

EDMOND HALLEY: ASTRONOMER AND ACTUARY

BY GEOFFREY HEYWOOD, M.B.E., F.I.A., F.F.A., F.R.A.S.

EDMOND HALLEY, who was born in 1656 and died in 1742, is well known generally because of the Comet which bears his name. He is not, however, associated to any great extent with other activities and if it were not for the Comet it is likely that most people today would never even have heard of him. Outside the actuarial profession, and perhaps to some extent even within it, it is not generally known that in 1693 he constructed a life table from the bills of mortality in the German city of Breslau and then went on to calculate from that table annuity rates on one, two and three lives. Reference to this was formerly included in the introduction to the *Year Book*, but this has now been shortened and the reference to Halley has disappeared.

Halley's Comet is due to return to the neighbourhood of the Earth and the Sun at the end of 1985 and the beginning of 1986. The Comet moves around the sun in a highly elliptical orbit which takes it out beyond the planet Neptune and it returns to the Earth/Sun area on average every 75 or 76 years. The extremes of its return are 79 years and 74 years, the variation being due in the main to the gravitational perturbations of the giant planets Jupiter and Saturn when the Comet is in their vicinity. Its last appearance was in 1910. In 1682, during Halley's lifetime, the Comet appeared as an object visible to the naked eve and Halley computed its orbit and took the view that it was identical with the Comet which was known to have been seen in 1607, some 75 years previously. It is interesting to note that he consulted Sir Isaac Newton on the subject, and the latter, surprisingly, took the view that the orbit was not elliptical and that the two comets were not one and the same. Halley, however, was confident of his theory and he therefore went on to predict that the Comet would return again in 1759 and this it did some 17 years after his death. He said, perhaps somewhat modestly, that if the Comet should re-appear in 1759, when he knew he would no longer be alive, he hoped that posterity would not refuse to acknowledge that this was first discovered by an Englishman. When the Comet did appear in 1759 it was immediately called Halley's Comet and has been referred to as such ever since and is by far the most famous periodic comet in the solar system.

Subsequent research has been carried out by many astronomers, who have examined astronomical records of China, India, the Eastern Mediterranean and Europe and it has been discovered that a comet has been recorded as appearing at intervals of 75 or 76 years since 240 BC. A comet is recorded as appearing in 1059 BC and this again fits in with the periodic return of some 75 or 76 years. If the appearance in 1059 BC is taken as the first recorded appearance then the return in 1985/86 is no less than the 42nd appearance, of which, since that in 240 BC, only one return has been unobserved. Interesting returns are as follows:

280	Edmond Halley: Astronomer and Actuary
Year	Remarks
12 BC	Contrary to popular myth, Halley's Comet was certainly not the 'Star of Bethlehem'.
66 ad	Halley's Comet could be the sword hanging in the sky which forefold the destruction of the Temple in Jerusalem.
684 ad	
837 ad	•
1066 ad	
1301 ad	······································
1682 ad	Observed by Edmond Halley himself between August and September.
1759 ad	The first predicted return.
1835 ad	Widely observed.
1910 ad	Again widely observed and the last appearance.

The Comet, which even in 1910, was not located until a few months before it became visible to the naked eye, has already been found as long ago as 16 October 1982 by the sophisticated instruments and photographic procedures which are now available. It is expected to become visible to the naked eye about October 1985 and remain visible until March 1986. Unfortunately, this return is not particularly good for observation from the Northern Hemisphere and astronomers south of the Equator will be much better placed to see it.

The purpose of this note, however, is not primarily to discuss Halley as an astronomer, or his Comet, but to refer to the investigation into the bills of mortality of the City of Breslau, resulting in the publication of his life table and also the first calculation using correct formulae of annuities on one, two and three lives.

Before coming on to the Breslau tables, it is appropriate to record many other activities with which this remarkable man was involved. These may be summarized as follows:

At the early age of about 21 he promoted a voyage and sailed to St Helena, where he spent a year cataloguing for the first time the stars of the Southern Hemisphere. On his return he was awarded an M.A. from Oxford University and was also elected a Fellow of the Royal Society.

In 1685 he became Clerk, as it was then designated, of the Royal Society, an appointment which corresponded to that of Secretary. At about this time he visited Cambridge to see Sir Isaac Newton, who was preparing his memorable work 'Philosophiae Naturalis Principia Mathematica' and although it was then almost complete, Newton seemed reluctant to publish this work. Halley, in his capacity of Clerk of the Royal Society, impressed upon Newton the importance of making his discovery available to the scientific world and he eventually persuaded him to publish the Principia, and also met some of the cost of publishing from his own private resources.

Although he was unfortunate in being overshadowed by the great genius of Newton, he was nevertheless the first person to use Newton's methods to calculate the orbits of planets and comets and he could not have done this without a thorough understanding of these new ideas.

From 1696 to 1698 he spent an unhappy period as Deputy Controller of the Mint at Chester.

He returned to London in 1698 and immediately became interested in one of the important problems of his day, namely that of determining one's longitudinal position at sea and, closely allied with this, the variation of the Earth's magnetic field in the South Atlantic. Very unusually, for a civilian, he was commissioned as a Captain of one of His Majesty's Ships and set sail in 1698, in HMS *Paramore*, for a year's voyage to research these matters. On his return he undertook a second voyage in 1699, in the same ship, again to the South Atlantic, and not only charted the magnetic variation in those areas, but also the various currents which he discovered. His third and last voyage, in 1701, again in HMS *Paramore*, was much shorter and was confined to making soundings, charting the direction of currents and determining the magnetic variation in the English Channel.

He was also fascinated by the idea, as he called it, of "walking under water" and he wrote papers describing how a diving bell could be constructed and this was eventually made and experiments carried out successfully.

Another area in which he was interested was that of archaeology and history and he wrote a paper entitled 'A Discourse Tending to Prove at What Time and Place Julius Caesar made his First Descent upon Britain'. As a result of his research into the records of Caesar's expedition and noting the details of an eclipse of the Moon which occurred at that time, he reached the conclusion that Caesar's statement of when and where he landed was not correct.

In 1703 he was appointed Savilian Professor of Geometry at Oxford.

He became the second person to hold the appointment of Astronomer Royal, a post which was created by King Charles II in 1675 and Halley was appointed in 1721 and held it until his death in 1742.

Before discussing the Breslau mortality table, it is important to record that while he was Professor of Geometry at Oxford, he wrote a paper on compound interest and this was subsequently published in Sherwin's *Mathematical Tables* in 1761 and reproduced in *J.I.A.* 9, 259. This paper sets out the basic principles of calculating the fundamental functions of compound interest on correct principles.

It is, however, with his compilation of the Breslau mortality table and the calculation by a correct method of annuity values that he will be remembered by the actuarial profession. The two original papers which he wrote were published

in *Philosophical Transactions* in 1693, Vol. 17, pages 596 and 654. Although these papers were reproduced in modern English in *J.I.A.* 18, 251–62, they are not very readily available in their original form and so are reproduced again at the end of this note in facsimile form, with the kind permission of the Royal Society.

Halley was not the first to produce statistics from bills of mortality. Earlier work had been carried out by John Graunt on bills of mortality of the City of London and his results were published in the year 1662. He did not, however, attempt to calculate annuity values, but his publication, namely 'Natural and Political Observations made upon The Bills of Mortality', may be regarded as the foundation of the science of demography. Full details of John Graunt are set out in J.I.A. 90, 1–61.

Annuity values had been calculated earlier, in 1671 by Johannes de Wit, who is described as the Grand Pensionary of Holland and West Friesland, an office virtually equivalent to that of Prime Minister. A tile plaque of Johannes de Wit was presented to the Institute, on the occasion of the Centenary Celebrations in 1948, by the Actuarial Genootschap of Holland and is now displayed in the Redington Room. The method which he used is set out at some length by Frederick Hendriks in *J.I.A.* **2**, 121 & 222 and *J.I.A.* **3**, 93. Suffice it to say here that the formula which de Wit used to calculate annuity values, and which is theoretically inaccurate, is not precisely correct unless l_w is 0. The formula is

$$a_x = \frac{1}{l_x} \sum_{t=0}^{w-t-x} d_{x+t} a_t$$

Moreover the annuity values are cumbersome to calculate and the mortality rates which he used were empirical, thereby giving satisfactory results.

There is also an extensive reference to the efforts of de Wit and Halley in an article by T. B. Sprague on annuities, which appeared in the 9th Edition of the *Encyclopaedia Britannica* in 1875. Again, for those who want to pursue the history of the subject in greater depth, reference should be made to that article, but this note may conveniently end by quoting Sprague himself, when he says: "de Wit's report being thus of the nature of an unpublished state paper, although it contributed to its author's reputation, did not contribute to advance the exact knowledge of the subject; and the author to whom the credit must be given of first showing how to calculate the value of an annuity on correct principles is Dr. Edmond Halley, FRS".

Finally, it is interesting to note that the premium rates used by the Amicable Society, in its prospectus published in 1790, were based on the Breslau table and in the prospectus it was reproduced in full.

(596)

An Estimate of the Degrees of the Mortality of Mankind, drawn from curions Tables of the Births and Funerals at the City of Breslaw; with an Attempt to ascertain the Price of Annuities upon Lives. By Mr. E. Halley, R.S.S.

THE Contemplation of the Mortality of Mankind, has befides the Moral, its Phyfical and Political Uses, both which have been some years since most judiciously confidered by the curious Sir William Petty, in his Natural and Political Observations on the Bills of Mortality of London, owned by Captain John Graunt. And fince in a like Treatise on the Bills of Mortality of Dublin.

(597)

Dublin. But the Deduction from those Bills of Mortality seemed even to their Authors to be defective: First, In that the Number of the People was wanting. Secondly, That the Ages of the People dying was not to be had. And Lastly, That both London and Dublin by reason of the great and casual Accession of Strangers who die therein, (as appeared in both, by the great Excess of the Funerals above the Births) rendred them incapable of being Standards for this purpose; which requires, if it were possible, that the People we treat of should not at all be changed, but die where they were born, without any Adventitious Increase from Abroad, or Decay by Migration elfewhere.

This Defect feems in a great measure to be fatisfied by the late curious Tables of the Bills of Mortality at the City of Breflaw, lately communicated to this Honourable Society by Mr. Justell, wherein both the Ages and Sexes of all that die are monthly delivered, and compared with the number of the Births, for Five Years last past, viz. 1687, 88, 89, 90, 91, feeming to be done with all the Exactness and Sincerity polfible.

This City of Breflaw is the Capital City of the Province of Silefia; or, as the Germans call it, Schlefia, and is feituated on the Weftern Bank of the River Oder, anciently called Viadrus; near the Confines of Germany and Foland, and very nigh the Latitude of London. It is very far from the Sea, and as much a Mediterranean Place as can be defired, whence the Confluence of Strangers is but finall, and the Manufacture of Linnen employs chiefly the poor Peeple of the place, as well as of the Country round about; whence comes that fort of Linnen we ufually call your Sclefie Linnen; which is the chief, if not the only Merchandize of the place. For these Reasons the People of this City feem most pro-

C :

per

(598)

per for a Standard; and the rather, for that the Births do, a finall matter, exceed the Funerals. The only thing wanting is the Number of the whole People, which in fome measure I have endeavoured to tapply by comparison of the Mortality of the People of all Ages, which I shall from the said Bills trace out with all the Acuracy possible.

It appears that in the Five Years mentioned, viz. from 87 to 91 inclusive, there were born 6193 Perfons, and buried 5869; that is, born per Annum 1238, and buried 1174; whence an Encrease of the People may be argued of 64 per Annum, or of about a 20th part, which may perhaps be ballanced by the Levies for the Emperor's Service in his Wars. But this being contingent, and the Births certain, I will suppose the People of Breflaw to be encreased by 1238 Births annually. Of these it appears by the same Tables. that 348 do die yearly in the first Tear of their Age, and that but 890 do arrive at a full Tears Age; and likewife, that 198 do die in the Five Tears between 1 and 6 compleat, taken at a Medium; fo that but 692 of the Perfons born do furvive Six whole Tears. From this Age the Infants being arrived at fome degree of Firmnefs, grow lefs and lefs Mortal; and it appears that of the whole People of Breslaw there die yearly, as in the tollowing Table, wherein the upper Line flews the Age. and the next under it the Number of Perfons of that Age dying yearly.

(599)

7.89.14.18.21.27.28.35 11.11.6. $5_{1}^{1}.2.3_{1}^{1}.564_{1}^{1}.6_{1}^{1}.9.8.7.7$ 36.42.4549.54.55.56.63 8.9 $_{1}^{1}.8.9.7.7.1011.9.9.9.10.12$ 7071.72778184.9091. 9 $_{1}^{1}.149.119_{1}^{1}.6.7.3.4.2.1.1.1.1.$

And where no Figure is placed over, it is to be underflood of those that die between the Ages of the preceding and confequent Column.

From this Table it is evident, that from the Age of 9 to about 25 there does not die above 6 per Annum of each Age, which is much about one per Cent. of those that are of those Ages : And whereas in the 14, 15,16, 17 Tears there appear to die much fewer, as 2 and 3;, yet that feems rather to be attributed to Chance, as are the other Irregularities in the Series of Ages, which would rectifie themfelves, were the number of Years much more confiderable, as 20 inftead of 5. And by our own Experience in Christ-Church Hofpital, I am informed there die of the Toung Lads, much about onc per Cent. per Annum, they being of the forefaid Ages. From 25 to 50 there feem to die from 7 to 8 and 9 per Annum of each Age; and after that to 70, they growing more crafte, though the number be much diminished, yet the Mortality encreases, and there are found to die 10 or 11 of each Age per Annum : From thence the number of the Living being grown very fmall, they gradu-

(600)

gradually decline till there be none left to die; as may be feen at one View in the Table.

From these Confiderations I have formed the adjoyned Table, whose Uses are manifold, and give a more just Idea of the State and Condition of Mankind, than any thing yet extant that I know of. It exhibits the Number of People in the City of Breslaw of all Ages, from the Birth to extream Old Age, and thereby shews the Chances of Mortality at all Ages, and likewise how to make a certain Estimate of the value of Annuities for Lives, which hitherto has been only done by an imaginary Valuation: Also the Chances that there are that a Person of any Age proposed does live to any other Age given; with many more, as I shall hereaster show. This Table does shew the number of Persons that are living in the Age current annexed thereto, as follows:

0 8 5 9 8 10 0 11 2 12 13 2 14	670 651 653 646 640 4 634 640	15 16 17 18 19 20 21 Age.	628 642 615 610 604 598 502	22 23 24 25 26 27 28	585 579 573 567 560 553 540	29 30 31 32 33 34 35	539 531 523 515 507 499 490	36 37 38 39 40 41	481 472 463 454 454 454 454 454 454	7 14 21 28 35 42 49 55	5547 4584 4270 3964 3604 3178 2709 2194
5 9 8 10 0 11 2 12 1 3 2 14 1 420	670 651 653 646 640 4 634 640	16 17 18 19 20 21 Age.	622 616 610 604 598 592	23 24 25 26 27 28	579 573 567 560 553 546	30 31 32 33 34 35	531 523 515 507 499 490	37 38 39 40 41	472 463 454 445 456	21 28 35 42 49	4270 3964 3604 3178 2709
8 10 0 11 2 12 0 13 2 14	653 545 640 4 634	18 19 20 21 Age.	610 604 598 592	25 26 27 28	567 560 553 546	32 33 34 35	515 507 499 490	38 39 40 41	463 454 145 456	28 35 42 49	3964 3604 3178 2709
2 12 0 13 2 14	546 640 1 634	19 20 21 Age.	604 598 592	26 27 28	560 553 546	33 34 35	507 499 490	40 41	454 145 456	35 42 49	3504 3178 2709
13 2 14	640 4 634	20 21 Age.	598 592	27 28	553	34	499	41	436	42	3178 2709
2 14 Age	4 634	21 Age.	592	28	546	35	490		10000000000	49	2709
Age	e. Per-	Age.	-					42	427.		
			Per-	00	. D				and the second division of		A 1 74
1000			10		rei-	Age.	Per-	Age.	f'et-	63	1594
-	rt fons		•				1006			70	1204
7 50			272	10-11-12-10-0	202	22224680000	131	78	58	77	692
7 51	1.2.2	58	262	1000	192	Sector Sector	120	1000-000000	49	84	253
7 57	100 (Barris 10 (Barris		253		182	1.2	109	and a second second	2000 Aug	100	107
1	· · · · · · · · · · · · · · · · · · ·		2 2 2 3 5 7 6 5 7		10.000000000						
2.2.000	1	1		1 () () () () () () () () () (1000000	100000000000000000000000000000000000000	10000000	1111111111111111	0.00000000		34000
		65. 3 2 2 2 3 5 6 A		1000000000	122.000	1.		ACCURATE AND A	1000000000		n Total.
	7 5	7 53 313 7 54 302 7 55 292	7 53 313 60 7 54 302 61 7 55 292 62	7 53 313 60 242 7 54 302 61 232 7 55 292 62 222	7 53 313 60 242 67 7 54 302 61 232 68 7 55 292 62 222 69	7 53 313 60 242 67 172 7 54 302 61 232 68 162 7 55 292 62 222 69 152	7 53 313 60 242 67 172 74 7 54 302 61 232 68 162 75	7 53 313 60 242 67 172 74 58 7 54 302 61 232 68 162 75 88 7 55 292 62 222 69 152 76 78	7 53 313 60 242 67 172 74 58 81 7 54 302 61 232 68 162 75 88 82 7 55 292 62 222 69 152 76 78 83	7 53 313 60 242 67 172 74 58 81 34 7 54 302 61 232 68 162 75 88 82 28 7 55 292 62 222 69 152 76 78 83 23	7 53 313 60 242 67 172 74 58 81 34 $-$ 7 54 302 61 232 68 162 75 88 82 28 7 55 292 62 222 69 152 76 78 83 23 $-$

Thus it appears, that the whole People of Breflaw does confift of 34000 Souls, being the Sum Total of the Perfons of all Ages in the Table: The first wie hereof 287

15

(601)

is to fhew the Proportion of Men able to bear Arms in any Multitude, which are those between 18 and 56, rather than 16 and 60; the one being generally too weak to bear the Fatigues of War and the Weight of Arms, and the other too crasse and infirm from Age, notwithstanding particular Inflances to the contrary. Under 18 from the Table, are found in this City 11997 Perfons, and 3950 above 56, which together make 15947. So that the Residue to 34000 being 18053 are Perfons between those Ages. At least one half thereof are Males, or 9027: So that the whole Force this City can raise of Fencible Men, as the Scotch call them, is about 9000, or is, or fomewhat more than a quarter of the Number of Souls, which may perhaps pass for a Rule for all other places.

The Second Use of this Table is to fhew the differing degrees of Mortality, or rather Vitality in all Ages; for if the number of Perfons of any Age remaining after one year, be divided by the difference between that and the number of the Age proposed, it shews the odds that there is, that a Perfon of that Age does not die in a Tear. As for Instance, a Perfon of 25 Tears of Age has the odds of 560 to 7 or 80 to 1, that he does not die in a Tear : Because that of 567, living of 25 years of Age, there do die no more than 7 in a Tear, leaving 560 of 26 Years old.

So likewife for the odds, that any Perfon does not die before he attain any proposed Age: Take the number of the remaining Perfons of the Age proposed, and divide it by the difference between it and the number of those of the Age of the Party proposed; and that shews the odds there is between the Chances of the Party's living or dying. As for Instance; What is the oddsthat a Man of 40 lives 7 Years : Take the number of Perfons of 47 years, which in the Table is 377, and fub-

(602)

fubfiract it from the number of Persons of 40 years, which is 445, and the *difference* is 68: Which shews that the *Persons dying* in that 7 years are 68, and that it is 377 to 68 or 5! to 1, that a Man of 40 does live 7 Years. And the like for any other number of Tears.

Use III. But if it be enquired at what number of lears, it is an even Lay that a Perfon of any Age shall die, this Table readily performs it : For if the number of Perfons living of the Age proposed be halfed, it will be found by the Table at what Year the faid number is reduced to half by Mortality; and that is the Age, .o which it is an even Wager, that a Perfon of the Age proposed shall arrive before he die. As for Instance; A Perfon of 30 Years of Age is proposed, the number of that Age is 531, the half thereof is 265, which numter I find to be between 57 and 58 Years; so that a Man of 30 may reasonably expect to live between 27 and 28 Years.

Use IV. By what has been faid, the Price of Infurance upon Lives ought to be regulated, and the difference is difcovered between the price of enfuring the Life of a Man of 20 and 50, for Example: it being 100 to 1 that a Man of 20 dies not in a year, and but 38 to 1 for a Man of 50 Years of Age.

Use V. On this depends the Valuation of Annuities upon Lives; for it is plain that the Purchaser ought to pay for only such a part of the value of the Annuity, as he has Chances that he is living; and this ought to be computed yearly, and the Sum of all those yearly Values being added together, will amount to the value of the Annuity for the Life of the Person proposed. Now the present value of Money payable after a term of years, at any given rate of Interest, either may be had from Tables already computed; or almost as compendiculy,

289

by

(603)

by the Table of Logarithms : For the Arithmetical Complement of the Logarithm of Unity and its yearly Interest (that is, of 1, 06 for Six per Cent. being 9, 974694.) being multiplied by the number of years propoled, gives the prefent value of One Pound pavable after the end of to many years Then by the foregoing Proposition, it will be as the number of Perions living after that term of years, to the number dead ; to are the Odds that any one Perfon is Alive or Dead. And by confequence, as the Sum of both or the number of Perfons living of the Age first propoled, to the number remaining after fo many years, (both given by the Teble) to the prefent value of the yearly Sum payable af-ter the term proposed, to the Sum which ought to be paid for the Chance the perfon has to enjoy fuch an Annuity after fo many Years. And this being repeated for every year of the perfons Life, the Sum of all the prefent Values of those Chances is the true Value of the Annuity. This will without doubt appear to be a most laborious Calculation, but it being one of the principal Ufes of this Speculation, and having found fome Compendia for the Work, I took the pains to compute the following Table, being the fhort Refuit of a not ordinary number of Arithmetical Operations; It fhews the Value of Annuities for every Fifth Yearof Age, to the Seventieth, as follows.

Age.	Years Purchafe.	Age.	Years Purchale.	Age.	Years Purchafe.
I	10,28	25	12,27	50	9,21
5	13,40	30	11,72	55	8,51
10	13,44	35	11,12	60	7,60
15	13,33	40	10,57	65	6,54
20	12,78	45	9,91	70	

D

This

(604)

This shews the great Advantage of putting Money into the present Fund lately granted to their Majesties, giving 14 per Cent. per Annum, or at the rate of 7 years purchase for a Life; when young Lives, at the usual rate of Interest, are worth above 13 years Purchase. It shews likewise the Advantage of young Lives over those in Years; a Lise of Ten Years being almost worth 13: years purchase, whereas one of 36 is worth but 11.

Ule V. Two Lives are likewife valuable by the fame Rule ; for the number of Chances of each fingle Life, found in the Table, being multiplied together, become the Chances of the Two Lives. And alter any certain Term of Years, the Product of the two remaining Sums is the Chances that both the Perfons are living. The Product of the two Differences, Leing the numbers of the Dead of both Ages, are the Chances that both the Perions are dead. And thetwo Products of the remaining Sums of the one Age multiplied by those dead of the other, flew the Chances that there are that each Party furvives the other : Whence is derived the Rule to effimate the value of the Remainder of one Life after another. Now as the Product of the Two Numbers in the Table for the Two Ages proposed, is to the difference between that Product and the Product of the two numbers of Perfons deceased in any space of time, fo is the value of a Sum of Money to be paid after to much time, to the value thereof under the Contingency of Mortality. And as the aforelaid Product of the two Numbers answering to the Ages proposed, to the Product of the Deceased of one Age multiplied by those remaining alive of the other; So the Value of a Sum of Money to be paid after any time proposed, to the value of the Chances that the one Party has that he furvives the other whole number of Decealed you made ule of, in the fecond Term of the proportion. This perhaps

291

may

(605)

may be better understood, by putting N for the number of the younger Age, and " for that of the Elder ; T, y the deceased of both Ages respectively, and R, r for the Remainders; and R+T=N and r+y=n. Then shall N n be the whole number of Chances; $N_N - T_y$ be the Chances that one of the two Perfons is living, Ty the Chances that they are both dead ; R y the Chances that the elder Perfon is dead and the younger living ; and r I the Chances that the elder is living and the younger dead Thus two Perlons of 18 and 35 are proposed, and after 8 years these Chances are required. The Numbers for 18 and 35 arc 610 and 490, and there are 50 of the First Age dead in 8 years, and 73 of the Elder Age. There are in all 610x 490 or 298900 Chances; of these there are 50x 73 or 3650 that they are both dead. And as 298900, to 298900 - 3650, or 295250 : So is the prefent value of a Sum of Money to be paid after 8 years, to the prefent value of a Sum to be paid if either of the two live. And as 560 x 73, fo are the Chances that the Elder is dead, leaving the Younger; and as 417 x 50, fo are the Chances that the Younger is dead, leaving the Elder. Wherefore as 610x490 to 560x73, fo is the prefent value of a Sum to be paid at eight years end, to the Sum to be paid for the Chance of the Youngers Survivance; and as 610 x 490 to 417 x 50, fo is the fame prefent value to the Sum to be paid for the Chance of the Elders Survivance.

This possibly may be yet better explained by expounding these Products by Rectangular Parallelograms, as in Fig. 7. wherein AB or CD represents the number of perfons of the younger Age, and DE, BH those remaining alive after a certain term of years; whence CE will answer the number of those dead in that time: So AC, BD may represent the number

D 2

of

(606)

of the Elder Age ; A F,B I the Survivors after the fame term ; and CF, DI, thole of that Age that are dead at that time. Then thall the whole Parallelogram ABCD be Nn, or the Product of the two Numbers of perfons, reprefenting fuch a number of Perfons of the two Ages given ; and by what was faid before, after the Term propoled the Rectangle HD fhall be as the number of Perfons of the younger Age that furvive. and the Rectangle AE as the number of those that die. So likewife the Rectangles A I, F D fhall be as the Numbers. living and dead, of the other Age. Hence the Rectangle HI shall be as an equal number of both Ages furviving. The Rectangle FE being the Product of the deceased, or Y, an equal number of both dead. The Rectangle GD or Ry, a number living of the younger Age, and dead of the Elder: And the Rectangle AG or + Y a number living of the Elder Age, but dead of the younger. This being understood, it is obvious, that as the whole Rectangle AD or Nn is to the Gnomon FABDEG or Nn-Yy, fo is the whole number of Perfons or Chances, to the number of Chances that one of the two Perfons is living: And as A D or Nn is to FE or Υy , fo are all the Chances, to the Chances that both are dead; whereby may be computed the value of the Reversion after both Lives. And as A D to GD or Ry, fo the whole number of Chances, to the Chances that the younger is living and the other dead ; whereby may be caft up what value ought to be paid for the Reversion of one Lite after another, as in the cafe of providing for Clergy-mens Widows and others by fuch Reversions. And as AD to AG or r Y, fo are all the Chances, to those that the Elder furvives the younger. I have been the more particular, and perhaps tedious, in this matter, because it is the Key to the Cale of Three Lives, which of it felf would not have been to caffe to comprehend.

VII. If Three Lives are proposed, to find the value of an Annuity during the continuance of any of those three Lives. The Rule is, As the Product of the continual multiplication of the Three Numbers, in the Table, answering to the Ages proposed, is to the difference of that Product and of the Product of the Three Numbers of the deceased of those Ages, in any grown term of Years; So is the present value of a Sum of Money to be paid certainly after so many Years, to the present value of the ame

(607)

fame Sum to be paid, provided one of those toree Perfons be living at the Expiration of that term. Which proportion being yearly repeated, the Sum of all those present values will be the value of an Annuity granted for three fuch Lives. But to explain this, together with all the Cafes of Survivance in three Lives: Let N be the Number in the Table for the Younger Age, " for the Second, and " for the Elder Age ; let T be those dead of the Younger Age in the term propofed, y those dead of the Second Age, and v those of the Elder Age; and let R be the Remainder of the younger Age, r that of the middle Age, and e the Remainder of the Elder Age. Then shall R-+r be equal to N, r-+ y to n, and s + v to v, and the continual Product of the three Numbers N nv fhall be equal to the continual Product of R - 1 - r $x = 1 - \gamma x = -v$, which being the whole number of Chances for three Lives is compounded of the eight Products following. (1) Rre, which is the number of Chances that all three of the Perfons are living. (2) r g T; which is the number of Chances that the two Elder Perfons are living, and the younger dead. (3) Rey the number of Chances that the middle Age is dead, and the younger and Elder living. (4) Rru being the Chances that the two younger are living, and the elder dead. (5) s Ty the Chances that the two younger are dead, and the elder living. (6) r To the Chances that the younger and elder are dead, and the middle Age living. (7) Ry v, which are the Chances that the younger is living, and the two other dead. And Laftly and Eightly, Ty v, which are the Chances that all three are dead. Which latter fubstracted from the whole number of Chances Nnv, leaves Nnv-Tyv the Sum of all the other Seven Products; in all of which one or more of the three Perfons are furviving.

To make this yet more evident, I have added Fig.8. wherein thefe Eight feveral Products are at one view exhibited. Let the rectangled Parallelepipedon A B C D E FG H be confituted of the fides A B, G H, $\mathcal{O}c$. proportional to N the number of the younger Age; A C, B D, $\mathcal{O}c$. proportional to a; and A G, C E, $\mathcal{O}c$. proportional to the number of the Elder. or v. And the whole Parallelepipedon fhall be as the Product N n v, or our whole number of Chances. Let B P be as R, and A P as T. let C L be as r, and L n as y; and G N as e, and N A as v; and let the Plain P R e a be mide parallele to the relation

(608)

plain ACGE; the plain NVbY parallel to ABCD; and the plain LXTQ parallel to the plain ABGH. And our first Product Rre shall be as the Solid STWIFZeb. The Second, or rer will be as the Solid ETZeQSMI. The Third, Rey, as the Solid RHOVWIST. And the Fourth. Rrv, as the Solid Zab DWXIK. Fifthly, g Ty, as the Solid GQRSIMNO. Sixthly, r Tu, as IKLMGTZA. Seventhly. Ry v, as the Solid IKPOBXVW. And Laftly, AIKLMNOP will be as the Product of the 2 numbers of perfons dead, or Yyu. I shall not apply this in all the cafes thereof for brevity fake; only to fhew in one how all the reft may be performed, let it be demanded what is the value of the Reversion of the younger Life after the two elder proposed. The proportion is as the whole number of Chances, or Nnu to the Product Ry v, fo is the certain prefent value of the Sum payable after any term propoled, to the value due to fuch Chances as the younger perfon has to bury both the elder, by the term propoled ; which therefore he is to pay for. Here it is to be noted, that the first term of all these Proportions is the fame throughout, viz. Nnv. The Second changing yearly according to the Decrease of R, r, g, and Encrease of Y, y, v. And the third are successively the prefent values of Money payable after one, two, three, &c. years, according to the rate of Intereft agreed on. These numbers, which are in all cafes of Annuities of neceffary ufe, I have put into the following Table, they being the Decimal values of One Pound payable after the number of years in the Margent, at the rate of 6 per Cent.

		1	009)		
Years.	Prefent va- lue of I l.	Street, Sector Sector (Prefent va- lue of 1 l.	Years.	Prefent va- lue of 1 l.
I	0,9434	19	0,3305	37	0,1158
2	0,8900	20	0,2118	38	0,1092
3	0,8396	21	0,2941	39	0,1031
4	0,7921	22	0,2775	40	0,0972
5	0,7473	23	0,2618	45	0,0726
6	0,7050	24	0,2470	50	0,0543
7	0,6650	25	0,2330	55	0,0406
8	0,6274	26	0,2198	60	0,0303
9	0,5919	27	0,2074	65	0,0227
IO	0,5584	28	0,1956	70	0,0169
II	0,5268	29	0,1845	75	0,0126
12	0,4970	30	5,1741	80	0,0094
13	0,4688	31	0,1643	85	0,0071
14	0,4423	32	10,1550	90	0,0053
15	0.4173	33	0,1462	95	0,0039
16	0,3936	34	0,1379	100	0,0029
17	0,3714	35	0,1301		
18	0,3503	36	0,1227		

(609)

It were needless to advertife, that the great trouble of working so many Proportions will be very much alleviated by using Logarithms; and that instead of using N n v - T y v for the Second Term of the Proportion in finding the value of Three Lives, it may suffice to use only T y v, and then deducting the Fourth Term so found out of the Third, the Remainder shall be the present value fought; or all these Fourth Terms being added together, and deducted out of the value of the certain Annuity for so many Years, will leave the value of the contingent Annuity upon the Chance of Mortality of all those three Lives. For Example; Lecthere be Three Lives of 10, 30, and 40 years of Age propefed, and the Proportions will be thus:

As 661 in 531 in 445 or 156190995, or N 37to 8 in 8 in 9, or 576, or Y 9 for the first year, to 0.9434, to 0.0000348 to 15 in 16 in 18, or 4320, for the feed year, to 0.8900, to 0.0002462 to 21 in 24 in 28, or 14112 for the third year, to 0.8355 to 0.0002462 to 27 in 32 in 38, for the fourth year, to 0.8355 to 0.00026123 to 27 in 32 in 38, for the fourth year, to 0.7921 to 0.00021071 to 39 in 41 in 48, for the fitth year, to 0.7050 to 0.00021071 to 39 in 50 in 58, for the fixth year, to 0.7050 to 0.00051057 And

296

(610)

And fo forth to the 6oth year, when we suppose the elder Life of Forty certainly to be expired; from whence till Seventy we must compute for the First and Second only, and from thence to Ninety for the single youngest Life. Then the Sum Total of all these Fourth Proportionals being taken out of the value of a certain Annuity for 90 Years, being 16,58 years Purchase, shall leave the just value to be paid for an Annuity during the whole term of the Lives of three Persons of the Ages proposed. And note, that it will not be neceffary to compute for every year singly, but that in most cases every 4th or 5th year may suffice, interpoling for the intermediate years second artem.

It may be objected, that the different Salubrity of places does hinder this Propolal from being universal; nor can it be denied. But by the number that die, being 1174. per Annum in 34000, it does appear that about a 30th part die yearly, as Sir William Petty has computed for London; and the number that die in Infancy, is a good Argument that the Air is but indifferently falubrious. So that by what I can learn, there cannot perhaps be one better place propoled for a Standard. At least 'tis defired that in imitation hereof the Curious in other Cities would attempt fomething of the fame nature, than which nothing perhaps can be more uleful.

The

(654)

I. Some further Confiderations on the Breflaw Bills of Mortality. By the fame Hand, &c.

SIR, WHat I gave you in my former Difcourse on these Bills, was chiefly defigned for the Computation of the Values of Annuities on Lives, wherein I believe I have performed what the short Period of my Observations would permit, in relation to exactness, but at the fame time do earnessly defire, that their Learned Author Dr. Newman of Breslaw would please to continue them after the same manner for yet some years further, that to the casual Irregularities and apparent Discordance in the Table, p. 599. may by a certain number of Chances be rectified and ascertain'd.

Were this Calculus founded on the Experience of a very great number of Years, it would be very well worth the while to think of Methods for facilitating the Computation of the Value of two, three, or more Lives; which as proposed in my former, feems (as I am inform'd) a Work of too much Difficulty for the ordinary Arithmetician to undertake. I have fought, if it were possible, to find a Theorem that might be more concife than the Rules there laid down, but in vain ; for all that can be done to expedite it, is by Tables of Logarithms ready computed, to exhibit the Rationes of N to I in each fingle Life, for every third, fourth or fifth Year of Age, as occasion shall require ; and these Logarithms being added to the Logarithms of the prefent Value of Money payable after to many Years, will give a Series of Numbers, the Sum of which will fhew the Value of the Annuity fought. However for each Number of this Series two Logarithms for a fingle Life, three for two Lives, and four for three Lives, must necessarily

be

(655)

be added together. If you think the matter, under the uncertainties I have mentioned, to deferve it, I shall shortly give you such a Table of Logarithms as I speak of, and an Example or two of the use thereof: But by Vulgar Arithmetick the labour of these Numbers were immense; and nothing will more recommend the useful Invention of Logarithms to all Lovers of Numbers, than the advantage of Dispatch in this and such like Computations.

Befides the ules mentioned in my former, it may perhaps not be an unacceptable thing to infer from the fame Tables, how unjuftly we repine at the flortsels of our Lives, and think our felves wronged if we attain not Old Age; whereas it appears hereby, that the one half of those that are born are dead in Seventeen years time, 1238 being in that time reduced to 616. So that instead of murmuring at what we call an untimely Death, we ought with Patience and unconcern to fubmit to that Diffolution which is the neceffary Condition of our perifhable Materials, and of our nice and frail Structure and Composition: And to account it as a Bleffing that we have furvived, perhaps by many Years, that Period of Life, whereat the one half of the whole Race of Mankind does not arrive.

A fecond Obfervation I make upon the faid Table, is that the Growth and Encreafe of Mankind is not fo much flinted by any thing in the Nature of the Species, as it is from the cautious difficulty moft People make to adventure on the flate of Marriage, from the prospect of the Trouble and Charge of providing for a Family. Nor are the poorer fort of People herein to be blamed, fince their difficulty of fubfifting is occasion'd by the unequal Diftribution of Possefilions, all being necessarily fed from the Earth, of which yet so few are Masters. So that besides themselves and Families, they are yet to work for those who own the Ground that feeds them: And of Edmond Halley: Astronomer and Actuary

(656)

fuch does by very much the greater part of Mankind confift; otherwise it is plain, that there might well be tour times as many Births as we now find. For by com-putation from the Table, I find that there are nearly 15000 Perfons above 16 and under 45, of which at leaft 7000 are Women capable to bear Children. Of these notwithstanding there are but 1238 born yearly, which is but little more than a fixth part? So that about one in fix of these Women do breed yearly; whereas were they all married, it would not appear strange or unlikely, that four of fix should bring a Child every year. The Political Confequences hereof I shall not infift on, only the Strength and Glory of a King being in the multitude of his Subjects, I shall only hint, that above all things, Celibacy ought to be discouraged, as, by extraordinary Taxing and Military Service : And those who have numerous Families of Children to be countenanced and encouraged by fuch Laws as the Jus trium Liberorum among the Romans. But effectially, by an effectual Care to provide for the Subfiftence of the Poor, by find-ing them Employments, whereby they may earn their Bread, without being chargeable to the Publick.

II. What