EDMVND. HAT,LEIVS L.I.D.
CEOM, PROF, SAVIL. \& R .S.SECRET.

EDMOND HALLEY: ASTRONOMER AND ACTUARY

By Geoffrey Heywood, M.B.E., F.I.A., F.F.A., F.R.A.S.

Edmond Halley, who was born in 1656 and died in 1742, is well known generally because of the Comet which bears his name. He is not, however, associated to any great extent with other activities and if it were not for the Comet it is likely that most people today would never even have heard of him. Outside the actuarial profession, and perhaps to some extent even within it, it is not generally known that in 1693 he constructed a life table from the bills of mortality in the German city of Breslau and then went on to calculate from that table annuity rates on one, two and three lives. Reference to this was formerly included in the introduction to the Year Book, but this has now been shortened and the reference to Halley has disappeared.

Halley's Comet is due to return to the neighbourhood of the Earth and the Sun at the end of 1985 and the beginning of 1986. The Comet moves around the sun in a highly elliptical orbit which takes it out beyond the planet Neptune and it returns to the Earth/Sun area on average every 75 or 76 years. The extremes of its return are 79 years and 74 years, the variation being due in the main to the gravitational perturbations of the giant planets Jupiter and Saturn when the Comet is in their vicinity. Its last appearance was in 1910. In 1682, during Halley's lifetime, the Comet appeared as an object visible to the naked eye and Halley computed its orbit and took the view that it was identical with the Comet which was known to have been seen in 1607 , some 75 years previously. It is interesting to note that he consulted Sir Isaac Newton on the subject, and the latter, surprisingly, took the view that the orbit was not elliptical and that the two comets were not one and the same. Halley, however, was confident of his theory and he therefore went on to predict that the Comet would return again in 1759 and this it did some 17 years after his death. He said, perhaps somewhat modestly, that if the Comet should re-appear in 1759, when he knew he would no longer be alive, he hoped that posterity would not refuse to acknowledge that this was first discovered by an Englishman. When the Comet did appear in 1759 it was immediately called Halley's Comet and has been referred to as such ever since and is by far the most famous periodic comet in the solar system.

Subsequent research has been carried out by many astronomers, who have examined astronomical records of China, India, the Eastern Mediterranean and Europe and it has been discovered that a comet has been recorded as appearing at intervals of 75 or 76 years since 240 BC . A comet is recorded as appearing in 1059 BC and this again fits in with the periodic return of some 75 or 76 years. If the appearance in 1059 BC is taken as the first recorded appearance then the return in 1985/86 is no less than the 42 nd appearance, of which, since that in 240 BC , only one return has been unobserved. Interesting returns are as follows:

Year	Remarks
12 BC	Contrary to popular myth, Halley's Comet was certainly not the 'Star of Bethlehem'.
66 AD	Halley's Comet could be the sword hanging in the sky which foretold the destruction of the Temple in Jerusalem.

684 AD The earliest recorded drawing of the Comet, on its 684 AD visit, is recorded in the Nurnberg Chronicles, published in 1493.
837 ad The most spectacular return of Halley's Comet, when its brightness was equal to that of the Planet Venus and its tail extended 93 degrees across the sky.
1066 AD The Comet is recorded in the Bayeux Tapestry, woven to commemorate the Battle of Hastings.
1301 AD It was seen by Giotto, a Florentine artist, who painted 'The Adoration of the Magi' and included the Comet in the painting. It is interesting that one of the Halley's Comet Probes launched this year has been called 'Giotto'.
1682 AD Observed by Edmond Halley himself between August and September. 1759 AD The first predicted return.
1835 AD Widely observed.
1910 AD Again widely observed and the last appearance.
The Comet, which even in 1910, was not located until a few months before it became visible to the naked eye, has already been found as long ago as 16 October 1982 by the sophisticated instruments and photographic procedures which are now available. It is expected to become visible to the naked eye about October 1985 and remain visible until March 1986. Unfortunately, this return is not particularly good for observation from the Northern Hemisphere and astronomers south of the Equator will be much better placed to see it.

The purpose of this note, however, is not primarily to discuss Halley as an astronomer, or his Comet, but to refer to the investigation into the bills of mortality of the City of Breslau, resulting in the publication of his life table and also the first calculation using correct formulae of annuities on one, two and three lives.

Before coming on to the Breslau tables, it is appropriate to record many other activities with which this remarkable man was involved. These may be summarized as follows:

At the early age of about 21 he promoted a voyage and sailed to St Helena, where he spent a year cataloguing for the first time the stars of the Southern Hemisphere. On his return he was awarded an M.A. from Oxford University and was also elected a Fellow of the Royal Society.

In 1685 he became Clerk, as it was then designated, of the Royal Society, an appointment which corresponded to that of Secretary. At about this time he visited Cambridge to sec Sir Isaac Newton, who was preparing his memorable work 'Philosophiae Naturalis Principia Mathematica' and although it was then
almost complete, Newton seemed reluctant to publish this work. Halley, in his capacity of Clerk of the Royal Society, impressed upon Newton the importance of making his discovery available to the scientific world and he eventually persuaded him to publish the Principia, and also met some of the cost of publishing from his own private resources.

Although he was unfortunate in being overshadowed by the great genius of Newton, he was nevertheless the first person to use Newton's methods to calculate the orbits of planets and comets and he could not have done this without a thorough understanding of these new ideas.

From 1696 to 1698 he spent an unhappy period as Deputy Controller of the Mint at Chester.

He returned to London in 1698 and immediately became interested in one of the important problems of his day, namely that of determining one's longitudinal position at sea and, closely allied with this, the variation of the Earth's magnetic field in the South Atlantic. Very unusually, for a civilian, he was commissioned as a Captain of one of His Majesty's Ships and set sail in 1698, in HMS Paramore, for a year's voyage to research these matters. On his return he undertook a second voyage in 1699, in the same ship, again to the South Atlantic, and not only charted the magnetic variation in those areas, but also the various currents which he discovered. His third and last voyage, in 1701, again in HMS Paramore, was much shorter and was confined to making soundings, charting the direction of currents and determining the magnetic variation in the English Channel.

He was also fascinated by the idea, as he called it, of "walking under water" and he wrote papers describing how a diving bell could be constructed and this was eventually made and experiments carried out successfully.

Another area in which he was interested was that of archaeology and history and he wrote a paper entitled 'A Discourse Tending to Prove at What Time and Place Julius Caesar made his First Descent upon Britain'. As a result of his research into the records of Caesar's expedition and noting the details of an eclipse of the Moon which occurred at that time, he reached the conclusion that Caesar's statement of when and where he landed was not correct.

In 1703 he was appointed Savilian Professor of Geometry at Oxford.
He became the second person to hold the appointment of Astronomer Royal, a post which was created by King Charles II in 1675 and Halley was appointed in 1721 and held it until his death in 1742.

Before discussing the Breslau mortality table, it is important to record that while he was Professor of Geometry at Oxford, he wrote a paper on compound interest and this was subsequently published in Sherwin's Mathematical Tables in 1761 and reproduced in J.I.A. 9, 259. This paper sets out the basic principles of calculating the fundamental functions of compound interest on correct principles.

It is, however, with his compilation of the Breslau mortality table and the calculation by a correct method of annuity values that he will be remembered by the actuarial profession. The two original papers which he wrote were published
in Philosophical Transactions in 1693, Vol. 17, pages 596 and 654. Although these papers were reproduced in modern English in J.I.A. 18, 251-62, they are not very readily available in their original form and so are reproduced again at the end of this note in facsimile form, with the kind permission of the Royal Society.

Halley was not the first to produce statistics from bills of mortality. Earlier work had been carried out by John Graunt on bills of mortality of the City of London and his results were published in the year 1662. He did not, however, attempt to calculate annuity values, but his publication, namely 'Natural and Political Observations made upon The Bills of Mortality', may be regarded as the foundation of the science of demography. Full details of John Graunt are set out in J.I.A. 90, 1-61.

Annuity values had been calculated earlier, in 1671 by Johannes de Wit, who is described as the Grand Pensionary of Holland and West Friesland, an office virtually equivalent to that of Prime Minister. A tile plaque of Johannes de Wit was presented to the Institute, on the occasion of the Centenary Celebrations in 1948, by the Actuarial Genootschap of Holland and is now displayed in the Redington Room. The method which he used is set out at some length by Frederick Hendriks in J.I.A. 2, 121 \& 222 and J.I.A. 3, 93. Suffice it to say here that the formula which de Wit used to calculate annuity values, and which is theoretically inaccurate, is not precisely correct unless l_{w} is 0 . The formula is

$$
a_{x}=\frac{1}{l_{x}} \sum_{t=0}^{w-t-x} d_{x+t} a_{\mathrm{t}}
$$

Moreover the annuity values are cumbersome to calculate and the mortality rates which he used were empirical, thereby giving satisfactory results.

There is also an extensive reference to the efforts of de Wit and Halley in an article by T. B. Sprague on annuities, which appeared in the 9th Edition of the Encyclopaedia Britannica in 1875. Again, for those who want to pursue the history of the subject in greater depth, reference should be made to that article, but this note may conveniently end by quoting Sprague himself, when he says: "de Wit's report being thus of the nature of an unpublished state paper, although it contributed to its author's reputation, did not contribute to advance the exact knowledge of the subject; and the author to whom the credit must be given of first showing how to calculate the value of an annuity on correct principles is Dr. Edmond Halley, FRS".

Finally, it is interesting to note that the premium rates used by the Amicable Society, in its prospectus published in 1790, were based on the Breslau table and in the prospectus it was reproduced in full.

(596)

An Effimate of the Degrees of the Mortality of Mankind, drawn from curious Tables of the Births and Funerals at the City of Breflaw ; with an Attempt to afcertain the Price of Annuities upon Lives. By Mr. E. Halley, R.S.S.

THE Contemplation of the Mortality of Mankind, has befides the Moral, its Phyfical and Political Ufes, both which have been fome years fince moft judicioully confidered by the curious Sir William Petty, in his Natural and Political Obfervations on the Bills of Mortality of London, owned by Captain Fobn Graunt. And fince in a like Treatife on the Bills of Mortality of Dublin.
(597)

Dublin. But the Deduction from thofe Bills of Mortality feemed even to their Authors to be defective: Firft, In that the Number of the People was wanting. Secondly, That the Ages of the People dying was not to be had. And Laftly, That both London and Dublin by reafon of the great and cafual Acceffion of Strangers who die therein, (as appeared in both, by thegreat Excefs of the Funerals above the Births) rendred them incapable of being Standards for this purpofe; which requires, if it were pollible, that the People we treat of fhould not at all be changed, but die where they were born, without any Adventitious Increafe from Abroad, or Decay by Migration elfewhere.

This Defect feems in a great meafure to be fatisfied by the late curious Tables of the Bills of Mortality at the City of Brelaw, lately communicated to this Honourable Society by Mr. Juftell, wherein both the Ages and Sexes of all that die are monthly delivered, and compared with the number of the Birtbs, for Five Years laft paft, viz. $1687,88,89,90,91$, feeming to be done with all the Exactnefs and Sincerity poffible.

This City of Breflaw is the Capital City of the Province of Silefia; or, as the Germans call it, Schlefia, and is fcituated on the Weftern Bank of the River Oder, anciently called Viadrus; near the Confines of Germany and Poland, and very nigh the Latitude of London. It is very far from theSea, ard as much a Mediterranean Place as can be defired, whate the Conflacnce of Strangers is but finall, and the Manafactare of Limen employs chicfly the poor Pecple of the place, as weil as of the Country round about; wherice comes that fort of Linnen we ufually call ycur Scleffe Linmen; which is the chief, if not the only Merchandize of the rise. For thefe Reafons the People of this City femm moft pro-

(598)

per for a Standard ; and the rather, for that the Births do, a fimall matter, exceed the Funerals. Ti. only thing wanting is the Number of tee whole Peopie, which in forme meafure 1 have endeavoured to !apply by comparifon of the Mortality of the People of all Ages, which I fhall from the faid Bills trace out with all the Acuracy poffible.

It appears that in the Five Years mentioned, vix. from 87 to 91 inclufive, there were born 6193 Perfons, and buried 5869 ; that is, born per Annum 1238, and buried 1174 ; whence an Encreafe of the People may be argued of 6_{+}per Annum, or of about a 20 th part, which may perhaps be ballanced by the Levies for the Emperor's Service in his Wars. But this being contingent, and the Births certain, I will fappofe the People of Breflaw to be encreafed by 123^{8} Births annually. Of thefe it appears by the fame Tables, that 34^{8} do die yearly in the firft Year of their Age, and that but 890 do arrive at a full Tears Age; and likewife, that 198 do die in the Five Tears between I and 6 compleat, taken at a Medium ; fo that but 692 of the Perfons born do furvive Six whole Tears. From this Age the Infants being arrived at fome degree of Firmnefis, grow lefs and lefs Mortal; and it appears that of the whole People of Breflaw there die yearly, as in the following Table, wherein the upper Line thews the Age, and the next under it the Number of Perfons of that Age dying yearly.

599)

$$
\begin{aligned}
& \begin{array}{l}
36 \cdot{ }^{42} 4^{\frac{1}{2}} 8 \cdot 9 \cdot{ }^{42} \cdot 7 \cdot 7954 \cdot 55 \cdot 56 \\
8 \cdot 10 \\
11 \cdot 9 \cdot 9 \cdot 10 \cdot 12
\end{array} \\
& \begin{array}{llllll}
7071.72 & 77 & 81 & 84 . & 90 & 91
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& 98 \cdot 99 \cdot 100 .
\end{aligned}
$$

And where no Figure is placed over, it is to be underflood of thofe that die between the Ages of the preceding and consequent Column.

From this Table it is evident, that from the Age of 9 to about 25 there does not die above 6 per Annum of each Age, which is much about one per Cent. of thole that are of thole Ages: And whereas in the 14, 15,16, 17 Tears there appear to die much fewer, as 2 and $3:$, yet that feems rather to be attributed to Chance, as are the other Irregularities in the Series of Ages, which would rectifie themfelves, were the number of Years much more confiderable, as 20 inftead of 5 . And by our own Experience in Christ-Church Hospital, I am informed there die of the Young Lads, much about one per Cent. per Annam, they being of the forefaid Ayes. From 25 to 50 there feem to die from 7 to 8 and 9 per Annum of each Age; and after that to 70 , they growing more crafie, though the number be much diminished, yet the Mortality encreafes, and there are found to die 10 or 11 of each Age per Annam: From thence the number of the Living being grown very foal!, they

$$
\text { (} 600 \text {) }
$$

gradually decline till there be none left to die; as may be feen at one View in the Table.

From thefe Confiderations I have formed the adjoyn. ed Table, whofe Ufes are manifo'd, and give a more jut Ide. z of the State and Condition of Mankind, than any thing yet extant that I know of. It exhibits the Number of People in the City of Breflaw of all Ages, from the Birth to extream Old Age, and thereby fiews the Chances of Mortality at all Ages, and likewife how to make a certain Eftimate of the value of Annuities for Lives, which hitherto has been only done by an imaginary Valuation: Alfo the Chances that there are that a Perfon of any Age propofed doss live to any other Age given; with many more, as I fhall hereafter thew. This Table dces thew the number of Perfons that are living in the Age current annexed thereto, as follows:

$\begin{aligned} & \text { gec. } \\ & \text { wirt. } \end{aligned}$	Pe:-	$\begin{aligned} & \text { Age. } \\ & \text { Coum } \end{aligned}$	$\begin{array}{\|l\|} \text { Per-Age. } \\ \text { fons Curt } \end{array}$		$\begin{aligned} & \text { Agc. in } \\ & \text { Curre if } \end{aligned}$	Per-	Car		Age		Ag	Perfons.
	1000	8	580	628	22	5 ${ }^{85}$	29	539	3^{6}	481	7	5547
2	855	9	67016	642	23	579	30	531	37	472	4	4584
3	7981	10	65117	616	24	573	31	523	38	463	21	4270
4	760	11	65318	6io	25	567	32	515	39	454		
5	732	12	546,19	604	26	56 C	33	507	40	145	35	3178
6	710	13	64020	598	27	553	34	49:	41	43^{6}		2708
7	692	14	63421	592	28	54^{6}	35	490	42	427.	55	2194
$\stackrel{\text { Age }}{ }$	Prr-	Age:		Per-	ge?	Per-	$\overline{\mathrm{Ags}_{\mathrm{ctr}}}$	Pcr-	Age.		63	1594
43	417	50	$34^{\circ} 57$	272	64	2021	71	131	78	58	77	1264 692
44	407	51	33558	262	65	192	72	120	79			253
45	357	52	32459	252	65	182	73	105	80			107
45	587	53	313,60	$2+2$	67	172	74	58	81			
47	377	54	30261	232	68	152	75	$8{ }^{8}$	82	281		40
4^{8}	357	55	292, 62	'222	69	152	76	78	83			
49	3571	56	2821 62	212	70	142	77		84	20.		Toial.

Thus it appears, that the whole Pcople of Breflaw doss confift of 3400 Soills, teing the Sum Total of the Perfons of all Ages in the Table: The firf we hereof
is to fhew the Proportion of Men able to bear Arms in any Multitude, which are thofe between 18 and 56, rather than 16 and 60 ; the o.e being generally too weak to bear the Fatigues of War and the Weight of Arms, and the other too crafic and infirm from Age, notwithftanding particular Inftances to the contrary. Under 18 from the Table, are found in this City 11997 Perfons, and 3950 above 56 , which together make 15947 . So that the Refidue to 34000 being 18053 arc Perfons between thofe Ages. At leaft one half thereof are Males, or 9027 : So that the whole Force this City can raife of Fencible Men, as the Scotch call them, is about 9000 , or in, or fomewhat more than a quarter of the Number of Souls, whichmay perhaps pals for a Rule for all other places.

The Second VJe of this Table is to fhew the differing degrees of Mortality,or rather Vitality in all Ages ; for if the number of Perfons of any Age remaining after one year, be divided by the difference between that and the number of the Age propofed, it fhews the odds that there is, that a Perion of that Age does not die in a Tear. As for Inftance, a Perfon of 25 Tears of Age has the odds of 560 to 7 or 80 to 1, that he does not die in a Year: Becaufe that of 567 , living of 25 years of Age, there do die no more than 7 in a Year, leaving 560 of 26 Years old.

So likewife for the odds, that any Perfon dces not die before he attain any propofed Age: Take the number of the remaining Perfons of the Age propofed, and divide it by the difference between it and the number of thofe of the Age of the Party propofed; and that fhews the odds there is between the Chances of the Party's living or dying. As for Inftance; What is the odds. that a Man of 40 lives 7 Years: Take the number of Perfons of 47 years, which in the Table is 377 , and fub-

(602)

fublract it from the number of Perfons of 40 years, which is 4.15 , and the difference is 68 : Which hews that the Perfons dying in that 7 jears are 68, and that it is 377 to 68 or 5^{\prime}, to 1 , that a Man of 40 does live - Years. And the like for any other mamber of Tears.

Vfe III. But if it be enquired at what number of iears, it is an even Lay that a Perfon of any Age fhall die, this Table readily performs it : For if the number of Perfons living of the Age propofed be halfed, it will be found by the Table at what Year the faid number is reduced to half by Mortality; and that is the Age, .o which it is an even Wager, that a Perfon of the Age propofed hall arrive betore he die. As for Inftance; A Perfon of 30 Years of Age is propofed, the number of that Age is 53 I , the half thereof is 265 , which numLer I find to be between 57 and 58 Years; fo that a Man of 30 may reafonably expect to live between 27 and 28 Years.

UjeIV. By what has been faid, the Price of $I_{n} f_{n o}$ rance upon Lives ought to be regulated, and the difference is difcovered between the price of enfuring the Life of a Man of 20 and 50, for Example: it being 100 to It that a Man of 20 dies not in a year, and but 38 to 1 for a Man of 50 Years of Age.

Yev V. On this depends the Valuation of Annuities upon Lives; for it is plain that the Purchafer ought to pay for only fuch a part of the value of the Annuity, as he has Chances that he is living; and this ought to be comp:ted yearly, and the Sum of all thofe yearly Values being added together, will amount to the value of the dsnuity for the Life of he Perfon propofed. Now the prefent value of Money payable after a term of Jears, at any given rate of Intereft, either may be had from Tublesaiready computad; or almoft as compendioufly,

(603)

by the Table of Logarithms : For the Aritimeticait Complement of the Logarithm of Unity and its yearly Intereft (that is, of 1 , o6 for Six per Cent. being 9,974094 .) being multiplied by the number of years propoled, gives the prefent value of One Powh paybic atter the end of to many years Theaby the toregong Propofition, it will be as the number of Perivins Iiving after that term of years, to the number dead; fo are the Odds that any one Perfon is Alive or Dead. And by confequence, as the Sum of both or the number o: Perfons living of the Age firft propofed, to the number remaining after fo many years, (both given by the T:ble) fo the prefent value of the yearly Sum payable aiter the term propofed, to the Sum which ought to be paid for the Chance the perfon has to enjoy fuch an Annuity after fo many Years. And this being repeated for every year of the perfons Life, the Sum of all the prefent Values of thofe Chances is the true Value of the Annuity. This will without doubr appear to be a moft laborious Calculation, but it being one of the principal Ufes of this Speculation, and having found fome Compendia for the Work, I took the pains to compute the following Table, being the fhort Refuit of a not ordinary number of Arithmetical Operations; It fhews the Value of Annuities for every Fifth licarot Age, to the Seventieth, as follows.

Ag.	Years Purchaic.	Agc.	Year: Prochat.	ARe.	Yean Purchare.
1	10,28	25	12,27	50	9,2 1
5	13,40	30	11,72	55	8,51
10	13,44	35	11,12	60	7,60
15	13,33	40	10,57	65	6,54
20	12,78	45	9.91	70	5,32

(604)

This fhews the great Advantage of putting Money into the prefent Fund lately granted to their Majefties, giving I4 per Cent. per Annum, or at the rate of 7 years purchafe for a Life; when young Lives, at the ufual rate ot Intereft, are worth above 13 years Purchafe. It thews Likewife the Advantage of young Lives ove thofe in Years; a Lie of Ten Years being almoft worth $13^{\frac{2}{3}}$ years purchafe, whereas one of 3^{6} is worth but 11 .

Ufe V. Two Lives are likewife valuable by the fame Rule ; for the number of Chances of each fingle Life, found in the Table, being multiplied together, become the Chanses of the Two Lives. And atter any certain Term of Years, the Product of the two remaining Sums is the Chancesthat both the Perions are living. Iie Product of the two Differences, Leirg the numbers of the Dead of both Ages, are the Chances that Loth the Perfons are dead. And thet $\%$ o Products of the remaining Sums of the one Age multiplied by thole dead of the other, fhew the Chances that there are thit each Party furvives the other: Whence is derived the Rule to eftimate the value of the Remainder of ore Life atier another. Now as the Product of the Two Numbers in the Table for the Two Ages propofed, is to the difference between that Product and the Product of the two numbers of Perfons deceafed in any face of time, fo is the value of a Sum of Money to be paid after fo much time, to the value thereof under the Contingency of Mortality. And as the aforefaid Produst of the twa Numbers anfivering to the Ages propofed, to the Product of the Deceafed of one Age multiplied by thofe remaining alive of the other ; So the Value of a Sum of Money to be paid after any time propofed, to the value of the Chances that the one Party has that he furvives the other whofe number of Deceafed you made ufe of, in the fecond Term of the proportion. This perhaps

(605)

may be better underftood, by putting N for the number of the younger Age, and n for that of the Elder ; T, y the deceafed of both Ages refpectively, and R, r for the Remainders; and $R+Y=N$ and $r+y=n$. Then fhall $N n$ be the whole number of Chances; $N_{n}-T y$ be the Chances that one of the two Perfons is living, $r y$ the Chances that they are both dead; $R y$ the Chances that the elder Perfon is dead and the younger living ; and $r T$ the Chances that the elder is living and the younger dead. Thus two Perfons of 18 and 35 are propofed, and after 8 years thefe Chances are required. The Numbers for 18 and 35 arc 610 and 490 , and there are 50 of the Firft Age dead in 8 years, and 73 of the Elder Age. There are in all 610×490 or 298900 Chances; of thefe there are 50×73 or 3650 that they are both dead. And as 298900 , to 298900 -3650 , or 295250 : So is the prefent value of a Sum of Money to be paid after 8 years, to the prefent value of a Sum to be paid if either of the two live. And as 560×73, fo are the Chances that the Elder is dead, leaving the Younger; and as 417×50, fo are the Chances that the Younger is dead, leaving the Elder. Wherefore as 610×490 to 560×73, fo is the prefent value of a Sum to be paid at eight years end, to the Sum to be paid for the Chance of the Youngers Survivance; and as 610×490 to 417×50, fo is the fame prefent value to the Sum to be paid for the Chance of the EldersSurvivance.

This poffibly may be yet better explained by expounding thefe Products by Rectangular Parailelograms, as in Fig. 7. wherein $A B$ or $C D$ reprefents the number of perfons of the younger Age, and $D E, B H$ thofe remaining alive after a certain term of years; whence $C E$ will anfiwer the number of thofe dead in that time: So $A C, B D$ may reprefent the number

(606)

of the Elder Age ; $A F, B$ I the Survivors after the fame term; and $C F, D I$, thole of that Age that are dead at that time. Then thall the whole Parallelogram $A B C D$ be $N n$, or the Product of the two Numbers of perfons, reprefenting fuch a number of Perions of the two Ages given; and by what was faid before, after the Term propofed the Rectangle $H D$ fhall be as the number of Perfons of the younger Age that furvive, and the Rectangle $A E$ as the number of thole that die. So likewile the Rectangles A I, FD fhail be as the Numbers, living and dead, of the other Age. Hence the Rectangle HI fhall be as an equal number of boih Ages furviving. The Rectangle FE being the Product of the deceafed, or Υy, an equal number of both dead. The Rectangle $G D$ or $R y$, a number living of the younger Age, and dead of the Elder: And the Rectangle $A G$ or $r \Upsilon$ a number living of the Elder Age, but dead of the younger. This being underftood, it is obvious, that as the whole Rectangle $A D$ or $N n$ is to the Gnomon FA B DEG or $N n-\Upsilon y$, fo is the whole number of Perfons or Chances, to the number of Chances that one of the two Perfons is living: And as $A D$ or $N n$ is to $F E$ or $Y y$, fo are all the Chances, to the Chances that both are dead; whereby may be computed the value of the Re verfion after both Lives. And as $A D$ to $G D$ or $R y$, fo the whole number of Chances, to the Chances that the younger is living and the other dead ; whereby may be caft up what value ought to be paid for the Reverfion of one Lite after another, as in the cafe of proviaing for Clergy-mens Widows and others by fuch Reverfions. And as $A D$ to $A G$ or $r \Upsilon$, fo are all the Chances, to thole that the Elder furvives the younger. I have been the mone particular, and perhaps tedious, in this matier, becauée it is the Key to the Cale of Threc Lives, wisch of it felf would rot have been fo eatie te comprehena.
ViI. If Three Lives are propoled, to find the value of an Annuity dwring the continuance of any of thofe three Lives. The Rule is, As the Product of the continual multiplication of the Thrse Nurnuers, in tove Table, anjwering to the Ages propofed, is to the diffirirce of that Product and of the Product of the Tbrec Numbers of the deceajed- of thofe Ages, in any grven term of Nears; So is the prelent value of a Sum of Nioney sobe paid certain'y a tee fo many Yoars, to the prefent value of the
fame Sum to be paid, provided ore of tbofe torree Perfons be living at the Expiration of that term Which proportion being yearly repeated, the Sum of all thofe prefent values will be the value of an Ānnuity granted for three fuch Lives. But to explain this, together with all the Cafes of Survivance in three Lives: Let N be the Number in the Table for the Younger Age, n for the Second, and ν for the Elder Age; let Y be thofe dead of the Younger Age in the term propofed, y thofe dead of the Second Age, and u thofe of the Elder Age; and let R te the Remainder of the younger Age, r that of the ruiddie Age, and ρ the Remainder of the Elder Age. Then fhail $k+-r$ be equal to $N_{2} r+y$ to n, and $;+v i v$, and the continual Product of the three Numbers Nnv fhall be equal to the continual Product of $R+r$ $x+r \times s+u$, which being the whole number of Chances for three Lives is compounded of the eight Products following. (I) Rr_{ρ}, which is the number of Chances that all three of the Perfons are living. (2) $r_{\rho} \Upsilon$, which is the number of Chances that the two Elder Perlons are living, and the younger dead. (3) $R_{\rho} y$ the number of Chances that the middle Age is dead, and the younger and Elder living. (4) Rru being the Chances that the two younger are living, and the elder dead. (5) $r y$ the Chances that the two younger are dead, and the elder living. (6) $r Y_{0}$ the Chances that the younger and elder are dead, and the middle Age living. (7) $R y v$, which are the Chances that the younger is living, and the two other dead. And Laftly and Eightly, ry u, which are the Chances that all three are deal. Which latter fubftracted from the whole number of Chances $N n v$, leaves N $n v-\Upsilon j \circ$ the Sum of all the other Seven Produets; in all of which one or mo:e of the three Perfons are furviving.
To make this j er more evident, I have added Fig. 8 . wherein thefe Eight feveral Products are at one view exhibited. Let the rectangled Parallelepipedon ABCDEFGH be conftituted of the fides $A R, G H, \sigma c$. proportional to N the number of the younger Age ; $A C, B D$, óc. proportiomal to 3; and $A G, C E, \delta c$, proportional to the number of the Etder, or $\%$. And the whole Parallelepipedon fhall be as the Produc: N $n v$, or our whole number of Chances. Lee $R P$ be as R, and $A P$ as r. let $C L$ be as r, and $L n$ as y; and $(; N A \rho$, and $N A$ as v; and let the Plain P Rea be mide patalid to the

(608)

plain $A C G E$; the plain $N V b r$ parallel to $A B C D$; and the plain $L X T$ Q parallel to the plain $A B G H$. And our firft Product $R r_{\rho}$ fhall be as the Solid $S T W I F Z e b$. The Second, or $r_{\rho} r$ will be as the Solid ErZe QSMI. The Third, $R_{\rho} y$, as the Solid $R H O V W I S T$. And the Fourth, $R r u$, as the Solid Z a $b D W X I K$. Fifthly, ρ ry, as the So_{o} lid GQRSIMNO. Sixthly, r ru, as IKLMGYZA. Seventhly. $R y$ v, as the Solid IK PO BXVW. And Laftly, AIKLM NOP will be as the Product of the 3 nunbers of perfons dead, or $x y \mathrm{v}$. I fhall not apply this in all the cafes thereof for brevity fake; only to fhew in one how all the reft may be performed, let it be demanded what is the value of the Reverfion of the younger Life after the two elder propofed. The proportion is as the whole number of Chances, or $N n y$ to the Product Ryv, fo is the certain prefent value of the Sum payable after any term propofed, to the value due to fuch Chances as the younger perfon has to bury both the elder, by the term propofed; which therefore he is to pay for. Here it is to be noted, that the firft term of all thefe Proportions is the fame throughout, viz. Nnv. The Second changing yearly according to the Decreafe of R, r, ρ, and Encreafe of \boldsymbol{Y}, y, v. And the third are fucceffively the prefent values of Money payable after one, two, three, σ_{c}. years, according to the rate of Intereft agreed on. Thefe numbers, which are in all cafes of Annuities of neceffary ufe, I have put into the following Table, they being the Decimal values of One Pound payable after the number of years in the Margent, at the rate of 6 per Cent.
(609)

Years.	ue of $\mathbf{I} l$.		Prefent value of $1 l$.		$\left.\begin{array}{r}\text { Prefent va } \\ \text { lue of } 13\end{array} \right\rvert\,$
1	0,9434	19	0,3305	37	0,1158
2	0,8900	20	0,3118	38	0,1092
3	0,8396	21	0,2941	39	0,1031
4	0,792 1	22	0,2775	40	0,0972
5	0,7473	23	0,2618	45.	0,0726
6	0,70 0	24	0,2470	50	0,0543
7	0,6650	25	0,2330	55	0,0406
8	0,6274	26	0,2198	60	0,0303
9	0,5919	27	0,2074	65	0,0227
10	0,5584	28	0,1956	70	0,0169
11	0,5268	29	0,1845	75	0,0126
12	0,4970	30	3,1741	80	0,0094
13	0,4688	31	0,1643	85	0,0071
14	0,4423	32	10,1550	90	0,0053
15	0:4173	33	0,1462	95	0,0039
16	$0,393^{6}$	34	0,1379	100	0,0029
17	0,3714	35	0,1301		
18	0,3503	36	0,1227		

it were needlefs to advertife, that the great trouble of wo:king fo many Proportions will be very much alleviated by afing Logarithms ; and that inftead of ufing $N n v-Y_{y} v$ for the Second Term of the Proportion in finding the value of Three Lives, it may fiffice to ufe only $\Upsilon y u$, and then deducting the Fourth Term fo found out of the Third, the Remainder fhall be the prefent value fought; or all thefe Fourth Terms being added together, and deducted out of the value of the certain Annuity for fo many Years, will leave the value of the contingent Annuity upon the Chance oi Mortality of all thole thrce Lives. For Example; Le: there be Three Lives of 10,30 , and 40 years of Age propefed, ard the Propo tions will be thus:

As 661 in 531 in 445 or 156190995 or N:
to 8 in 8 in 9 , or 576 , or $Y y$, for the firfivear, to $0.9434 .10 .00 \times 0346$ to 15 in 16 in 18 , ot 4320 , for the fecund year, fo o, 8900 . . . cecusc 246.
 to 27 ia $32 \operatorname{la} 38$, for the forith year, \quad fo $0,59.1$ ic c. 2015 ,,

And fo forth to the 60th year, when we fuppofe the elder Life of Forty certainly to be expired; from whence till Seventy we muft compute for the Firlt and Second only, and from thence to Ninety for the fingle youngeft Life. Then the Sum Total of all thefe Fourth Proportiona's being taken out of the value of a certain Annuity for 90 Years, being 16,58 years Purchafe, fhall leave the juft value to be paid for an Annuity during the whole term of the Lives of three Perfons of the Ages propofed. And note, that it will not be neceffary to compute for every year fingly, but that in moft cafes every 4 th or sth year may fuffice, interpoling for the intermediate years fecundum artem.

It may be objected, that the different Salubrity of places does hinder this Propofal from being univerfal; nor can it be denied. But by the number that die, being 1174: per Annum in 34000 , it does appear that about a 30 th part die yearly, as Sir William Petty has computed for London; and the number that die in Infancy, is a good Argument that the Air is but indifferently falubrious. So that by what I can learn, there cannot perhaps be one better place propofed for a Standard. At leaft 'tis defiredthat in imitation hereof the Curious in other Cities would attempt fomething of the fame nature, than which nothing perhaps can be more ufeful.

(654)

I. Some further Confiderations on the Breflaw Bills of Mortality. By the fame Hand, \&c.

SIR,

Wat gave you in my former Difcourfe on thefe Bills, was chiefly defigned for the Computation of the Values of Annuities on Lives, wherein I believe I have performed what the fhort Period of my Obfervations would permit, in relation to exactnefs, but at the fame time do earneflly defire, that their Learned Author Dr. Newman of Brelaw would pleafe to continue them after the fame manner for yet fome years further, that fo the cafual Irregularities and apparent Difcordance in the Table, p. 599. may by a certain number of Chances be rectified and afcertain'd.

Were this Calculus founded on the Experience of a very great number of Years, it would be very well worth the while to think of Methods for facilitating the Computation of the Value of two, three, or more Lives; which as propofed in my former, feems (as I am inform'd) a Work of too much Difficulty for the ordinary Arithmetician to undertake. I have fought, if it were poffible, to find a Theorem that might be more concife than the Rules there laid down, but in vain; for all that can be done to expedite it, is by Tables of Logarithms ready computed, to exhibit the Rationes of N to T in each fingle Life, for every third, fourth or fifth Year of Age, as occafion thall require; and thefe Logarithms being added to the Logarithms of the prefent Value of Money payable after fo many Years, will give a Series of Numbers, the Sum of which will fhew the Value of the Anmuity fought. However for each Number of tinis Series two Logarithms for a fingle Life, three for two Lives, and four for three Lives, muft neceffarily

(655)

be added together. If you think the matter, under the uncertainties I have mentioned, to deferve it, I fhall fhortly give you fuch a Table of Logarithms as I fpeak of, and an Example or two of the ufe thereof: But by Vulgar Arithmetick the labour of thefe Numbers were immenfe ; and nothing will more recommend the ufeful Invention of Logarithms to all Lovers of Numbers, than the advantage of Difpatch in this and fuch like Computations.

Befides the ufes mentioned in my former, it may perhaps not be an unacceptable thing to infer, from the fame Tables, how unjuftly we repine at the flortisefs of our Lives, and think our felves wronged if we attain not Old Age; whereas it appears hereby, that the obe half of thole that are born are dead in Seventeen years time, 123^{8} being in that time reduced to 616 . So that inftead of murmuring at what we call an untimely Death, we ought with Patience and unconcern to fubmit to that Diffolution which is the neceffary Condition of our perifhable Materials, and of our nice and frail Structure and Compofition: And to account it as a Bleffing that we have furvived, perhaps by many Years, that Period of Life, whereat the one halt of the whole Race of Mankind does not arrive.

A fecond Obfervation I make upon the faid Table, is that the Growth and Encreafe of Mankind is not fo much ftinted by any thing in the Nature of the Species, as it is from the cautious difficulty moft People make to adventure on the flate of Marriage, from the profpect of the Trouble and Charge of providing for a Family. Nor are the poorer fort of People herein to be blamed, fince their difficulty of fubfinting is occafion'd by the unequal Diftribution of Poffeffions, all being neceflarily fed from the Earth, of which yet fo few are Mafters. So that befides themfelves and Families, they are yet to work for thofe who own the Ground that feeds them: And of
(656)
fuch does by very much the greater part of Mankind confift; otherwile it is plain, thrat there might well be tour times as many Birchs as we notv find. For by computation from the Table, I find that there are nearly 15000 Perlons above 16 and under 45, of which at leaft 7000 are Women capable to bear Children. Of thefe notwithffanding there are but 12,38 born yearly, which is but little more than a fixth part: So that about one in fix of thefe Women do breed yearly; whereas were they all married, it would not appear ftrange or unlikely, that four of fix fhould bring a Chitd every year. The Political Confequences hereof l fhall not infift on, only the Strength and Glory of a King being in the multitude of his Subjects, I hall only hint, that above all things, Celibacy ought to be difcouraged, as, by extraordinary Taxing and Military Service : And thofe who have numerous Families of Children to be countenanced and encouraged by fuch Laws as the Jus trium Liberorum among the Romans. But efpecially, by an effectual Care to provide for the Subfiftence of the Poor, by finding them Employments, whereby they may earn their Bread, without being chargeable to the Publick.

