraduated values of 10^5q_x for the combined years 1927, 1928, 1929 of the British Offices' mortality investigation, durations 3 and over, all classes combined. They are part of the figures graduated by Spencer's summation formula in *Actuarial Statistics*, H. Tetley, 1, 210–11. Table 1 shows the working of the Whittaker-Henderson process.

The starting values 350, 400, 450 for v_{a-3} , v_{a-2} , v_{a-1} are rough guesses at the true values.

Since an error in computation is carried on to each subsequent value it is important to correct errors immediately. A convenient way to do this is to check by the formula

$$v_{x-3} = -15u_x'' + 39v_{x-2} - 525v_{x-1} + 25v_x,$$

immediately after a fresh value v_x has been calculated by

$$v_x = 2 \cdot 1 v_{x-1} - 1 \cdot 56 v_{x-2} + \cdot 4 v_{x-3} + \cdot 66 u''_x.$$

A similar check should, of course, be imposed as the u_x column is formed. The multipliers A, B, C to give the values

$$\Delta^3 u'_{a-3} = 1.7, \quad \Delta^3 u'_{a-2} = 2.2, \quad \Delta^3 u'_{a-1} = 2.0$$

are

$$\begin{bmatrix} A\\ B\\ C \end{bmatrix} = \begin{bmatrix} A_1 & A_2 & A_3\\ B_1 & B_2 & B_3\\ C_1 & C_2 & C_3 \end{bmatrix} \begin{bmatrix} \mathbf{1} \cdot 7\\ \mathbf{2} \cdot 2\\ \mathbf{2} \cdot \mathbf{0} \end{bmatrix} = \begin{bmatrix} \mathbf{1} \cdot 0234\mathbf{19} & -2 \cdot 75634\mathbf{1} & \mathbf{1} \cdot 7942\mathbf{18}\\ -2 \cdot 75634\mathbf{1} & 7 \cdot \mathbf{170701} & -4 \cdot 438437\\ \mathbf{1} \cdot 7942\mathbf{18} & -4 \cdot 438437 & \mathbf{2} \cdot 528060 \end{bmatrix} \begin{bmatrix} \mathbf{1} \cdot 7\\ \mathbf{2} \cdot 2\\ \mathbf{2} \cdot \mathbf{0} \end{bmatrix}$$
$$= \begin{bmatrix} -773570\mathbf{19}\\ \mathbf{2} \cdot 2\mathbf{128885}\\ -\mathbf{1} \cdot 6582708 \end{bmatrix}.$$

The calculation of the corrections to u_x of Table 1 is shown in Table 2.

x	$7357019 \times (w_{22} \text{ to } w_8)$	$2.2128885 \times (w_{21} \text{ to } w_2)$	-1.6582708 $\times (w_{20} \text{ to } w_1)$	Col (2) + Col (3) + Col (3) + Col (4)	u _w	Graduated Value Col (6)- Col (5)
(1)	(2)	(3)	(4)	(5)	(6)	(7)
456 456 478 478 478 478 478 478 478 478	$\begin{array}{r} -6,235.7\\ -3,967.2\\ -2,510.4\\ -1,577.3\\ -983.0\\ -667.8\\ -373.9\\ -230.2\\ -143.3\\ -91.3\\ -60.4\\ -41.6\\ -29.8\\ -21.7\\ -15.7\\ -15.7\\ -15.7\\ -7.4\end{array}$	11,932 ^{.8} 7,55 ⁰ 9 4,744 ^{.3} 2,95 ^{6.6} 1,828 ^{.2} 1,124 ^{.7} 692 ^{.5} 43 ^{1.0} 274 ^{.8} 18 ^{1.6} 125 ^{.2} 89 ^{.5} 65 ^{.2} 47 ^{.4} 33 ^{.4} 22 ^{.1} 13 ^{.3}	$\begin{array}{r} -5,658\cdot4 \\ -3,555\cdot2 \\ -2,215\cdot6 \\ -1,370\cdot0 \\ -842\cdot8 \\ -518\cdot9 \\ -323\cdot0 \\ -205\cdot9 \\ -136\cdot1 \\ -93\cdot8 \\ -67\cdot1 \\ -48\cdot9 \\ -35\cdot5 \\ -25\cdot0 \\ -16\cdot6 \\ -9\cdot9 \\ -5\cdot0 \end{array}$	$\begin{array}{c} 38.7\\ 28.5\\ 18.3\\ 9.3\\ 2.4\\ -2.0\\ -4.4\\ -5.1\\ -4.6\\ -3.5\\ -2.3\\ -1.0\\1\\ 1.1\\ 1.1\\ .9\end{array}$	584.6 618.6 656.1 698.8 747.7 803.5 867.3 940.9 1,026.5 1,126.4 1,242.6 1,376.3 1,527.8 1,697.3 1,885.3 2,092.0 2,317.1	546 590 638 689 745 805 872 946 1,031 1,130 1,245 1,377 1,528 1,697 1,884 2,091 2,316
621 631 641 641	-4·4 -2·2 -·7	6·6 2·2 0	- 1·7 0	.9 0	2,559·4 2,817·6	2,558 2,818
042			0	7	3,091.0	<u>3.092</u> 28,598

Table 2. Calculation of corrections to u_x

The values of A_1 , B_1 , C_1 , A_2 , B_2 , C_2 , A_3 , B_3 , C_3 for all values of r from 10 to 40 inclusive are given in Appendix II. From this table the values of A, B, C for a particular case may easily be calculated in the manner shown above.

Three final checks may be made. The sum and the first two moments of the graduated and ungraduated values should be equal to one another. With $55\frac{1}{2}$ as origin these moments are

	Sum	First moment	Second moment	
u"	28,597	70,990	462,593	
u	28,598	70,979	462,686	

An alternative way of forming the corrected graduated sequence is to correct the starting values v_{a-3} , v_{a-2} , v_{a-1} by means of A, B, C and the columns of v'_n also given in Appendix I.

The correction v' to be made is given by

$\begin{bmatrix} v'_{a-3} \end{bmatrix}$	102,977.75	65,760.896	42,072.450][- • 7357019		[-6.9]
$v_{a-2}' =$	102,977·75 65,760·896	42,072.450	26,956.247	2.2128885	=	20.2
$\lfloor v'_{a-1} floor$	42,072.450	26,956·247	17,279.455	- 1.6582708		44.4

The starting values v_{a-3} , v_{a-2} , v_{a-1} should therefore be taken as 356.9, 379.5, 405.6 respectively. It is thought, however, that the method of making corrections to u_x given earlier is simpler than repeating the whole Whittaker-Henderson process with the corrected starting values.

It is more usual, but not quite as accurate, to obtain the corrective sequence u'by remembering that w_r may be expressed as

$$A\alpha^{r} + B\beta^{r} + C\gamma^{r} + D\alpha^{-r} + E\beta^{-r} + F\gamma^{-r}.$$

-

Since $|\alpha|, |\beta|, |\gamma| < 1$ the terms $A\alpha^r + B\beta^r + C\gamma^r$ become progressively less important as r grows and therefore for large r

i.e.

$$(\mathbf{I} - \alpha E)(\mathbf{I} - \beta E)(\mathbf{I} - \gamma E)w_r \doteq \mathbf{o},$$

$$w_r - 2 \cdot \mathbf{I}w_{r+1} + \mathbf{I} \cdot \mathbf{5} 6w_{r+2} - \mathbf{4}w_{r+3} \doteq \mathbf{o}, \quad \text{when } \epsilon = \mathbf{0} = \mathbf{0}$$

From the table of w_r in Appendix I it is easy to confirm that this relation holds.

 u'_{x} , which is compounded linearly from w_r , where, however, increasing x corresponds to decreasing r, satisfies the relation

$$u'_{x} - 2 \cdot 1 u'_{x-1} + 1 \cdot 56 u'_{x-2} - 4 u'_{x-3} = 0, \tag{10}$$

and the relation will be more accurate at the a end of the sequence than at the b end. Knowing $\Delta^3 u'_{a-3}$, $\Delta^3 u'_{a-2}$, $\Delta^3 u'_{a-1}$, we can calculate the initial values $u'_{a-3}, u'_{a-2}, u'_{a-1}$ very easily. Thus in our example $\Delta^3 u'_{a-3} = 1.7$, $\Delta^3 u'_{a-2} = 2.2$, $\Delta^3 u'_{a-1} = 2.0$, so that

 $\Delta^4 u'_{a-2} = -\cdot 2$ and $\Delta^5 u'_{a-3} = -\cdot 7$.

Writing (10) in the form

we have

$$\begin{aligned} u'_{x} + 3\Delta u'_{x-1} + 6\Delta^{2}u'_{x-2} + \frac{20}{3}\Delta^{3}u'_{x-3} &\doteq 0, \\ u'_{a+2} + 3\Delta u'_{a+1} + 6\Delta^{2}u'_{a} + \frac{20}{3}\Delta^{3}u'_{a-1} &\doteq 0, \\ \Delta u'_{a+1} + 3\Delta^{2}u'_{a} + 6\Delta^{3}u'_{a-1} + \frac{20}{3}\Delta^{4}u'_{a-2} &\doteq 0, \\ \Delta^{2}u'_{a} + 3\Delta^{3}u'_{a-1} + 6\Delta^{4}u'_{a-2} + \frac{20}{3}\Delta^{5}u'_{a-3} &\doteq 0. \end{aligned}$$

Therefore

$$\begin{aligned} \Delta^2 u'_a &\doteq -3 (2 \cdot 0) - 6 (-2) - \frac{20}{3} (-7) = -6 \cdot 0 + 1 \cdot 2 + 4 \cdot 6 = -1 \cdot 1 \cdot 3, \\ \Delta u'_{a+1} &\doteq -3 (-1 \cdot 1 \cdot 3) - 6 (2 \cdot 0) - \frac{20}{3} (-2) = 4 - 12 \cdot 0 + 1 \cdot 3 = -10 \cdot 26, \\ u'_{a+2} &\doteq -3 (-10 \cdot 26) - 6 (-1 \cdot 1 \cdot 3) - \frac{20}{3} (2 \cdot 0) = 30 \cdot 8 + 8 - 13 \cdot 3 = 18 \cdot 26, \\ u'_{a+1} &\doteq 18 \cdot 26 + 10 \cdot 26 = 28 \cdot 53, \\ u'_a &\doteq 28 \cdot 53 + 10 \cdot 26 - 13 = 38 \cdot 6, \end{aligned}$$

and subsequent values may be obtained by application of (10).

Except for the last few values, which are in any case small, there is good agreement between the values found by this method and the earlier method of p. 107.

It is of interest to note that

$$\begin{bmatrix} v_{a-3}'\\ v_{a-2}'\\ v_{a-1}' \end{bmatrix} = \begin{bmatrix} 102,977.75 & 65,760.896 & 42,072.450\\ 65,760.896 & 42,072.450 & 26,956.247\\ 42,072.450 & 26,956.247 & 17,279.455 \end{bmatrix}$$
$$\begin{bmatrix} 1.023419 & -2.756341 & 1.794218\\ -2.756341 & 7.170701 & -4.438437\\ 1.794218 & -4.438437 & 2.528060 \end{bmatrix} \begin{bmatrix} 1.7\\ 2.2\\ 2.0 \end{bmatrix}$$
$$= \begin{bmatrix} -382.921 & 974.010 & -749.383\\ -299.685 & 785.901 & -599.526\\ -239.755 & 635.396 & -472.958 \end{bmatrix} \begin{bmatrix} 1.7\\ 2.2\\ 2.0 \end{bmatrix}.$$

C. A. Spoerl on p. 412 of his paper(7) indicates that unless the number of terms to be graduated (i.e. b-a+1) is small the matrix to calculate v'_{a-3} , v'_{a-2} , v'_{a-1} is approximately

$$\begin{bmatrix} -383\frac{1}{3} & 975 & -750 \\ -300 & 786\frac{2}{3} & -600 \\ -240 & 636 & -473\frac{1}{3} \end{bmatrix}.$$

With Spoerl's matrix $[v'_{a-3} \ v'_{a-2} \ v'_{a-1}] = [-6.7 \ 20.7 \ 44.5]$ instead of $[-6.9 \ 20.5 \ 44.4]$.

In conclusion it may be said that the Whittaker-Henderson method is simple to apply, gives good results and overcomes difficulties about graduating the ends. If the sequence to be graduated has 40 terms or fewer method (C) should be used. If the sequence to be graduated has more than 40 terms method (A) or (B) should be used. As a supplement to the tables given by Aitken the values of j and k have been computed for $\epsilon = 000$ and are shown

in Appendix III. The values of j have been calculated by the recurrence formula $j_x = 2 \cdot 1 j_{x-1} \neq 1 \cdot 5 6 j_{x-2} + 4 j_{x-3}$, starting from $j_1 = 9, j_2 = 45, j_3 = 141$. Since

$$\begin{split} & \underbrace{\frac{-\cos 2^{B^{3}}}{(E-1)^{6}-\cos 2^{E^{3}}}}_{506} \\ & \equiv \frac{3}{506} \left(\frac{13-2\cdot7E-10\cdot44E^{2}+5\cdot2E^{3}}{1-2\cdot1E+1\cdot56E^{2}-4E^{3}} + \frac{13-2\cdot7E^{-1}-10\cdot44E^{-2}+5\cdot2E^{-3}}{1-2\cdot1E^{-1}+1\cdot56E^{-2}-4E^{-3}} \right), \end{split}$$

the values of k have been calculated by the same recurrence formula, viz.

$$k_x = 2 \cdot 1 k_{x-1} \neq 1 \cdot 56 k_{x-2} + \cdot 4 k_{x-3}$$

The starting values are

 $k_0 = \cdot 1541502, \quad k_1 = \cdot 1458498, \quad k_2 = \cdot 1241502, \quad k_3 = \cdot 0948498.$

These values are also given to 5 places of decimals by C. A. Spoerl ((7), p. 461).

REFERENCES

- (1) ELPHINSTONE, M. D. W. (1950). Summation and some other Methods of Graduation-The Foundations of Theory. T.F.A. XX, 13.
- (2) WHITTAKER, E. T. (1919). Proc. Edinb. Math. Soc. XLI, 63.
- (3) WHITTAKER, E. T. and ROBINSON, G. (1924). The Calculus of Observations. 4th ed., pp. 303 et seq.
- (4) AITKEN, A. C. (1925). Proc. R. Soc. Edinb. XLVI, 36.
 (5) AITKEN, A. C. (1926). T.F.A. XI, 31.
- (6) HENDERSON, ROBERT (1924). A new method of graduation. T.A.S.A. XXV, 29.
- (7) SPOERL, C. A. (1937). The Whittaker-Henderson graduation formula A. T.A.S.A. XXXVIII, 403.
- (8) LIDSTONE, G. J. (1926). T.F.A. XI, 27.
- (9) JOFFE, S. A. (1924). T.A.S.A. XXV, 292.

APPENDIX I

r	v'_r	w _r	$-\Delta w_{r-1}$	$-\Delta^3 w_{r-3}$
45	874,794,380	272,830,760	-99,247,090	13,137,119
44	556,538,820	173,583,670	-63,140,170	-8,357,383
43	354,072,160	110,443,500	-40,170,369	- 5,316,453
42	225,268,730	70,273,131	-25,557,951	-3,381,894
41	143,327,290	44,715,180	- 16,261,986	-2,151,260
40	91,196,953	28,453,194	- 10,347,915	-1,368,472
39	58,030,520	18,105,279	-6,585,104	- 870,584.8
38	36,927,760	11,520,175	-4,190,765.0	-553,913.7
37	23,499,466	7,329,410.0	-2,667,010.8	-352,497.1
36	14,953,781	4,662,399.2	-1,697,170.3	-224,371.7
35	9,514,877.0	2,965,228.9	-1,079,826.9	- 142,850.61
	6,053,129.6	1,885,402.0	-686,855.2	-90,965'22
34	3,849,876.6	1,198,546.8	-436,734.11	- 57,928.81
33	2,447,809.5	761,812.69	-277,578.24	-36,884.95
32	1,555,844.3		- 2/7,576 24	- 30,004 95
31	988,640.85	484,234·45 307,883·27	- 176,351.18	-23,475.54
30		307,883-27	- 112,009.07	- 14,929.642
29	628,152.48	195,874.20	-71,142.20	-9,484.389
28	399,178.20	124,731.70	-45,205'572	-6,017.182
27	253,812.69	79,526.128	-28,753.033	-3,812.209
26	161,549.65	50,773.095	- 18,317.676	-2,412.776
25	102,977.75	32,455.419	- 11,694.618	- 1,526.5185
24	65,760.896	20,760.801	-7,484.336	- 966.6765
23	42,072.450	13,276.465	-4,800.5725	-613.7618
22	26,956.247	8,475.8925	-3,083.4855	- 391·4920
21	17,279.455	5,392.4070	- 1,980 1603	-251.3352
20	11,064.090	3,412.2467	- 1,268.3271	- 162.58112
19	7,061.1379	2,143.9196	- 807.8291	- 105.93441
18	4,480.1913	1,336.0902	- 509.91222	-69.37035
17	2,818.6626	826.17828	- 317.92975	-45.42334
16	1,754.5482	508.24853	- 195.31763	- 29.60911
15	1,079*5141	312.93090	-118.15885	- 19.02129
14	657.34946	194.77205	-70.60918	-11.93694
13	398.21115	124.16287	- 42.08080	-7.23858
12	242.58391	82.08207	- 25.48936	-4.18749
II	151.15660	56.59271	- 16.13650	-2.27432
10	98.28242	40.45621	- 10.97113	
9	67.62235	29.48508	- 8.08008	-
8	49.149	21.405	-6.324	
	37.035	15.081	- 5.072	
7 6	28.12	10.000	-4.009	
5	21	6	-3	
4	15	3	-2	
3	10	I	— - ī	
2	6	0	0	
I	3	0		
<u> </u>	<u> </u>	1	I	1

Values of v'_r , w_r , $-\Delta w_{r-1}$, $-\Delta^3 w_{r-3}$ (see p. 105) $\epsilon = \cdot 009$

APPENDIX II

Values of A_1 A_2 A_3 for r = 10 to r = 40 (see p. 107) $\epsilon = \cdot 009$. B_1 B_2 B_3 C_1 C_2 C_3

r=10 -11.6956 34.5017 -9.6386 73.6818 73.6818 $r=11$ -9.93412 27.83043 -19.78984 52.3941 $r=11$ -9.93412 27.83043 -19.78984 52.34918 $r=12$ -7.74108 20.51234 -13.48458 33.24038 $r=12$ -7.74108 20.51234 -19.78984 33.24038 $r=13$ -5.34571 13.17992 -7.74211 13.17992 -7.74211 16.81497 -7.67411 $r=14$ -3.98502 6.70030 -3.95792 $r=15$ -1.21960 1.67446 28709 $r=15$ -1.21060 $r.67446$ 28709 $r=15$ -1.21060 $r.67446$ 28709 $r=16$ $.11451$ -1.66658 2.27663 $r=16$ $.11451$ -1.66658 2.27663 $r=18$ $r.24107$ -3.93501 3.09468 -3.93501 1.092044 -8.96728 6.41064 $r=19$ $r.23726$ -3.58514 2.56299		-		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<i>r</i> =10	- 11.6956	34.2017	26.3009
r = 11 -9.93412 27.83043 -19.78984 27.83043 -76.23024 52.43918 -19.78984 52.43918 -34.47291 $r = 12$ -7.74108 20.51234 -13.48458 20.51234 -52.84668 33.24638 -19.52950 $r = 13$ -5.34571 13.17992 -7.7411 13.17992 -7.74211 16.81497 -7.67411 $r = 14$ -3.08502 6.70030 -3.05792 6.70030 -12.08833 4.10810 7.1976 $r = 15$ -1.21669 1.67446 .28709 1.67446 .16658 2.27663 -8.59765 $r = 16$.11451 -1.66658 2.27663 $r = 16$.11451 -1.66658 2.27663 $r = 17$.00872 -3.43177 .311086 -3.93501 1.92054 -8.90755 .775712 $r = 18$ 1.24107 -3.93501 3.09468 .641064 $r = 19$ 1.23726 -3.58514 2.56299 .650728 .641064 $r = 20$ 1.023419		34.2017	- 99•6586	73.6818
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			73.6818	- 52.3941
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$r = \tau \tau$	-0.03415	27.82042	- 10.78084
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$,			
$r = 12$ -7.74108 $20^{\circ}51234$ $-13^{\circ}48458$ $20^{\circ}51234$ $-52^{\circ}84668$ $33^{\circ}24638$ $-13^{\circ}48458$ $33^{\circ}24638$ $-19^{\circ}52950$ $r = 13$ $-5^{\circ}34571$ $13^{\circ}17992$ $-7^{\circ}74211$ $13^{\circ}17992$ $-3^{\circ}c6859$ $16^{\circ}84497$ -7.74211 $16^{\circ}81497$ $-7^{\circ}67411$ $r = 14$ $-3^{\circ}08502$ $6^{\circ}70030$ $-3^{\circ}05792$ $6^{\circ}70030$ $-12^{\circ}98263$ $4^{\circ}19810$ $-3^{\circ}05792$ $4^{\circ}19810$ 71976 $r = 15$ $-1^{\circ}21069$ $1^{\circ}67446$ 28709 $1^{\circ}67446$ 16620 $-4^{\circ}17819$ $5^{\circ}70762$ $r = 16$ $^{\circ}11451$ -166658 $2^{\circ}27663$ $-1^{\circ}c6658$ $8^{\circ}17643$ $-8^{\circ}59765$ $7^{\circ}79367$ $r = 17$ 90872 $-3^{\circ}43177$ $3^{\circ}11086$ $9^{\circ}86347$ -1766538 $8^{\circ}176437$ $7^{\circ}775712$ $7^{\circ}28514$ $2^{\circ}5629678$ $r = 17$ 90872 $-3^{\circ}43177$ $7^{\circ}75712$ $r = 18$ $1^{\circ}24107$ $-3^{\circ}93501$		- 10.78084		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			52 43910	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	r = 12			
$r=13$ $-5^{\circ}34571$ $13^{\circ}17992$ $-7^{\circ}74211$ $13^{\circ}17992$ $-3^{\circ}1\circ6859$ $16^{\circ}81497$ $-7^{\circ}74211$ $16^{\circ}81497$ $-7^{\circ}67411$ $r=14$ $-3^{\circ}08502$ $6^{\circ}70030$ $-3^{\circ}05792$ $6^{\circ}70030$ $-12^{\circ}98263$ $4^{\circ}19810$ 71076 $r=15$ $-12^{\circ}12069$ $1^{\circ}67446$ 28709 $1^{\circ}67446$ 116220 $-4^{\circ}17819$ $5^{\circ}70762$ $r=16$ $^{\circ}11451$ $-1^{\circ}6658$ $2^{\circ}27663$ $-1^{\circ}6658$ $8^{\circ}17843$ $-8^{\circ}59765$ $7^{\circ}79367$ $r=17$ $^{\circ}90872$ $-3^{\circ}43177$ $3^{\circ}11086$ $-3^{\circ}9367$ $r=17$ $^{\circ}90872$ $-3^{\circ}43177$ $3^{\circ}11086$ $-3^{\circ}93567$ $r=17$ $^{\circ}90872$ $-3^{\circ}43177$ $3^{\circ}1086$ $-3^{\circ}93567$ $r=17$ $^{\circ}90872$ $-3^{\circ}43177$ $3^{\circ}1086$ $-3^{\circ}93567$ $r=17$ $^{\circ}90872$ $-3^{\circ}43177$ $3^{\circ}1086$ $-8^{\circ}96728$ $6^{\circ}41064$ $7^{\circ}293507$ $r=17$ $^{\circ}90851$ $1^{\circ}2349468$ $-8^{\circ}967$				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		- 13.48458	33.24638	- 19.52950
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	r = 13	- 5'34571	13.12002	-7.74211
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			6.=	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	r = 14			- 3.05792
r=15 -1.21969 1.67446 1.6246 1.6246 1.6246 1.6246 1.6290 -4.17819 5.70762 $r=16$ 1.1451 -1.66658 2.27663 -1.66658 2.27663 2.27663 -1.66658 2.27663 -1.66658 2.27663 -1.66658 2.27663 -1.66658 2.27663 -1.66658 -1.66658 2.27663 -1.79367 $r=17$ 0.9872 -3.43177 $3.11086-3.431773.11086-9.86347-9.86347-9.86347-9.86347-7.75712r=181.24107-3.93501-3.93501-3.93501-3.935011.102604-8.96728-8.96728-8.96728-8.96728-4.40860-8.96728-4.4384372.56299-3.358514-2.56299-3.358514-2.756341-2.756341-2.756341-2.756341-2.756341-2.756341-2.756341-2.7587468-2.1540443-2.1540443-1.7787468-3.428539-3.3492624-3.488539-3.328520r=22-4054314-3488539-3.3292-3.348539-3.348539-3.348539-3.328520r=23-1394961-1281489-1281489-1281489-1281489-1281489-1281489-1281489-1281489-1281489-1281489-1281489-1281489-1281489-1281489-1281489-1281489-1281489-1281489-1281489-1289837-1460225$				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		- 3.022	4.19810	•71976
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	r = 15			·28709
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	-			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	r = 16	+11/51	- 1.666=8	2:27662
$\begin{array}{c c c c c c c c c c c c c c c c c c c $, - 10	- 1.666=8		
r=17				7.79367
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				
3'11086 $-9'86347$ $7'75712$ $r=18$ $1'24107$ $-3'93501$ $3'09468$ $-3'93501$ $11'92604$ $-8'96728$ $3'09468$ $-8'96728$ $6'41064$ $r=19$ $1'23726$ $-3'58514$ $2'56299$ $-3'58514$ $10'04960$ $-6'90281$ $2'56299$ $-6'90281$ $4'49333$ $r=20$ $1'023419$ $-2'756341$ $1'794218$ $-2'756341$ $7'170701$ $-4'438437$ $1'794218$ $-4'438437$ $2'528060$ $r=21$ $'7190502$ $-1'7787468$ $1'0131444$ $-1'7787468$ $4'1755023$ $-2'1540443$ $r=22$ $'4054314$ -8619869 $'3492624$ $r=23$ $'1394961$ $-'1393329$ $-'1281489$ $r=23$ $'1394961$ $-'1393329$ $-'1281489$ $r=24$ $-'0510534$ $'3385185$ $-'4075537$ $r=24$ $-'0510534$ $'3385185$ $-'4075537$	r = 17			
$r = 18$ $1 \cdot 24107$ $-3 \cdot 93501$ $3 \cdot 9368$ $3 \cdot 9368$ $-8 \cdot 96728$ $6 \cdot 41064$ $r = 19$ $1 \cdot 23726$ $-3 \cdot 58514$ $2 \cdot 56299$ $-3 \cdot 58514$ $2 \cdot 56299$ $-6 \cdot 90281$ $2 \cdot 56299$ $-6 \cdot 90281$ $4 \cdot 49333$ $r = 20$ $1 \cdot 023419$ $-2 \cdot 756341$ $1 \cdot 794218$ $-2 \cdot 756341$ $1 \cdot 794218$ $-4 \cdot 438437$ $2 \cdot 528060$ $1 \cdot 0794218$ $-4 \cdot 438437$ $2 \cdot 528060$ $r = 21$ 7190502 $-1 \cdot 7787468$ $1 \cdot 0131444$ $-1 \cdot 7787468$ $1 \cdot 0131444$ $-2 \cdot 1540443$ $1 \cdot 0131444$ $-3 \cdot 15826931$ -3488539 -3208520 $r = 23$ $\cdot 1394961$ -1393329 -1393329 -1281489 -128537 -128537 -128537 -128537 -128537 -128537 -128537 -1285385 -14589837 -1260225				
-3.93501 11.92604 -8.96728 3.09468 -8.96728 6.41064 $r = 19$ 1.23726 -3.58514 2.56299 -3.58514 10.04960 -6.90281 2.56299 -6.90281 4.49333 $r = 20$ 1.023419 -2.756341 1.794218 -2.756341 7.170701 -4.438437 1.794218 -4.438437 2.528060 $r = 21$ $.7190502$ -1.7787468 1.0131444 -1.7787468 4.1755023 -2.1540443 $r = 22$ $.4054314$ 8619869 $.3492624$ 8619869 1.5826931 3488539 3492624 3488539 3208520 $r = 23$ $.1394961$ 1393329 1281489 1281489 8497134 -1.0229985 $r = 24$ 0510534 $.3385185$ 4075537 $r = 24$ 0510534 3489837 1.4606225		3.11080	- 9.80347	7.75712
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	r = 18	1.24107	- 3.93501	3.09468
$r = 19$ $1 \cdot 23726$ $-3 \cdot 58514$ $2 \cdot 56299$ $-3 \cdot 58514$ $10 \cdot 04960$ $-6 \cdot 90281$ $2 \cdot 56299$ $-6 \cdot 90281$ $4 \cdot 49333$ $r = 20$ $1 \cdot 023419$ $-2 \cdot 756341$ $1 \cdot 704218$ $-2 \cdot 756341$ $7 \cdot 170701$ $-4 \cdot 438437$ $1 \cdot 794218$ $-4 \cdot 438437$ $2 \cdot 528060$ $r = 21$ $\cdot 7190502$ $-1 \cdot 7787468$ $1 \cdot 0131444$ $-1 \cdot 7787468$ $4 \cdot 1755023$ $-2 \cdot 1540443$ $1 \cdot 0131444$ $-2 \cdot 1540443$ $\cdot 8727821$ $r = 22$ $\cdot 4054314$ $- \cdot 8619869$ $\cdot 3492624$ $- \cdot 8619869$ $1 \cdot 5826931$ $- \cdot 3488539$ $\cdot 3492624$ $- \cdot 3488539$ $- \cdot 328520$ $r = 23$ $\cdot 1394961$ $- \cdot 1393329$ $- \cdot 1281489$ $- \cdot 1281489$ $- \cdot 3178598$ $\cdot 8497134$ $- \cdot 1281489$ $\cdot 8497134$ $- \cdot 10229985$ $r = 24$ $- \cdot 0510534$ $\cdot 3385185$ $- \cdot 4075537$ $\cdot 3385185$ $- \cdot 14589837$ $1 \cdot 4606225$		- 3.93201	11.92604	-8.96728
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		3.09468	- 8.96728	6.41064
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	r = 10	1.23726	- 3.58514	2.26200
$\begin{array}{c c c c c c c c c c c c c c c c c c c $,	-3.58514		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	* - 20			
1.794218 -4.438437 2.528060 $r=21$ $.7190502$ -1.7787468 1.0131444 -1.7787468 4.1755023 -2.1540443 1.0131444 -2.1540443 $.8727821$ $r=22$ $.4054314$ 8619869 $.3492624$ 8619869 1.5826931 3488539 $.3492624$ 3488539 3208520 $r=23$ $.1394961$ 1393329 1281489 1281489 1281489 $.8497134$ 1281489 $.8497134$ -10229985 $r=24$ 0510534 $.3385185$ 4075537 $.3385185$ 14589837 1.4606225	7-20	1.023419	-2750341	
r=21 $r=21$		-2.750341	7-170701	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1'794218	- 4.439437	2*528000
I $\cdot 0131444$ $-2:1540443$ $\cdot 8727821$ r=22 $\cdot 4054314$ $-\cdot 8619869$ $\cdot 3492624$ $-\cdot 8619869$ $1:5826931$ $-\cdot 3488539$ $\cdot 3492624$ $-\cdot 3488539$ $-\cdot 3288529$ $r=23$ $\cdot 1394961$ $-\cdot 1393329$ $-\cdot 1281489$ $-\cdot 1281489$ $-\cdot 1281489$ $\cdot 8497134$ $-\cdot 1281489$ $\cdot 8497134$ $-\cdot 10229985$ r=24 $-\cdot 0510534$ $\cdot 3385185$ $-\cdot 4075537$ $\cdot 3385185$ $-\cdot 14589837$ $\cdot 4606225$	r=21			
$r=22$ $\cdot4054314$ $-\cdot8619869$ $\cdot3492624$ $-\cdot8619869$ $1\cdot5826931$ $-\cdot3488539$ $\cdot3492624$ $-\cdot3488539$ $-\cdot3208520$ $r=23$ $\cdot1394961$ $-\cdot1393329$ $-\cdot1281489$ $-\cdot1281489$ $-\cdot1281489$ $\cdot8497134$ $-\cdot1281489$ $\cdot8497134$ $-1\cdot0229985$ $r=24$ $-\cdot0510534$ $\cdot3385185$ $-\cdot4075537$ $\cdot3385185$ $-1\cdot4589837$ $1\cdot4606225$		— 1·7787468	4.1755023	-2.1240443
$r = 23$ $r = 24$ $r = 24$ $- \cdot \cdot$		1.0131444	-2.1240443	·8727821
$r = 23$ $r = 24$ $r = 24$ $- \cdot \cdot$	r=22	.4024314	8610860	•3402624
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$r=23$ $\cdot 1394961$ $- \cdot 1393329$ $- \cdot 1281489$ $- \cdot 1393329$ $- \cdot 3178598$ $\cdot 8497134$ $- \cdot 1281489$ $\cdot 8497134$ $- 1 \cdot 0229985$ $r=24$ $- \cdot 0510534$ $\cdot 3385185$ $- \cdot 4075537$ $\cdot 3385185$ $- 1 \cdot 4589837$ $1 \cdot 4606225$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	m = 22			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	r = 23			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
·3385185 — I·4589837 I·4606225			•8497134	- 1.0229985
·3385185 — I·4589837 I·4606225	r = 24	0510534	·3385185	- • 4075537
	-	•3385185	- 1.4589837	
		4075537	1.4606225	- 1.2914604

· · · · · · · · · · · · · · · · · · ·			
r=25	-·1648840	•5909239	• 5224861
	.5909239	- 1.9622497	1.6267511
		1.6267511	- 1.2677380
r = 26		·6375879	- • 4968765
	·6375879	- 1.9075580	1.4245976
	- • 4968765	1.4245976	- 1.0126417
r=27		•5825853	
	.5825853	- 1.6198802	1.1077916
	- •4141171	1.1077916	7187928
r=28		11206850	
1 1 20	•4396859	·4396859 — 1·1371688	.7017488
		-11371088	
r=29		•27992593	15900137
	•27992593	65316340	·33546077
		•33546077	13472292
r=30	06311900	·13316834	05348115
	·13316834	- 24113143	·05025 ⁸¹⁸
	05348115	.05025818	·05296274
r=31	021586037	·020285184	·021376799
_	·020285184	·054790388	136076854
	·021376799	-136076854	·160966058
r=32	·008775914	055864247	·066082125
	055864247	·238487654	
	·066082125	• 236736093	·208771400
r=33	·025441938		·080378001
. 55	091144543	•302096073	
	·080378001		193690223
r=34	•034924270		·084158471
· 57	108448583	•324618969	242263572
	·084158471		172841211
r=35	·025068468	072163581	·051484591
. 55	072163581	·199820866	-135774162
	.051484591	-135774162	086200612
r=36	· o 35398934		·059268410
. 30	093353381	•240136215	-146789023
	.059268410		·084282322
r = 27	101 12007206		·0217441014
r=37	·0152907306	·0378702825 ·0881111953	·0217441014
		0449236878	- •0449236878 •0168847347
r=38	.0098706395		·0076647513
]		•0358527353	
	•0076647513	- •0059649682	
r=39	.00320034417	00249061586	-·00399369696
	00249061586		·02309031302
	00399369696	.02309031302	•02642948268
r=40	00182768320	.01056709550	01209523956
	·01056709550	- •04508287969	·04475798080
	•01209523956	·04475798080	04047115369

APPENDIX II (continued)

APPENDIX III

Coefficients j_r and k_r for $\epsilon = \cdot 009$

r	j _r	k _r
0		.1542
I	•9	·1458
2	•45	.1242
3	•141	·0948
4	0459	·0638
5	1364	·0358
5 6		·0I35
7	1381	0020
7 8	0977	0100
9	0529	0144
10	0140	0140
11	·0141	0113
12	.0302	0022
13	·0359	0041
14	.0339	0011
15	·0272	.0010
ıŏ	·0187	.0021
17	.0103	.0025
18	.0034	0023
19	0014	.0019
20	0042	.0012
21	0023	.0002
22	0021	0002
23	0041	
24	- 0028	0003
25	0012	0004
26	0002	- 0004
27	.0003	0003
28	.0007	0002
29	.0008	
30	•0008	•0000
31	.0006	•0000
32	·0004	1000
33	.0002	1000.
34	.0001	1000
35		
36	0001	
37	0001	
38	- ·0001	
39	0001	
40	0001	