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Overview

• Yes, we CANN! Editorial of ASTIN Bulletin 49/1, 2019

• Actuarial Data Science Initiative of the Swiss Association of Actuaries:

? Case study: French motor third-party liability claims, SSRN 2018
? Insights from inside neural networks, SSRN 2018
? Nesting classical actuarial models into neural networks, SSRN 2019

• Data Analytics for Non-Life Insurance Pricing
Lecture Notes, ETH Zurich, SSRN 2019

• Insurance Data Science Conference, June 14, 2019, ETH Zurich
www.insurancedatascience.org
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https://actuarialdatascience.org/
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Yes, we CANN!
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Actuarial pricing problem

• Determine from data D = ((Y1,x1), . . . , (Yn,xn)) an unknown regression function

x 7→ µ(x) = E[Y ].

• Variable x describes the covariates, for instance, in car insurance:

? driver: age, gender, nationality, size of household, marital status, date of
driving test, occupation, medical conditions, credit record, etc.

? car: type, brand, size, weight, horse power, type of engine, cubic capacity,
price, equipment, number of seats, age of car, leasing, etc.

? contract: type, duration, sales channel, deductible, other products, etc.
? geographic: province, zip code, city-rural area, type of flat, garage, etc.
? driving: annual distance, vehicle use, bonus level, claims experience, etc.

• Random variable Y = Yx describes the claim.
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Classical actuarial regression modeling

• Determine from data D = ((Y1,x1), . . . , (Yn,xn)) an unknown regression function

x 7→ µ(x) = E[Y ].

• Example of a generalized linear model (GLM):

x 7→ µGLM
β (x) = exp〈β,x〉 = exp

∑
j

βjxj

.
• Estimate the regression parameter β with maximum likelihood estimator β̂

MLE
,

received by minimizing the corresponding deviance loss

β 7→ LD(β).
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Example: car insurance frequencies

> s t r ( freMTPL2freq ) #s o u r c e R package CASdatasets
’ data . frame ’ : 678013 obs . o f 12 v a r i a b l e s :
$ I D p o l : num 1 3 5 10 11 13 15 17 18 21 . . .
$ ClaimNb : num 1 1 1 1 1 1 1 1 1 1 . . .
$ Exposure : num 0 . 1 0 . 7 7 0 . 7 5 0 . 0 9 0 . 8 4 0 . 5 2 0 . 4 5 0 . 2 7 0 . 7 1 0 . 1 5 . . .
$ Area : F a c t o r w/ 6 l e v e l s ”A” ,”B” ,”C” ,”D ” , . . : 4 4 2 2 2 5 5 3 3 2 . . .
$ VehPower : i n t 5 5 6 7 7 6 6 7 7 7 . . .
$ VehAge : i n t 0 0 2 0 0 2 2 0 0 0 . . .
$ DrivAge : i n t 55 55 52 46 46 38 38 33 33 41 . . .
$ BonusMalus : i n t 50 50 50 50 50 50 50 68 68 50 . . .
$ VehBrand : F a c t o r w/ 11 l e v e l s ”B1” ,” B10 ” ,” B11 ” , . . : 4 4 4 4 4 4 4 4 4 4 . . .
$ VehGas : F a c t o r w/ 2 l e v e l s ” D i e s e l ” ,” R e g u l a r ” : 2 2 1 1 1 2 2 1 1 1 . . .
$ D e n s i t y : i n t 1217 1217 54 76 76 3003 3003 137 137 60 . . .
$ Region : F a c t o r w/ 22 l e v e l s ”R11 ” ,” R21 ” ,” R22 ” , . . : 18 18 3 15 15 8 8 20 20 12 . . .
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Example: Poisson claims frequency model

glm ( f o r m u l a = ClaimNb ˜ VehPowerGLM + VehAgeGLM + DrivAgeGLM + BonusMalusGLM + VehBrand + VehGas +
DensityGLM + AreaGLM + Region , f a m i l y = p o i s s o n ( ) , data = dat , o f f s e t = l o g ( Exposure ) )

Dev iance R e s i d u a l s :
Min 1Q Median 3Q Max

−1.7036 −0.3777 −0.2886 −0.1626 6 .9026

E s t i m a t e Std . E r r o r z v a l u e Pr(>! z ! )
( I n t e r c e p t ) −4.0237251 0.0387027 −103.965 < 2e−16 ∗∗∗
VehPowerGLM5 0.1994946 0.0192540 10 .361 < 2e−16 ∗∗∗
VehPowerGLM6 0.2281708 0.0191569 11 .911 < 2e−16 ∗∗∗
.
RegionR93 −0.0917983 0.0219777 −4.177 2 . 9 6 e−05 ∗∗∗
−−−
S i g n i f . codes : 0 ∗∗∗ 0 . 0 0 1 ∗∗ 0 . 0 1 ∗ 0 . 0 5 . 0 . 1 1

( D i s p e r s i o n pa ra me te r f o r p o i s s o n f a m i l y taken to be 1)

N u l l d e v i a n c e : 200974 on 610211 d e g r e e s o f f reedom
R e s i d u a l d e v i a n c e : 190732 on 610164 d e g r e e s o f f reedom

run # in-sample out-of-sample

time param. loss loss

homogeneous (µ ≡ const.) 0.1s 1 32.935 33.861

Model GLM 17s 48 31.257 32.149
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Neural network regression model

• Choose network of depth d ∈ N with network parameter θ

x 7→ µNN
θ (x) = exp

〈
θ(d+1), z(d) ◦ · · · ◦ z(1)(x)

〉
.
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• Recall GLM: x 7→ µGLM
β (x) = exp〈β,x〉.
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Neural network embedding layers

• Choose network of depth d ∈ N with network parameter θ

x 7→ µNN
θ (x) = exp

〈
θ(d+1), z(d) ◦ · · · ◦ z(1)(x)

〉
.
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• Gradient descent method provides θ̂ w.r.t. deviance loss θ 7→ LD(θ).
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NN example: car insurance frequencies

run # in-sample out-of-sample

time param. loss loss

homogeneous (µ ≡ const.) 0.1s 1 32.935 33.861

Model GLM 17s 48 31.257 32.149

NN (2-dim. embeddings) 365s 792 30.165 31.453
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Combined Actuarial Neural Network

• Choose regression function with parameter (β, θ)

x 7→ µCANN
(β,θ) (x) = exp

{
〈β,x〉+

〈
θ(d+1), z(d) ◦ · · · ◦ z(1)(x)

〉}
.
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GLM skip connection

ClaimNb

• Gradient descent method provides (β̂, θ̂) w.r.t. deviance loss (β, θ) 7→ LD(β, θ).
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Combined Actuarial Neural Network

• Choose regression function with parameter (β, θ)

µCANN
(β,θ) (x) = exp

{
〈β,x〉+

〈
θ(d+1), z(d) ◦ · · · ◦ z(1)(x)

〉}
.
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BonusMalus
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VehPower

Area

GLM skip connection

ClaimNb

• Gradient descent method provides (β̂, θ̂) w.r.t. deviance loss (β, θ) 7→ LD(β, θ).

• Initialize gradient descent with β̂
MLE

and θ(d+1) = 0!
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Combined Actuarial Neural Network
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CANN example: car insurance frequencies

run # in-sample out-of-sample

time param. loss loss

homogeneous (µ ≡ const.) 0.1s 1 32.935 33.861

Model GLM 17s 48 31.257 32.149

CANN (2-dim. embeddings) 117s 792 30.476 31.566

NN (2-dim. embeddings) 365s 792 30.165 31.453
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CANN example: binary interactions

x 7→ µCANN
(β,θ) (x) = exp

{
〈β,x〉+

〈
θ(d+1), z(d) ◦ · · · ◦ z(1)(xk, xl)

〉}
.
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CANN example: learning across portfolios

Consider different insurance portfolios χ ∈ {1, . . . ,K}.

(x, χ) 7→ µCANN
(β,θ) (x, χ) = exp

{
K∑
k=1

1{χ=k}〈βk,x〉+
〈
θ(d+1), z(d) ◦ · · · ◦ z(1)(x)

〉}
.
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GLM skip connection

ClaimNb
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Mortality Modelling Context

Figure: Global life expectancy by country in 1941
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Mortality Modelling Context

Figure: Global life expectancy by country in 2015
5 / 56



Mortality Modelling Context
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Mortality Modelling Context
• Ageing populations are a major challenge for many

countries.
• Fertility rates are declining while life expectancy is

increasing.

• longevity risk: the adverse financial outcome of people
living longer than expected ⇒ possibility of outliving their
retirement savings.

• long term demographic risk has significant implications for
societies and manifests as a systematic risk for pension
plans and annuity providers.

• Policymakers rely on mortality projection to determine
appropriate pension benefits and regulations regarding
retirement.
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Mortality Modelling Context
Enhancing mortality models requires an understanding of
common features of mortality behaviour [Cairns, Blake and
Dowd, 2008]

• Mortality rates have fallen dramatically at all ages.
• Rate of decrease in mortality has varied over time and by

age group.
• Absolute decreases have varied by age group.
• Aggregate mortality rates have significant volatility year on

year.

Unexplored Features
Are there other statistical data features not yet explored in
mortality data that will improve modelling and mortality
projection?
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Long Memory Properties of Mortality Data
DATA DRIVEN INNOVATION:

• A series of empirical studies in [Yan et al., 2019]
“Evidence for Persistence and Long Memory Features in

Mortality Data.”
were undertaken to demonstrate that long memory features
are present in national level mortality data.

• systematic evidence provided for 16 countries from the
Human Mortality Database (HMD).

• Stratification of data by: gender, age and country
all demonstrate prevalence of long memory structure
⇒ confirmed by non-parametric estimation via Hurst exponent.

Capturing and Modelling New Features
Understanding and incorporating these long memory features
may provide more accurate modelling and reliable forecasting of
mortality rates!
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Long Memory Properties of Mortality Data
What is a Long Memory Feature?

• Long memory basically refers to the level of statistical
dependence between two points in a time series.

• Given a stationary time series process
Y ≡ {Yt}t=1:T , with Y ∈ (N ∪ {0})T, [Beran, 1994] defined a
condition for long memory stationary process via
divergence of the autocorrelation function (ACF):

lim
n→∞

n∑
j=−n

|ρ(j)| → ∞ where ρ(j) = Cov(Yt,Yt+j)√
Var(Yt),Var(Yt+j)

.

• Since the early work of [Hurst, 1951], long memory
phenomena has been well recognized in diverse fields of
application.
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Long Memory Properties of Mortality Data

To understand Long Memory:

we need to think about back shift and difference operators in
time series to obtain temporal Integration of a time series.

• Consider a time series {Yt}t=1:n then the backshift
operator and difference operator give

BYt = Yt−1

(1 − B)Yt = Yt − Yt−1

• Typically one considers in an Integrated ARI(d)MA model
a differencing operator (1 − B)d for integers d ∈ N which is
used to “differentiate” temporal trends from the time series
to make it weakly stationary.
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Long Memory Properties of Mortality Data
In a long memory model one replaces integer difference

operators with fractional differential operators
⇒ by setting d to be fractional (0 < d < 1/2)

Extending to fractional differences:
• The fractional difference operator has a generator,

expressed in integer powers of back shift operator B:

(1 − B)−d =
∞∑

j=0

Γ(j + d)
Γ(j + 1)Γ(d)Bj

which has a lag decay much slower than exponential
(with rate depending on d)

• the ARFIMA(0,d, 0) model describes a long memory
stationary process with a hyperbolic decay of the ACF as
compared to the geometric decay for an ARIMA model.

• This fractional parameter d captures the persistence for a
given long memory model.
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Long Memory Properties of Mortality Data
Extending to fractional differences:

• Oscillatory autocovariance is obtained using the generalised
difference operator:

(1 − 2uB + B2)−d =
∞∑

j=0
Ψj(u)Bj

where Ψj(u) is the j-th order Gagenbauer orthogonal
polynomial

Ψj(u) =
[j/2]∑
q=0

(−1)q(2u)j−2qΓ(d − q + j)
q!(j − 2q)!Γ(d) .

Long Memory Patterns in Mortality Data
NOTE: It was found that for moratlity data applications it
sufficies to consider the non-oscillatory long memory patterns.
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Long Memory Properties of Mortality Data

How to detect long memory features in mortality time series?
• Statistically testing directly for persistence/long memory

properties in mortality time series, can be done via the
Hurst exponent (denoted by H).

Developing Estimators for Long Memory Features:
• Three estimators for H that were explored included:

• rescaled range analysis (R/S),
• detrended fluctuation analysis (DFA), and
• periodogram regression (PR) methods.

Connecting Hurst Exponent H to Fractional Difference d
Next we connect the Hurst exponent H in Fractional Brownian
Motion to the long memory parameter d in the ARFIMA model
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Long Memory Properties of Mortality Data

Developing Estimators for Long Memory Features:
[Mandelbrot,1968] defined fractional Brownian motion

WH = {WH(t) : 0 ≤ t <∞,WH(t) ∈ R} ,

by its stochastic representation given below.

Definition (fractional Brownian motion)
Let WH(t) be a random process defined as the solution to

following diffusion

WH(t) :=
1

Γ(H + 1
2 )

(∫ 0

−∞

(
(t − s)H− 1

2 − (−s)H− 1
2
)

dW(s) +
∫ t

0
(t − s)H− 1

2 dW(s)
)

,

where the Gamma function Γ(α) :=
∫∞

0 xα−1 exp(−x)dx, W(t)
denotes standard Brownian motion and H ∈ (0, 1).
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Long Memory Properties of Mortality Data

Developing Estimators for Long Memory Features:
• Fractional Brownian motion of exponent H is a moving

average of dW(t), in which past increments of W(t) are
weighted by the kernel (t − s)H− 1

2 .
• The ”span of interdependence” between fractional

Brownian motion increments can be said to be infinite.
• In addition, WH(t) will reduce to a standard Brownian

motion W(t) when H = 0.5.
• Given the initial value WH(0) = 0 at t = 0, the expected

value and variance are given by

E(WH(t)) = 0 and Var(W2
H(t)) = t2H, for t > 0,

respectively.
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Long Memory Properties of Mortality Data

Developing Estimators for Long Memory Features:
The covariance function derived by [Nualart,2006] is given by

CovH(t, s) = E [WH(s)WH(t)] =
1
2
(
t2H + s2H − (t − s)2H) , for 0 < s ≤ t.

An increment of the process in an interval [s, t] has a normal
distribution with zero mean and variance

E
[
(WH(t)− WH(s))2] = |t − s|2H.
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Long Memory Properties of Mortality Data

Developing Estimators for Long Memory Features:
• For H = 1/2, the covariance Cov1/2(t, s) = min(s, t) and

increments of the process in disjoint intervals are
independent.

• For H ≠ 1/2, increments are not independent.

Consider a unit increment discrete time process
{Ξn := WH(n)− WH(n − 1),n ∈ N}, which gives a Gaussian
stationary sequence with unit variance and ACF

ρH(n) =
1
2
[
(n + 1)2H + (n − 1)2H − 2n2H]

≈ H(2H − 1)n2H−2 → 0 as n → ∞.
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Long Memory Properties of Mortality Data
Developing Estimators for Long Memory Features:

• For 1
2 < H < 1 and large enough n, we have ρH(n) > 0 and∑∞

n=1 ρH(n) → ∞.
• ⇒ indicates long memory in a time series, meaning that a

high value in the series will more likely be followed by
another high value and such an effect is likely to continue a
long time into the future.

• For 0 < H < 1
2 and large enough n, we have ρH(n) < 0 and∑∞

n=1 |ρH(n)| <∞.
• ⇒ indicates a time series which is more likely to switch

between high and low values in adjacent pairs, and such
anti persistence will last a long time into the future.

• This process can be used to model sequences with
intermittency.

• A value of H = 1
2 can indicate a standard Brownian motion

which is a short memory process.
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Long Memory Properties of Mortality Data
Relationship between long memory d and Hurst exponent H
Weak convergence of fractional time series to fBM:
Define a fractional difference characterizing process

Qt = (1 − B)−dεt, εt
i.i.d∼ N(0, 1), |d| < 1/2,

then the Qt is a stationary and weakly dependent process.

Now consider the following scaled partial sum constructed from
this process,

ZT(ξ) :=

∑[Tξ]
t=1 Qt
σT

, 0 ≤ ξ ≤ 1,

where σ2
T = E

[(∑T
t=1 Qt

)2
]

and [·] denotes integer part.
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Long Memory Properties of Mortality Data
[Davidson, 2000] showed the following theorem

Theorem
The following weak convergence holds for all |d| < 1/2 and all
0 ≤ ξ ≤ 1,

ZT(ξ)
d→ V− 1

2
d Wd(ξ), as T → ∞,

with the scale constant

Vd =
1

Γ(d + 1)2

(
1

2d + 1 +

∫ ∞

0
((1 + τ)d − τd)2dτ

)
,

chosen to ensure that E
[
Wd(1)2] = 1. For |d| < 1/2, Wd(ξ) is

a fractional Brownian motion with the following representation

Wd(ξ) =
1

Γ(d + 1)

(∫ 0

−∞

(
(ξ − s)d − (−s)d

)
dW(s) +

∫ ξ

0
(ξ − s)ddW(s)

)
,

where W is the standard Brownian motion.

The relationship between d and H is then given by d = H − 0.5.
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Long Memory Properties of Mortality Data

Connecting Hurst Exponent H to Fractional Difference d

Rescaled Range Analysis Estimation of Hurst Exponent
⇒via SIMPLE LINEAR REGRESSION!
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Long Memory Properties of Mortality Data

Rescaled Range Analysis R/S Estimators:
Given a time series Yt∈(1,2,3,··· ,T), the sample mean and the
standard deviation process are given by

YT =
1
T

T∑
j=1

Yj and St =

√√√√ 1
t − 1

t∑
j=1

(Xj)2,

where the mean adjusted series Xt = Yt − YT.
Then a cumulative sum series is given by Zt =

∑t
j=1 Xj and the

cumulative range based on these sums is

Rt = Max (0,Z1, · · · ,Zt)− Min (0,Z1, · · · ,Zt) .
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Long Memory Properties of Mortality Data

Rescaled Range Analysis:
The following proposition proposes an estimator of H as derived
in [Mandelbrot, 1975].

Theorem
Consider a time series Yt ∈ R with std. dev. process St and
cumulative range process Rt, then ∃ C ∈ R such that following
asymptotic property of the rescaled range R/S holds

[R/S](T) =
1
t

T∑
t=1

Rt/St ∼ CTH, as T → ∞.
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Long Memory Properties of Mortality Data
Rescaled Range Analysis (SMALL SAMPLES):
[Annis, 1976] showed that for small samples T (as can arise in
mortality data), the rescaled range R/S can also be
approximated by following equation

[R/S](T) =


T−1/2

T
Γ((T−1)/2)√

π(T/2)
∑T−1

j=1

√
T−j

j , for T ≤ 340
T−1/2

T
1√

Tπ/2

∑T−1
j=1

√
T−j

j , for T > 340

where the T−1/2
T term was added by [Peters, 1994].

Simple Linear Regression Estimator for H
The H estimate can be obtained by a simple linear regression

logR/S(T) = logC + H logT.
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Long Memory Properties of Mortality Data

Rescaled Range Analysis:
Hence, we have the following definition for the estimator of H.

Definition (Estimator Ĥ by R/S)
The estimator Ĥ based on the rescaled range R/S analysis is
given by

ĤR/S =
T(
∑T

t=1 logR/S(t) log t)− (
∑T

t=1 logR/S(t))(
∑T

t=1 log t)
T(
∑T

t=1(log t)2)− (
∑T

t=1 log t)2
.

The empirical confidence interval of ĤR/S with sample length
T = 2N [Weron, 2002] is

(0.5−exp(−7.33 log(logN)+4.21), exp(−7.20 log(logN)+4.04)+0.5),
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Long Memory Properties of Mortality Data

Connecting Hurst Exponent H to Fractional Difference d

Detrended Fluctuation Analysis Estimation of Hurst
Exponent

⇒via SIMPLE LINEAR REGRESSION!
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Long Memory Properties of Mortality Data
Detrended Fluctuation Analysis DFA ([Peters, 1994]):
Conceived as a method for detrending local variability in a time
series to insight into long-term variations.
First partition the mortality data time series:

• time series Yt∈(1,2,3,··· ,T) is divided into K non-overlapped
subseries Yl,k of length L for l = 1, 2, · · · ,L and
k = 1, 2, · · · ,K.

Next construct cumulative series and RMSF:
Construct cumulative time series Zj,k =

∑j
l=1 Yl,k with

j = 1, · · · ,L and the sample average of the root mean square
fluctuation for all K sub-series of length L:

F̄(L) := 1
K

K∑
k=1

√√√√ 1
L

L∑
j=1

(Zj,k − akj − bk)2,

where akj + bk is the least-squares line Z̃k(j) = akj + bk fitted to
points (j,Zj,k), j = 1, · · · ,L.
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Long Memory Properties of Mortality Data

Detrended Fluctuation Analysis:
[Taqqu, 1995] proved the following result for DFA to estimate H.

Theorem
Consider a time series Yt and F̄(L) defined in Equation (29),
∃ C ∈ R such that the following asymptotic property for F̄(L)
holds:

F̄(L) ∼ CLH, as L → ∞.

As a consequence of this asymptotic result, the estimated value
of H can be obtained by running a linear regression

log(F̄(L)) = log(C) + H log(L),

and this leads to an alternative statistical estimator for H.
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Long Memory Properties of Mortality Data
Detrended Fluctuation Analysis:

Definition (Estimator Ĥ by DFA)
The estimator Ĥ developed by adopting DFA approach is given
by

ĤDFA =
L(
∑L

l=1 log F̄(l) log l)− (
∑L

l=1 log F̄(l))(
∑L

l=1 log l)
L(
∑L

l=1(log l)2)− (
∑L

l=1 log l)2
.

The empirical confidence interval of Ĥ given in Equation (6)
with sample length T = 2N for N ∈ [10, 50] [Weron, 2002] is

(0.5 − exp(−2.33 logN + 3.25), exp(−2.46 logN + 3.38) + 0.5),

and the empirical confidence interval for N > 50 is

(0.5 − exp(−2.93 logN + 4.45), exp(−3.10 logN + 4.77) + 0.5).
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Long Memory Properties of Mortality Data

Connecting Hurst Exponent H to Fractional Difference d

Periodogram Estimation of Hurst Exponent
⇒via SIMPLE LINEAR REGRESSION!
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Long Memory Properties of Mortality Data
Periodogram Regression:

• OBSERVATION: the spectral density function of a general
fractionally integrated model with parameter d is identical
to that of a fractional Gaussian noise with Hurst exponent
H = d + 0.5.

Hence, periodogram regression (PR) was proposed by [Geweke,
1983] to estimate H.

Definition
A periodogram of time series Yt∈(1,2,3,··· ,T) with frequencies
ωj =

j
T and j = 1, · · · , [T/2] can be represented as

IT(ωj) =
1
T

∣∣∣∣∣
T∑

t=1
Yte−2πi(t−1)ωj

∣∣∣∣∣
2

.
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Long Memory Properties of Mortality Data

Periodogram regression:
A simple linear regression at low frequencies
ωj, j = 1, · · · , J ≤ [T/2] can be applied to estimate H according
to the linear model,

log (IT(ωj)) = C − d log
(

4 sin2
(ωj

2

))
+ εj,

where C is a constant and Yt = log
(
4 sin2 (ωj

2
))

.
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Long Memory Properties of Mortality Data
Periodogram regression:
The least squares estimate of the slope yields an estimator for d.

Definition (Estimator d̂ by periodogram regression)
Consider a time series Yt with the periodogram IT(ωj) defined
in Equation (7), the estimator d̂ developed by adopting
periodogram regression is given by

d̂ =
J
[∑J

j=1 log
(
IT(ωj)

)
log
(

4 sin2
(ωj

2

))]
−
[∑J

j=1 log
(
IT(ωj)

)] [∑J
j=1 log

(
4 sin2

(ωj
2

))]
J
∑J

j=1(log
(

4 sin2
(ωj

2

))
)2 −

[∑J
j=1 log

(
4 sin2

(ωj
2

))]2 ,

with asymptotic distribution

d̂ ∼ N
(

d, π2

6
∑T

t=1(Yt − Ȳt)2

)
.
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Long Memory Properties of Mortality Data

Periodogram regression:
Hence, an estimate of H using periodogram regression can be
calculated by Ĥ = d̂ + 0.5 and the 95% empirical confidence
interval for d̂ is calculated with the sample length L = 2N and
J = [L0.5] [Weron, 2002] by

(0.5 − exp(−0.71 · N2/3 + 2.04), exp(−0.68 · N2/3 + 1.78) + 0.5).

• The periodogram regression approach is the only approach
with known asymptotic properties.
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Long Memory Properties of Mortality Data
The mortality data sets of 16 countries are downloaded from
the Human Mortality Database (HMD) which provides detailed
mortality and population data to the public.

Table: Data length and abbreviation for country names

Full name Australia Belgium Canada Denmark
Abbrev. AU BE CA DK

Data length 94 170 91 180
Full name Finland France Iceland Italy
Abbrev. FI FR IS IT

Data length 138 199 176 141
Full name Netherlands Norway Spain Sweden
Abbrev. NL NO ES SE

Data length 163 169 107 264
Full name Switzerland U.K. U.S.A. Japan
Abbrev. CH GB US JP

Data length 139 92 83 68
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Long Memory Properties of Mortality Data
Long memory pattern across age groups, gender and countries

0

1−4

5−9
10−14
15−19
20−24
25−29
30−34
35−39
40−44
45−49
50−54
55−59
60−64
65−69
70−74
75−79
80−84
85−89
90−94
95−99

AU BE CA DK FI FR IS IT NL NO ES SE CH GB US JP

country

ag
e

0.65
0.70
0.75
0.80
0.85

H.f

0

1−4

5−9
10−14
15−19
20−24
25−29
30−34
35−39
40−44
45−49
50−54
55−59
60−64
65−69
70−74
75−79
80−84
85−89
90−94
95−99

AU BE CA DK FI FR IS IT NL NO ES SE CH GB US JP

country
ag

e

0.65

0.70

0.75

0.80

0.85
H.m

Figure: Heat map of estimated H across countries and age groups for
female (left) and male (right).

All countries demonstrate some degree of long memory across
all age groups.
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Long Memory Properties of Mortality Data
Long memory pattern across age group by gender
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Long Memory Properties of Mortality Data

Long memory pattern across age group by gender
• Results indicate that the mortality change (improvement)

over the years is more persistent for female than male and
for younger than middle age groups.

• Improvements vary more across countries for male than
female.

• Senior age groups ranging between 80-99, there is a
consistent downward trend of estimated H for both genders.

• Suspect mortality persistence is more difficult to detect in a
smaller population of seniors.
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Long Memory Properties of Mortality Data
Long memory pattern across countries by gender
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Long Memory Properties of Mortality Data

Long memory pattern across countries by gender
• Compared the estimated H across 16 countries by gender

aggregated over 21 age groups, which indicate mortality
persistence over the years.

• Again, the estimated H has lower values and wider spreads
for male populations.

• Difference in spread is most apparent for Finland, France,
Italy and Netherlands.

• Countries like Belgium and Denmark display high level of
mortality persistence over the years whereas Iceland, US
and Japan typically exhibit lower levels of mortality
persistence.

• Spread of H is wider for male than female in Finland,
France, Italy, Netherlands and Spain.
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Stochastic Mortality Models
The uncertainty in future death rates can be divided into two
components:

• Unsystematic mortality risk. Even if the true mortality
rate is known, the number of deaths, will be random.

• larger population ⇒ smaller unsystematic mortality risk
(due to pooling of offsetting risks - diversification).

• Systematic mortality risk. This is the undiversifiable
component of mortality risk that affects all individuals in
the same way.

• Forecasts of mortality rates in future years are uncertain.

• [Lee and Carter, 92] proposed a stochastic mortality model
(LC) to forecast the trend of age-specific mortality rates.

• Several extensions to Lee-Carter model have been
proposed, overview in [Fung et al. 2017].
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Stochastic Mortality Modelling
Consider random vector
Yt = (Yx1,t,Yx2,t, · · · ,Yxg,t) with Yx,t ∈ (N ∪ {0})T

the set of T dimensional death counts for age group
x ∈ {x1, · · · , xg} and years t ∈ {1, · · · ,T}.
Consider random vector of central exposure

Et = (Ex1,t,Ex2,t, · · · ,Exg,t)

Define filtrations:
F1:t−1 = σ(Y1,Y2, . . . ,Yt−1),

FE
1:t−1 = σ(E1,E2, . . . ,Et−1).

Long Memory Mortality Modelling
Two extended Bayesian models for multivariate LCC mortality
models are developed:

• MELCC: no long memory with period and cohort effect;
• LMLM: long memory in trend and in cohort effect.
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Stochastic Mortality Modelling
Definition (GLGARMA model)
Given a discrete stationary time series process Yt∈{1,2,3,··· ,T}, a
GLGARMA model with order (p, d, q) is defined by

Yx,t|Ft−1 ∼ F(Yx,t;µx,t, νx), (1)
(1 − 2uB + B2)d Φ(B) (log(µx,t)− c) = Θ(B)εx,t, (2)

Φ(B) = 1 − ϕ1B − · · · − ϕpBp and Θ(B) = 1 + θ1B + · · ·+ θqBq.

and F represents a discrete count distribution with parameters µx,t and νx
which denotes the mean function and dispersion level respectively.

NOTE:
• Mean function is a Gegenbauer long memory time series

⇒ a slowly damping autocorrelation function with oscillatory pattern.
• We consider a special case with p = q = 0 so that Φ(B) = Θ(B) = 1.

We may rewrite the trend as follows

(log(µx,t)− c) = (1 − 2uB + B2)−dεx,t ≡
∞∑

j=0
ψjεx,t−j.
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Stochastic Mortality Modelling
REMARK:

• Gegenbauer polynomial coefficients ψj are functionally
dependent on d and u that control the strength of long
memory and the oscillatory pattern respectively.

• Given the constraint |u| < 1, this process is stationary if
d < 1/2, invertible if d > −1/2 and has long memory if
0 < d < 1/2.

• ARFIMA(p,d, q) model with mean µ is a special case of
GARMA when u = 1.

Coefficients ψj are easily computed using the Rodrigues formula:

ψj = 2u
(

d − 1
j + 1

)
ψj−1 −

(
2d − 1

j + 1
)
ψj−2,

where the first three terms are ψ0 = 1, ψ1 = 2du and
ψ2 = −d + 2d(1 + d)u2.
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Stochastic Mortality Modelling
• Mortality models can be beneficial to incorporate both

under- and over-dispersion features in distribution
Yx,t|Ft−1 ∼ F(Yx,t;µx,t, νx)

• Generalised Poisson (GP) distribution, [Consul, 1989] is
adopted and nests Poisson as a special case.

Definition (Generalised Poisson)
Let Y ∼ GP(µ, ν) be a random variable, taking support on N ∪ {0},
where the pmf is given by

f(y;µ, ν) = µ(1 − ν)[µ(1 − ν) + νy]y−1e−µ(1−ν)−νy/y!,
E(Y) = µ and Var(Y) = µ(1 − ν)−2,

where µ > 0 is the mean parameter and ν ∈ [−1, 1) is the dispersion
parameter. The GP distribution is over-, under- and equi-dispersed
when ν ∈ (−1, 1) is greater than, less than and equal to 0 respectively.
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Stochastic Mortality Modelling
Multivariate Extended Lee-Carter Cohort (MELCC) Model.

Definition (MELCC model)

Yx,t|F1:t−1,Ex,t, µx,t, κt, ζx,t ∼ GP(Yx,t;Ex,tµx,t, νx),

lnµx,t = αx + βxκt + βζxζx,t + εx,t, εx,t
i.i.d∼ N(0, σ2

ε),

κt = ηκt−1 + ςκ + εκt , εκt
i.i.d∼ N(0, σ2

κ),

ζx1,t = λζx1,t−1 + ς + εζt , εζt
i.i.d∼ N(0, σ2

ζ ),

ζxi,t = ζxi−1,t−1, i = 2, 3, · · · , g

• α = [αx1 , · · · , αxg ] ∈ Rg represents the profile of age groups on the log
mortality rates

• β = [βx1 , · · · , βxg ] ∈ Rg measures the interaction of age group and
time effect on the log mortality rates,

• Ex,tµx,t is the mean function and the dispersion parameter
νx ∈ (−1, 1) for GP distribution.
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Stochastic Mortality Modelling
Definition (LMLM model)

Assume Yt|F1:t−1,Et,µt(ζ′t) forms a Markov process with long
memory period and cohort effect structures:

Yx,t|F1:t−1,Ex,t, µx,t(ζ
′
x,t), ζ

′
x,t ∼ GP(Yx,t;Ex,t µx,t(ζ

′
x,t), νx),

Φx(B)lnµx,t = αx + ζ ′x,t +Θx(B)((1 − 2uB + B2)−dεx,t),

ζ ′x1,t = ς ′ + (1 − 2u′B + B2)−d′
εζ

′

t ,

ζ ′xi,t = ζ ′xi−1,t−1, i ∈ {2, 3, · · · , g} ,

εx,t
i.i.d∼ N(0, σ2

x,ε), εζ
′

t
i.i.d∼ N(0, σ2

ζ′)

• fractional difference parameters d ∈ (0, 0.5) and d′ ∈ (0, 0.5)
control the strength of long memory

• Gegenbauer parameters u with |u| < 1 and u′ with |u′| < 1
control the cycle of oscillatory autocorrelation function (ACF) for
the mortality rate process and cohort effect process respectively
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Stochastic Mortality Modelling
Measuring forecast performance of MELCC vs LMLM models
⇒ out-sample forecast split death counts Yx,1:T into two parts:

• training Yx,1:(T−20); &
• forecast Yx,(T−19):T.

We visualise the performance of LMLM model compared with
MELCC model for AU data by plotting the time series of:

• the observed µx,(T−19):T (black line)
• the forecasted µ̂x,(T−19):T by MELCC model

(in red female, light blue male); &
• the forecasted µ̂x,(T−19):T by LMLM model

(in purple female, dark blue male)
with 95% credible interval for age groups (0-99).

The forecast performance of LMLM model with long memory
component is better than MELCC model for all age groups!
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Stochastic Mortality Modelling
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Papers of Interest to Mortality Modelling

The background material in this presentation are based on a
selection of papers written for the actuarial audience over the
last few years.

• Preprints of the works of Prof. Gareth W. Peters:
(https://tinyurl.com/y9nrt4ar)

1 Fung M.C., Peters G.W., Shevchenko P.V. A unified approach to mortality modelling
using state-space framework: characterisation, identification, estimation and forecasting.
Annals of Actuarial Science. 2017 May:1-47.

(SSRN: http://dx.doi.org/10.2139/ssrn.2786559)

2 Fung M.C., Peters G.W. and Shevchenko P.V. Cohort Effects in Mortality Modelling: A
Bayesian State-Space Approach (March 24, 2017). Annals of Actuarial Science.

(SSRN: https://ssrn.com/abstract=2907868)

3 Toczydlowska D., Peters G.W., Fung M.C. and Shevchenko P.V. Stochastic Period and
Cohort Effect State-Space Mortality Models Incorporating Demographic Factors via
Probabilistic Robust Principle Components (May 30, 2017) Risks, 5(3), 1-77. [42].

(SSRN: https://ssrn.com/abstract=2977306)

55 / 56

https://tinyurl.com/y9nrt4ar
http://dx.doi.org/10.2139/ssrn.2786559
https://ssrn.com/abstract=2907868
https://ssrn.com/abstract=2977306


Papers of Interest to Mortality Modelling

This talk is based around the following papers:
4 Fung M.C. and Peters G.W. and Shevchenko P.V. A State-Space Estimation of the

Lee-Carter Mortality Model and Implications for Annuity Pricing (July 31, 2015). In
MODSIM 2015: 21st International Congress on Modelling and Simulation : Proceedings
(pp. 952-958). Canberra: Modelling & Simulation Society Australia & New Zealand.

(SSRN: https://ssrn.com/abstract=2699624)

5 Yan, Hongxuan and Peters, Gareth and Chan, Jennifer. Mortality Models Incorporating
Long Memory Improves Life Table Estimation: A Comprehensive Analysis (March 26,
2018).

(SSRN: http://dx.doi.org/10.2139/ssrn.3149914.)

6 Yan, Hongxuan and Peters, Gareth and Chan, Jennifer. Multivariate Long Memory
Cohort Mortality Models. (April 22, 2018).

(SSRN: http://dx.doi.org/10.2139/ssrn.3166884)

7 Yan, Hongxuan and Peters, Gareth and Chan, Jennifer. Reducing Model Risk and
Improving Mortality Forecasts for Life Insurance Product Pricing (January 20, 2019).

(SSRN: https://ssrn.com/abstract=3319355)

8 Yan, Hongxuan and Peters, Gareth and Chan, Jennifer. Evidence for Persistence and
Long Memory Features in Mortality Data. (January 25, 2019).

(SSRN: https://ssrn.com/abstract=3322611)
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