You are here

Data science wiki

This is the first iteration of an actuaries’ data science wiki. The aim is to expand, refine and develop this wiki to encompass a knowledge-base that scopes the key terms and essential definitions of disciplines associated with data science practice, that have particular resonance for actuarial professionals.

Data analytics Data analytics is the discipline of analysing data sets to make conclusions about that information. Data analytics techniques can reveal trends and metrics that would otherwise be undiscoverable in massed information. This information can then be used to optimise processes to increase the overall efficiency of business or system operations.

Data analytics is a broad term that encompasses diverse types of data analysis. Any type of information can be subjected to data analytics techniques to gain insight that can be used to achieve improvements. Some of the techniques and processes of data analytics have been automated into mechanical processes and algorithms that work through raw data for subsequent human analysis.

Data analytics methodologies include exploratory data analysis (aims to find patterns and relationships in data), and confirmatory data analysis (applies statistical techniques to determine whether hypotheses about a data set are true or false). EDA is comparable to ‘detective work’, while CDA is comparable to the ‘work of a judge or jury during a court trial’ (John W. Tukey, Exploratory Data Analysis, Pearson, 1977).

Data analytics can also be separated into quantitative data analysis and qualitative data analysis. The former involves analysis of numerical data with quantifiable variables that can be compared or measured statistically. The qualitative approach is more interpretive – it focuses on understanding the content of non-numerical data like text, images, audio and video, including common phrases, themes, and points of view.

Sources: https://www.investopedia.com/terms/d/data-analytics.asp
https://searchdatamanagement.techtarget.com/definition/data-analytics

Data analysis, data analysts Data analysts and actuaries share similarities. They have comparable skill sets, and use mathematics, statistical techniques, and computer knowledge to compile and analyse data, and to report conclusions for business decision-making. The two disciplines differ in the scope of their work and employment settings.

For instance, data analysts work in a broad variety of vertical sectors and industries with multiple types of data. They apply mathematical and statistical techniques to extract, analyse and summarise data. They use spreadsheet and statistical software, work with relational databases, and prepare charts and reports of their findings. Their work transforms large, complicated data sets into usable insights that inform organisational leadership decisions and policies.

Data analysts review information and use the data to help develop recommendations. They do not specifically focus on risks, but may help determine appropriate business or financial decisions that will benefit a company.

Sources: https://work.chron.com/data-analyst-vs-actuary-16473.html
https://study.com/articles/difference_between_actuary_data_analyst.html

Data visualisation The main goal of data visualisation is to communicate information clearly and effectively through graphical means. and by maintaining a library of data visualisation techniques. The IFoA Data Visualisation Working Party was established in 2017. Its vision is that data visualisation for actuaries should represent:

  • An understanding of which visualisations work well for different purposes.
  • Domain-specific examples of helpful practice.
  • An understanding of how to produce the visualisations, including tools and techniques.
  • An understanding of the principles of developing and improving data visualisations.
  • Awareness of caveats that should be associated with data visualisations.

Sources: https://www.actuaries.org.uk/news-and-insights/news/data-visualisation-techniques-vision-actuaries

Machine Learning Machine Learning is a discipline that uses study of algorithms and statistical models, as used by computer systems, to perform specific tasks without use of explicit instructions: Machine Learning instead relies on patterns and inference. It is generally regarded as a subset of Artificial Intelligence.

The question of what Machine Learning could bring to actuarial work is something of a contentious issue within the insurance sector. Some have speculated on Machine Learning’s capacity to replace manual actuarial work, and therefore reduce insurers’ requirement for human actuaries. Other argue that data science-savvy actuaries could turn knowledge of Machine Learning into a useful asset in their skills offering.

Sources: https://www.actuaries.org.uk/documents/practical-application-machine-learning-within-actuarial-work

Predictive modelling Predictive modelling involves the use of data to forecast events. It relies on the capture of relationships between explanatory variables and the predicted variables from past occurrences, and the exploitation of this to predict future outcomes. The forecasting of future financial events is a core actuarial skill. Actuaries routinely apply predictive-modelling techniques in insurance and other risk-management applications.

Sources: https://www.cambridge.org/us/academic/subjects/statistics-probability/statistics-econometrics-finance-and-insurance/predictive-modeling-applications-actuarial-science-volume-1

Filter or search events

Start date
E.g., 24/10/2021
End date
E.g., 24/10/2021

Events calendar

  • The Growth Mindset for Actuaries

    13 October 2021 - 8 December 2021

    Fully booked.

    This practical course is aimed at actuaries at any stage of their career who want to develop their own growth mindset and apply it to their work setting and personal or professional lifelong learning. The content of the course builds on the lecture given by Dr Helen Wright on Growth Mindset as part of the President’s 2021 Lecture series, and will be delivered over a period of 2 months, from mid-October to early December.

  • Spaces available

    The importance of biodiversity for finance, business and policy is being increasingly recognised. While many studies highlight the overall economic impact that biodiversity loss could have, it is much more difficult to quantify and understand the particular impact that is may have on individual businesses or communities. The management and measurement of these risks is a field where actuaries are well placed to contribute.

  • Spaces available

    The climate crisis and the degradation of our planet will affect societies everywhere. How we address these threats will require solutions that transcend borders. As a global profession, the actuarial community is well-placed to consider and propose effective risk management solutions to help manage the climate crisis.

  • GIRO 2021 Webinar Series

    Online
    8 November 2021 - 19 November 2021
    Spaces available

    Join leading experts to discuss key issues, emerging ideas and new research across the general insurance sector.

  • Spaces available

    This is a free webinar with an expert panel providing their views on the ongoing IFoA consultation for proposals regarding changes to the regulatory framework on climate change and sustainability.

    The regulatory consultation sets out, for feedback some proposed approaches that the IFoA are considering in relation to charter commitments under the UK’s Green Finance Education Charter (GFEC) and the regulatory framework, including the Actuaries’ Code.

  • Life 2021 Webinar Series

    Online
    22 November 2021 - 26 November 2021
    Spaces available

    Join leading experts to discuss key issues, emerging ideas, and new research across the Life insurance sector.

  • Spaces available

    Content will be aimed at all actuaries looking to understand the issues surrounding mental health in insurance and in particular those looking to ensure products and processes widen access for, and are most useful to, those experiencing periods of poor mental health.