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A PERSONAL JOURNEY 

In 1966, I presented a paper to the Institute entitled, “Putting Computers on to Actuarial Work”.1 
The order of the words in the title was significant. What I considered to be the aspect of the subject 
which contained the most potential, paragraphs 25 to 29, received little mention in the discussion. 
One speaker was not sure if that section of the paper was “profound” or “obvious”. 

At that stage, I had already used the machine Atlas for some years: it was as large and powerful as 
many of the modern computers. Programs for routine actuarial calculations and software to write 
programs was well-established in the office and my colleague L. M. Eagles and I had moved heavily 
into the area of simulation work covering a range of subjects from non-life stop-loss to complicated 
reversions.2 

One day Mr Eagles brought back in the taxi (our data-link to Atlas) a particularly thick bundle of 
output from a simulation program, which we then laid out along the corridor so that we could walk 
along it in order to survey the results. A worry had already started to formulate in my mind and the 
realization that we could easily fill, and walk along, miles of corridors confirmed my worry. The point 
is that simulations produce a set of future histories. We might simulate very many future possible 
experiences of a life office. Suppose in each case we carry out annual valuations and distributions of 
surplus. In practice, we shall live through only one realization of those simulations and we shall 
determine the valuation basis from time to time according as the single experience unfolds. To carry 
out lots of simulations of future experience without changing the valuation in each simulation 
according to its own development will not illustrate our control of surplus in any useful way at all—to 
ourselves or anyone else. 

The consequence of this point is enormous. The whole nature of the problem and the focus of our 
attention changes. We could invite an experienced actuary to look at the state of the simulated 
company each ‘year’ and the simulated experience in order to tell us the valuation basis to use. To 
carry out a thousand simulations of a 10-year projection would not be practicable. We would need to 
formalize the process by which the experience was used to determine the valuation basis in order to 
program it into the simulation. Our attention is now focused on the problem of formalizing and 
modelling that process. Without inserting that decision process into the simulations themselves, there 
is little point in simulating. 

From the point of view of the working actuary, there is little point in simulating a situation over 
which he has no control. In practice, a company can control many items such as volume of new 
business, mix of new business, investment matching, bonus declarations, etc. In the simpler example, 
the actuary can control the emergence of surplus through his valuation basis. 

At the time of the 1966 paper my own thoughts had not progressed much further. The book by Jay 
W. Forrester, Industrial Dynamics,3 unsettled me and confirmed my worries but did not take me any 
further. 

At about that time, Colin Stewart at the G.A.D. was producing demographic projections for the 
United Kingdom for several decades ahead. I asked him what his basis for the period, e.g. 25–50 years 
ahead, would be if the experience for the first 25 years were to follow his basis and he were looking 
back from that point to determine his basis; would it be the same as the basis he was using for the 
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second 25-year period? He replied that he would probably look at the American experience at that 
time because it tended to precede that of the U.K! His answer ‘threw’ me. 

The first concrete example of what I had in mind came in a paper by Hilary Seal4 which I had the 
good fortune to hear him deliver to a conference on simulation organized by the Research Committee 
of the Society of Actuaries. His example was only part of his paper and almost a subsidiary part at 
that. I was much more excited than anyone else around—including Hilary himself, who seemed 
almost embarrassed by my enthusiasm. 

He had set up a very simple model of the total annual claims of a motor insurer. He then set up 
several ‘rules’ for setting the premium rates based on recent experience. All of them were intuitively 
reasonable—like taking the average of recent years (in the days before inflation). Some of the rules 
had been suggested by other actuaries. The simulated insurance companies went broke. 

This, to me, was the first actuarial paper which explored the decision procedure itself, i.e. the 
procedure which used the experience to determine and change the control variable. The several ‘rules’ 
were examples of decision procedures—decision algorithms incorporated into simulations. Even 
John Ryder,5 who wrote about adaptive control in actuarial work, seemed to miss the significance of 
Hilary Seal’s paper when he criticized it. 

In the last few years, part of my work has involved giving advice on the control of a certain type of 
non-life portfolio. As is usual in non-life insurance, the work had to be started with inadequate 
historical data. My own thoughts were to control the emergence of surplus by a mechanism which 
resembled the algebra of profit-sharing in a group-life scheme, and a great deal of simulation work 
was carried out in order to find a simple working solution. One element built into the model was the 
effect of incorrectly forecasting next year’s rate of inflation. 

During the course of a long irregular private correspondence with Dr Harold Bohman of Sweden, I 
learned that he was thinking along similar lines in order to control a whole non-life office. He also 
published a paper” similar (from my point of view) to Hilary Seal’s paper. He postulated, and 
simulated, two insurance companies which had the same claims experience. One company knew the 
type of claims distribution but not the value of the parameters; the other did not know the claims 
distribution. Hence, their methods of analysis of the experience, as it emerged, differed, and hence 
their premium rates differed. 

However, there was one aspect of the data which Harold Bohman was ignoring, but which was 
giving me difficulties even in the most simplified model of my problem. It was the delay in the 
information which was inherent in the situation. As Brian Hey puts it cogently, “it is all very well 
trying to forecast the next few years, but we don’t even know what has happened in the last few years; 
we’re still having to forecast that”. 

The difficulty is explained in the joint paper by Les Balzer and myself.7 Very briefly: 

Let Pxt = basic premium for year t 
Pt = premium actually charged for year t 
Ct = claims incurred for year t 
Gt = accumulated surplus to date (or solvency margin) 

= Gt–1+Pt–Ct. 

Now suppose we control surplus by the simple adjustment to the basic premium as follows: 

Pt = Pxt–h Gt–1 

where h is a constant. We can explore this model. However, in practice, at the time we quote Pt we 
shall not know Ct–1 and, hence, not know Gt–1; we may not even know Ct–2; but if we substitute 
hGt–2 or hGt–3 the nature of the system seems to undergo a change; in particular, it induces 
oscillations into the system. Even though one can see how the algebra leads to oscillation, it is 
puzzling and makes it much harder to interpret the results or to know what to do with them. 

Without realizing it, I lacked a formal conceptual background against which to formulate and 
explore my ideas and problems. So when the occasion arose, by chance, to be presented with just such 
a conceptual framework, I was primed ready for it. 

During a visit back to Cambridge, I took part in a guided tour of the Cambridge University 
Computer Control Laboratory. As I started to ask more and more questions about the various 
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demonstrations, I found that someone standing behind me was starting to answer them and we 
gradually drifted off into a corner together. I discovered he was not a visitor; he was a control 
engineer. 

During the next two hours—until my wife tracked me down—we talked, steadily establishing 
intellectual contact across our separate disciplines. To me, it was as if a search-light was being shone 
on my problems from a direction I did not know existed. 

“Yes,” he said, “with delay, you will induce oscillations. Indeed, if you increase the delay the 
system will go unstable. It sounds to me”, he said, “as if you are using a proportional control system. 
The ‘symptoms’ you are describing”, he said, “can be deduced by algebraic inspection of the transfer 
function you are using. The analysis will tell you how the system will respond to different types of 
input signal and we would expect to improve the properties of the system by changing the transfer 
function, using recognized procedures.” 

During the conversation, I made an important (to me) mental leap. Normally, if we thought in 
those terms at all, we would think of premiums as input and claims as output. If I reversed this, and 
thought of the claims as input signals and the premiums as output from the system, then I could 
achieve a direct analogy with an engineering system and start to relate the other concepts across the 
analogy. 

Because Les Balzer was due to return to Australia in a few months we worked fast to establish at 
least a first clear stage of re-stating the insurance problem in terms of control theory and of 
commenting on it, using orthodox control theory. By the time his early drafts were being written up I 
had covered the reading he had recommended and had described in some detail. It was sufficient to 
check his work passively and to comment where the correspondence with actuarial or insurance 
concepts seemed faulty. A problem for the ordinary reader is that most of the engineering textbooks 
deal with continuous systems via Laplace transforms. 

The work was full of surprises. The intriguing idea that the old actuarial finite difference operate E 
could be replaced by z, and then usefully treated as a complex variable: The idea that the feedback 
control could be isolated from the larger insurance context: The idea of a transfer function which was 
separate from the input and from the output: The idea that a transfer function could be designed: The 
idea that rules for designing transfer functions existed: The idea of instability—my familiarity with 
‘hunting’ in a radar aerial had been useful in early discussion: The idea of standard test input signals 
to examine the response: The idea that the separate properties of the response could be described 
usefully: The idea that some properties were mutually exclusive: The ideas of a transient response and 
an ultimate steady state response: The idea that the method I was using was well-known as a 
proportional controller: The idea that one would expect the addition of a derivative and/or integral 
controller to be an improvement. These all came at the time of the first joint paper. 

In this his second (solo) paper, and in the private correspondence between us, the extra surprises 
were: The analysis showing that the first design led to a steady state position which was not zero. The 
introduction in the second design of an item—the accumulated accumulated surplus—to which there 
was no corresponding financial concept. Also, there was the cold shock of being told that a lot of my 
own ‘workplay’ during a long lull in our correspondence was not the first direction in which to 
progress even though one would think so at first sight. 

Whilst Les Balzer was absorbing various concepts such as the difference between paid claims and 
incurred claims, I was absorbing the difference between an estimate made in year t of claims in year 
t+1 and an estimate made in year t–1 of claims in year t + 1 when setting up an equation using the 
z-transform. Having fumbled my way through that on my own, I started to analyse the properties of 
different estimators. Les Balzet said that was not the best direction in which to start. 

In his second paper, Les Balzer looks at the response to a ‘step’ input signal. In his paper to the 
Students’ Society,8 A. S. Clarke looked at the response of a simple reversionary bonus control system 
to a step change in the earned rate of interest. The earned rate of interest was the input signal; the 
changing bonus rate was the output signal; the valuation was the transfer function. Like the control 
engineers he examined the response as a change from a steady state initial position. 

When we value a pension fund we take the input signals from the recent experience, pass them 
through the valuation as a transfer function to produce the output signal, the recommended 
contribution rate. Control theory tends to examine multiple input/output systems by matrix methods 
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which, on his advice, are not used at all in Les Balzer’s two notes. A simple examination of a pension 
fund control system can be started by using a change in the real rate of interest as the (single) input 
signal. The transfer function would be the way in which the real rate of interest was used to set the 
valuation rate of interest, together with the method of funding used. In a simplified model, the 
recommended contribution rate would be the single output signal. Even in a simple example, the 
transfer function seems to be non-linear and hence harder to deal with. (Brealey & Hodges, in the 
backing papers to their Appendix to the recent Scott Report9—J.I.A. paper by Edward Johnston,10 
discussed by S. Benjamin and David Wilkie—incorporate an algebraic rule for deriving market 
expectations about the future from the data of the past. I have not examined whether their model is 
reasonable or crucial to their results.) 

Economists have entered the field, describing economic systems with control theory methods and 
concepts, mostly using matrix methods. Much of the work appears to be enjovable mathematics 
which is difficult to follow. The first book on the subject (I believe) is in the Institute Library. It is The 
Mechanism of Economic Systems by Arnold Tustin, Professor of Electrical Engineering. Birmingham 
University, subtitled An Approach to the Problem of Economic Stabilization from the Point of View of 
Control-system Engineering.11 The book is not very mathematical. 

The standard control theory books mostly deal with test input signals of four types; the names are 
self-explanatory: spike, step, ramp and sine wave. There is a gap for the ordinary reader in the 
treatment of random input or noise. Random input must be described by its statistical properties, and 
the autocovariance function is the main means of description. At the moment of writing I have just 
succeeded in reproducing my numerical simulation, the algebraic result which describes, very 
succinctly, the relationship between the input and the output in such situations. 

In July 1981, Dr Anders Martin-Lof kindly sent me a shortened version in English of a report he 
had written on “Dynamic Control of an Insurance Business”. I believe he is a control engineer and 
was invited to write this report by the Swedish insurance industry. I also believe I can see the influence 
of Harold Bohman in the paper. The model follows closely the 1-year accounting system of an 
insurance company. It tackles the problem of a minimum solvency margin but it seems to ignore the 
effect of the delay in the claims information. At one point the author remarks (but not in these words) 
that the use of earned premiums (instead of written premiums) causes the oscillatory nature of the 
output. I understand the paper is for publication in the Scandinavian Actuarial Journal. 

Exposure to control theory changes one’s way of thinking. It is an example of the type of scientific 
revolution described by Bill Jewell in his paper12 to the 1980 International Congress which he 
presented again at the Institute in May 1981, at a special meeting organized by the Research 
Committee. 

I do not know if we can systematize the design of our actuarial control systems for financial 
institutions, but the idea, set in a context of fully developed analogous examples, seems to place us in a 
different conceptual universe. 
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APPENDIX 

The following explanatory appendix should have been incorporated in our first paper. The technique 
of ‘block diagram reduction’ is used in several place—first mentioned on p. 523, line 1 of the first 
paper. For our readers, the following brief explanation would be very helpful. 

Suppose we have a system where the input C(z) is transformed to output F(z) 

i.e. 
F(z) = G(z)C(z) 

and we introduce a feedback loop as follows 

We can reduce this to the earlier form. Let e(z) and d(z) be as indicated. Then 

D(z) = H(z)F(z) 
E(z) = C(z)–D(z) 
F(z) = G(z)E(z) 

Eliminating d(z) and e(z) we have 

Hence 

is the equivalent transfer function. 

SUMMARY 

The insurance system with delayed profit/loss sharing feedback introduced by 
Balzer & Benjamin (1980) is subjected to further analyses which give greater 
insight into its dynamic behaviour. The steady state response of accumulated 
cash flow to a demanding disturbance consisting of a persisting stream of 
unpredicted claims is shown to be non-zero. This means that a persisting surplus 
or deficit, which cannot be distributed or recovered, occurs. Following a 
discussion of the stability of the system, the transient response is investigated 
using the control theoretic technique of root locus. Based on this analysis, a 
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profit sharing distribution of 31·25% (for a 20% cost and profit margin) is 
recommended in place of the intuitively appealing figure of 50%. The concept of 
integral action is introduced and shown to eliminate the steady state surplus/defi- 
cit noted above. A value of 2·82% for the amount of integral action is shown to 
produce the fastest possible response with no oscillation or overshoot. Finally 
the addition of so-called derivative action is shown to degrade rather than to 
improve the dynamic response of the system. 

1. INTRODUCTION 

In an earlier introductory paper (J.I.A. 107, 513), Balzer and Benjamin (1980) 
presented a model of an insurance system with delayed profit/loss sharing 
feedback from insurer to insured. The system was considered from a general 
control and dynamic systems theory viewpoint. Certain fundamental concepts 
were introduced and the dynamic responses of cash flow f(k) and accumulated 
cash flow fa(k) to an isolated group of unpredicted claims presented. This paper 
takes the analysis further in a number of important ways. 

The general structure and details of the mode1 of the insurance system can be 
found in the earlier paper. 

2. NOMENCLATURE 

The nomenclature used here is that used by Balzer and Benjamin (1980) in the 
previous paper together with the following additions: 

c1, c2, . . . 
j 
kd 
ki 
N 

np 
nz 
p1, p2, . . . 
P(z) 
s 
Tp 
Ts2 

φ a 
σ 
σ a 

Constants 

Amount of derivative action 
Amount of integral action 
Number of paths to infinity 
Number of finite poles 
Number of finite zeros 
Poles of a transfer function 
Function of interest; see equation (17) 
Laplace transform parameter (complex variable) 
Period of oscillation 
2% settling time 
Angle between asymptote and real axis 
Real part of s 
Asymptote centroid 
Imaginary part of s 
Magnitude of complex function or variable 
Angle of complex function or variable 
Degrees 
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3. STEADY STATE RESPONSE TO PERSISTING UNPREDICTED CLAIMS 

In the previous paper the response to an isolated group of unpredicted claims 
occurring at the initial time instant k = 0 was considered. It was shown that for 
l= 2 (a delay of two periods) or more, the response was oscillatory. For l= 5 or 
greater the system became unstable with the accumulated cash flow diverging to 
plus or minus infinity. 

An obvious question relates to what happens when a certain level of 
unpredicted claims persists over a longer period of time. In other words, what 
happens if the predicted claims are consistently under- or over-estimated? 
Diagrammatically, the unpredicted claims cu(k) might appear as in Figure 1. The 
control systems theorist would describe this as a unit step input at time zero and 
represent it mathematically by 

(1) 

The unit of measurement can be any convenient quantity, say thousands or 
millions of pounds. 

In the previous paper the z-transform of a sequence of numbers was 
introduced and was shown to be a powerful tool for dynamic systems analysis. 
The z-transform, Cu(z), of the input sequence, cu(k), of unpredicted claims is 

(2) 

Also the transfer function relating the z-transform, F(z), of the cash flow, f(k), 
was shown by Baker & Benjamin (1980) to be 

(3) 

Consequently, from equations (2) and (3) 

(4) 

Figure 1. Persisting stream of unpredicted claims. 
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Similarly, the transfer function relating the z-transform, Fa(z), of the accumu- 
lated cash flow, fa(k), to Cu(z) is 

Hence 

(5) 

Important conclusions about the steady state values, that is the values which 
result in the long term as the period k approaches infinity, can now be drawn. 
Provided that the system is stable (discussed later), the Final Value Theorem 
leads to steady state values 

and 

(6) 

(7) 

Equation (6) implies that, provided the system is stable, the cash flow in any 
individual period will eventually settle down to zero, which is obviously 
desirable. However, equation (7) indicates that for a stable system, the 
accumulated cash flow will not settle down to zero but will reach a steady state 
value of – 1/kckp. For the realistic values kc= ·8 and kp= ·5 used in the previous 
paper, fa( ∞ )= –2·5. Hence if unpredicted claims amount to £1 million per 
period over a long length of time, the accumulated cash flow will settle down to a 
steady state deficit of £2·5 million. This seems highly undesirable. 

Two remedies are possible. First, on seeing this situation establishing itself, 
management would probably begin to adjust both the Paid Claims Predictor and 
the Incurred Claims Predictor discussed by Balzer & Benjamin (1980). Whilst 
this ad hoc adjustment is a perfectly natural response, the control theorist would 
claim that a more sophisticated profit sharing scheme would eliminate the need 
for any such ad hoc action. This second control theoretic approach has a number 
of virtues. It is automatic in that a management decision is not required to 
activate it. Also, it will begin taking action immediately the estimated 
accumulated surplus, g(k), starts to drift away from zero. To be more specific, the 
control theorist would state that the addition of integral action (see later) is 
required. Perhaps the ideal solution is a combination of both approaches. 

4. TRANSIENT RESPONSE TO PERSISTING UNPREDICTED CLAIMS 

In the preceding section, the steady state response to a persisting or continuing 
stream of unpredicted claims was presented. Attention is now directed to the 
transient portion of the response. Balzer & Benjamin (1980) used the techniques 
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of inverse z-transformation and direct division to obtain closed form analytic 
expressions and numerical results for dynamic transient responses. In this paper 
an alternative method, which is particularly convenient for digital computer or 
programmable pocket calculator use, is presented. 

From the transfer function of equation (3) 

(zl–zl–1+kckp) F(z) = –z1–1(z–1) Cu(z). 

Dividing through by zl gives 

(1–z–1+kckpz–l)F(z) = –(1–z–1) Cu(z). 

Remembering that the backward shift operator z–1 is equivalent to a time delay 
of one period, inverse z-transformation leads to the difference equation 

f(k)–f(k–1)+kckpf(k–l)= –cu(k)+cu(k–1). 

A recurrence relation which can be used to calculate successive values of f(k) is 
then 

f(k) = f(k – 1) –kckpf(k –l) – cu(k) + cu(k – 1). (8) 

Consider an example of the use of equation (8). Let kc= ·8 and kp= ·5, as in the 
earlier paper, and let the unpredicted claims be a unit step as in equation (1). For 
a delay of l= 2 time periods 

f(0) = f(–1)–·4f(–2)–cu(0)+cu(–1) 
= 0–0–1+0 = –1 

f(1) = f(0)–·4f(–1)–cu(1)+cu(0) 
= –1–0–1+1= –1 

f(2) = f(1) – ·4f(0)–cu(2)+cu(1) 
= –1+·4–1+1 = –·4 

and so on for larger values of k. 
Similarly, the accumulated cash flow is governed by 

(zl–zl–1+kckp) Fa(z) = –z1–Cu(z). 
whence 

(1–z–1+kckpz–l)Fa(z) = –Cu(z). 

which leads to the recurrence relationship 

fa(k)=fa(k–1)–kckpfa(k–l)–cu(k). (9) 

The transient responses for kc = ·8, kp= ·5 and delay periods of l= 1,2 and 5 are 
shown in Figures 2 and 3. 

In Figure 3, the responses for l= 1,2 and 5 are superimposed for convenience. 
The broken lines have been added for the sole purpose of making the resulting 
figure more intelligible. They do not indicate the behaviour of fa(k) between any 
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Figure 2. Effect of persisting unpredicted claims on cash flow. 

Figure 3. Effect of persisting unpredicted claims on accumulated cash flow. 
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two time instants. Such behaviour remains totally undescribed by the discrete- 
time model used here. 

As expected from the preceding section, the cash flow in any period k 
approaches zero as k increases for the cases l= 1 and 2. The approach is 
monotonic for a delay of one period and oscillatory for a delay of two periods, 
which is qualitatively similar to the results of the earlier paper. Whether the rate 
of decay to zero is fast enough is a matter for subjective judgement. (The control 
theorist might expect the speed of response to be improved by the addition of 
derivative action to the profit sharing scheme. This will be taken up in detail 
later.) For the case of l= 5, the response is oscillatory and becomes unbounded as 
time increases. In short, the system is unstable. 

For delays of one and two periods, the accumulated cash flow settles down to a 
finite but undesirably non-zero value. Again, the responses are monotonically 
convergent and oscillatory for l= 1 and 2 respectively. 

For the case of l= 5, the accumulated cash flow becomes unbounded and does 
so in a dramatic manner. 

5. STABILITY OF DISCRETE-TIME SYSTEMS 

Unbounded responses are entirely unsatisfactory, hence it is timely to discuss 
the stability of the system. A system is said to be stable if its output remains 
bounded in response to any bounded input signal. Stability is thus a property of 
the system itself and independent of the sequence of values for the input variable. 

Consider a discrete-time system with input sequence {x(k)} and output 
sequence {y(k)}. The transfer function (see Balzer & Benjamin (1980)), H(z), is 
defined as the ratio of the z-transform of the output sequence to that of the input 
sequence, H(z) = Y(z)/X(z). Consequently 

(10) 

where N(z) and D(z) are polynomials in the transform parameter z. The zeros of 
the denominator polynomial D(z), that is the roots or solutions of D(z) = 0, are 
termed the poles of the transfer function. (The magnitude of the transfer function 
becomes infinite at a pole.) If the degree of D(z) is n, there will be n poles and the 
system is termed nth order. The poles may not all be distinct; some may be 
repeated. Also, they may not all be real. If complex poles are present they occur in 
complex conjugate pairs, since the roots of D(z) = 0 must so occur. 

For the present, let the poles of H(z) be distinct and be represented by 
p1,p2, . . ., pn. It can be shown (Cadzow, 1973) that the transient portion of the 
response y(k) is given by 

where the ci are constant coefficients. Clearly for this expression to decay to zero, 
the magnitude of each pole must be less than unity. A more rigorous analysis 
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shows that a necessary and sufficient condition for a system to be stable is simply 
that the poles of its transfer function have magnitude less than unity, that is 

|p| < 1, for all i = 1,---,n. (11) 

Plotted in the complex plane, all poles must lie within the unit circle for the 
system to be stable. 

It can also be shown that the dynamic nature of each component of the total 
response is dictated by the location of its pole in the complex plane. For real pi, 
the relationship is: 

pi < –1 ⇒ oscillation diverging to infinity 
pi = –1 ⇒ sustained oscillation 
– 1 < pi < 0 ⇒ oscillation decaying to zero 
0 < pi< 1 ⇒ monotonic decay to zero 
pi = 1 ⇒ constant 
1 < Pi ⇒ monotonic divergence to infinity. 

Complex poles lead to oscillatory behaviour. Furthermore, within the unit circle, 
the closer a pole is to zero, the faster its contribution to the transient response dies 
away. 

The equation formed by setting the denominator of the transfer function equal 
to zero, namely 

D(z) = 0 (12) 

is known as the characteristic equation. The poles of the transfer function are 
thus the roots of the characteristic equation. For the present insurance system, 
the characteristic equation is 

z1–zl–1+kckp = 0. (13) 

For l= 1 equation (13) becomes 

z–1+kckp = 0 

and the single pole is located at z = 1 – kckp. Since kc and kp are always positive, |z| 
will be less than unity, when 

kckp < 2 (14) 

(which is certainly the case for kc = ·8 and kp = ·5). Realistic values of kc and kp are 
never likely to exceed unity and hence, in practice, the system with a delay of one 
period should always be stable and non-oscillatory. 

For l = 2 equation (13) becomes 

z2–z+kckp = 0 

the roots of which are Hence the poles will lie within the unit 
circle provided that 

0<kckp < 1. (15) 
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The system is stable with a delay of two periods, provided that kc and kp are 
realistically chosen to satisfy equation (15). The response will be oscillatory if the 
poles form a complex conjugate pair, namely when kckp >¼. For typical values of 
kc and kp this will often be the case. 

For l= 5, equation (13) becomes 

z5–z4+kckp = 0. (16) 

Finding an analytic expression for the roots of this quintic polynomial would be 
difficult if not impossible. Given any particular numerical values for kc and kp, it 
is possible to determine the real root without too much difficulty. Determination 
of the two remaining pairs of complex conjugate roots is a little more 
complicated. More importantly, however, the way in which they vary as the 
product kckp is changed would only be available in a piecemeal manner. Control 
theorists have developed a technique termed the ‘root locus method’, which is 
systematic, simple and sheds considerable light on the behaviour of the system as 
kckp is varied. This technique is presented and applied in the following section. 

6. ROOT LOCUS METHOD 

Dorf (1980) and Ogata (1970) discuss the root locus method for continuous- 
time systems. Its application to discrete time systems and to the present case with 
l= 5 is presented without proof†, in order to introduce the reader to its power 
(through a problem of direct interest to actuaries). In essence the root locus 
method is a graphical technique which shows clearly how the roots of the 
characteristic equation D(z) = 0, that is the poles of the transfer function, move in 
the complex z-plane as some particular parameter of interest (kckp here) is 
changed. 

The characteristic equation is first rearranged into the form 

1 +KP(z) = 0 (17) 

where K is the parameter of interest. In the present problem, the parameter of 
interest is the product kckp, so that equation (13) is rearranged into the form 

where 

(18) 

We shall now develop a sketch of how the poles of the transfer functions in 
equations (3) and (5), that is the roots of the characteristic equation (13), move as 

† See Appendix B for a justification of some of the rules. 
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kckp is increased from zero to infinity. The path so traced out in the complex 
z-plane is termed the root locus. Fortunately, this root locus can be sketched with 
reasonable accuracy from a few simple calculations involving P(z) alone. 

It can be shown that the paths of the root locus begin at the poles of P(z) and 
end at the zeros of P(z). For l = 5, there are five finite poles of P(z), namely four at 
z = 0 and one at z = 1. These poles are denoted by a cross (x) on Figure 4. Here 
P(z) possesses no finite zeros (values of z which make P(z) = 0), so that all of the 
paths or branches of the root locus will diverge to infinity. 

The portion of the root locus which lies on the real axis can only lie to the left of 
an odd number of finite poles plus finite zeros. Consequently, the portion of the 
root locus shown as a thick line on part (a) of Figure 4 can now be drawn. The 
arrowheads denote the direction of increasing kckp and the Roman IV has been 
used to indicate a quadruple pole of P(z) at z = 0. 

The number, N, of paths diverging to infinity is 

N = np–nz = 5–0 = 5 

where np is the number of finite poles of P(z) and nz is the number of finite zeros of 
P(z). The paths to infinity become asymptotic to straight lines as kckp becomes 
large. These asymptotes meet at a common point σ a, called the asymptote 
centroid, on the real axis given by 

The angles φ a, which they make with the real axis are given by 

These asymptotes are shown as broken lines in part (b) of Figure 4. 
Clearly the root locus has to break away from the real axis at one or more 

points in the interval [0, 1]. Break-away and break-in occur when the parameter of 
interest has a maximum or minimum value, or sometimes a point of horizontal 
inflection, with respect to z. Such points are usually found by the simple calculus 
procedure of setting 

and solving for z. Any solutions lying outside the expected range are rejected as 
inadmissible. Here 

Hence z = 0 or ·8, both of which are admissible as break-away points. 
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(a) Section on real axis 

(b) Asymptotes added 

(c)Complete root locus 

Figure 4. Root locus diagram for l= 5. 
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At each break-away point, two paths leave the real axis. Furthermore, the 
tangents to these paths must be equally spaced in 360°, while the root locus must 
be symmetric about the real axis. Consequently the tangents must be vertical. 
The nature of the complete root locus is now defined and can be sketched 
approximately to give Figure 4(c). 

The only additional points which might be required accurately are those where 
the paths cross the unit circle, since these are the limiting points for stability. 
These points are often termed the crossover points. From an approximate sketch 
of the root locus paths, one can conclude that one crossover point lies at exactly 
–1, while the other four lie somewhere near ·92 ± ·40j and – ·15 ± ·99j where j 
indicates the square root of minus one. (These guesses for the crossover points 
were made prior to drawing the root locus accurately.) Determination of the 
exact crossover points is now done by rapidly convergent trial and error. 

First, consider the crossover point near ·92+·40j. The simplest procedure 
is to vary the imaginary part and calculate the corresponding real part 
(= [ – (Im{z}2]½) necessary to stay on the unit circle. This point is then tested to 
see if it lies on the root locus using the simple ‘angle criterion’. The angle criterion 
states that if the point z1 lies on the root locus, the angle of P(z1) is an odd multiple 
of 180°. 

(20) 

Here, straightforward complex variable theory leads to 

(21) 

where b= Im{z} and a= Re{z}. The important point to note about the angle 
criterion is that the value of kckp is not required. This is both normal and 
essential. 

Equation (21) can be used repeatedly to test successive estimates of the 
crossover points. For example, 

Using a programmable pocket calculator, one crossover point was found (in 2 
or 3 minutes) to be ·9397+ ·3420j. By symmetry, another crossover point 
must occur at ·9397 – ·3420j. The remaining crossover points occur at 
–·1736 ± ·9848j. 

The values of the parameter kckp at the crossover points can now be 
determined from the ‘magnitude criterion’, which states that the magnitude of 
KP(z) is unity for any point z1 on the root locus. Hence 

K = 1/| P(z1)|. (22) 



Here 
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where 
(23) 

At the crossover point z = ·9397 ± ·3420j, hence 

Similarly at z = – ·1736±·9848j, kckp = 1·5320 and at z= – 1, kckp = 2. In 
summary, if the product kckp is greater than ·35 then two or more of the roots of 
the characteristic equation (poles of the transfer function) will lie outside the unit 
circle and the system will be unstable. In the numerical example studied in this 
and the earlier paper, kckp was equal to ·4 and hence the system was unstable. 

The response, to any unpredicted claims, will always be oscillatory for any 
positive non-zero choice of kckp. This can be seen immediately from even part (a) 
of Figure 4, since one of the roots lies on the negative real axis for kckp > 0. This 
indicates an oscillatory component in the response. 

7. ADDITION OF INTEGRAL ACTION 

In § 3, an undesirable non-zero steady state response to a persisting stream of 
unpredicted claims was demonstrated. This is not an uncommon situation for 
control strategies which include only ‘proportional action’. The present system is 
of this type because a proportion of the estimated accumulated surplus is fed 
back by the Profit Sharing Scheme. It is widely known to control theorists that 
the addition of so called ‘integral control action’ will generally alleviate this 
problem. Integral action for a continuous-time system involves using a control 
component based on the integral (with respect to time) of the difference between 
the desired and the actual values of the controlled variable. If our model had been 
developed in continuous time, the integral component would be based on 

since the desired value of is zero. In discrete time, the integral is replaced by a 
summation over consecutive time instants. A proportional plus integral (P+I) 
action profit sharing strategy which replaces equation (19) of Balzer & Benjamin 
(1980) is then 

(24) 

where ki is a constant and T is the length of the financial period. Taking 
z-transform of equation (24) leads to 
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and hence the transfer function of the new P+I Profit Sharing Scheme becomes 

(25) 

In passing, it is interesting to look at the difference equation which 
corresponds to equation (25). Dividing through by z and cross-multiplying gives 

Taking inverse z-transforms 

(26) 

Equation (26) clearly demonstrates that some ‘memory’ is associated with the 
new strategy, in that the present feedback is equal to the previous value plus an 
updated correction based on the past and present estimated surpluses. 

Block diagrams showing the effect of unpredicted claims cu(k) on cash flow f(k) 
and on accumulated cash flow fa(k) are shown in Figure 5. By straightforward 
block diagram reduction, the transfer functions become 

and 

(27) 

(28) 

Using the Final Value Theorem it is now possible to demonstrate that even in 
the presence of a persisting stream of unpredicted claims, both the cash flow and 
the accumulated cash flow approach steady state values of zero as time 
progresses. From equation (2), Cu(z) = z/(z – 1), hence 

and 
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(b) Effect on Accumulated cash flow 

Figure 5. Effect of unpredicted claims. 

Hence, provided that the delay I is small enough for the system to be stable, both 
the cash flow and the accumulated cash flow will settle down to a steady state 
value of zero in the presence of a persisting stream of unpredicted claims. Clearly 
this is a highly desirable feature for any profit sharing strategy. As discussed 
earlier, it has definite advantages over ad hoc adjustment of base premiums. 

8. SELECTION OF PARAMETER VALUES 

The root locus method will now be used to select numerical values for the 
parameters kp and ki in the profit sharing strategy. Up until now the intuitively 
appealing value of kp = ·5 (50% sharing) has been used. It will now be shown that 
a smaller value has advantages to both parties. Following this, a compromise 
value for the amount ki of integral action is determined. 

It was argued in the earlier paper that a delay of l = 2 periods was realistic. This 
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value was based on the time and accounting/actuarial effort involved in 
collecting information and also on the nature of the time history of paid claims. 
Hence the analysis is pursued for the case of l = 2. Also, without loss of generality, 
the length of the financial time period T can be set to one time unit (which might 
be anything from one day to one year). 

From equation (27) or (28), the characteristic equation is 

or 
(29) 

which for ki = 0 can be arranged after some pole-zero cancellation into the form 

(30) 

Hence the function of interest is 

It is simple to show that the root locus for the system with l = 2, T = 1 and ki = 0 is 
as shown in Figure 6. 

Figure 6. Root locus for proportional action. 
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It is now claimed that the fastest response is obtained when both roots are 
coincident at the breakaway point z = ·5 (where kckp = ·25). To amplify this last 
statement we need to define settling time and show how it varies within the 
z-plane. The settling time is the time required for the output of the system to 
reach its steady state value within plus or minus a certain percentage following a 
step change in input. Normally ±2 or ±5% settling times are used. In the 
z-plane, lines of constant settling time are circles centred on the origin. The 
origin of the z-plane corresponds to a zero settling time, while the unit circle 
corresponds to an infinite settling time. The variation between these two 
extremes is exponential, as shown in Figure 7, where the lines of constant settling 
time are labelled with a figure indicative of the ratio of the 2% settling time, Ts2, to 
the sampling period, T. The development of this ratio is given in Appendix A. 

When more than one root is present, the one furthest away from the origin will 
dominate the response. This happens because those roots which are closer to 
z = 0 produce transient components which die away more quickly, thus leaving 
the more slowly decaying component to dominate. From Figure 6, it is clear that 
the root furthest from the origin can get no closer than the breakaway point, 
z = ½, where both roots are coincident. At this point, kckp = ·25. Thus the fastest 
response possible is achieved when kckp = ·25. If a margin of 20% for costs and 
profits is allowed, then k c = ·8 and the fastest response occurs for kp = ·3125. 
Thus for these conditions, a 31·25% rather than 50% sharing arrangement is 

Figure 7. Indicative settling and periodic times. 
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Figure 8. Improved proportional profit sharing. 

recommended for the fastest possible response with no ‘overshoot’ or oscillation. 
Comparative responses to an isolated group of unpredicted claims are shown in 
Figure 8. 

The following analysis assumes that the proportional constant kp has been 
chosen such that kckp = ·25. 

Consider now the case when the integral constant ki is non-zero. The 
characteristic equation (29) is arranged, after a pole zero cancellation at the 
origin, into the form 

(31) 

The function of interest is then 

(32) 
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which leads to the root locus diagram shown in Figure 9. The Roman II denotes a 
double pole of P(z) at z = ·5. Again, a minimum settling time exists and 
corresponds to the new breakaway point, at which kcki = ·02254. 

The response of the accumulated cash flow to a persisting stream of 
unpredicted claims, when proportional plus integral action profit sharing is used, 

Figure 9. Root locus for ki varying. 
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Figure 10. Effect of integral profit sharing on response. 

is shown in Figure 10 for kckp = ·25 and kcki = ·02254. The response for P action 
only is also shown for comparison. The eventual return of the accumulated cash 
flow to zero is both desirable and reassuring. It represents a considerable 
improvement in approach over any ad hoc adjustment of the Base Premium 
Calculator to compensate for the stream of unpredicted claims, The only 
problem is that the settling time is relatively long. 

If kc = ·8 then kcki = ·02254 leads to ki = ·0282 or 2·82%. 

9. DERIVATIVE ACTION 

Control theorists have long known that the addition of derivative action to a 
feedback control system usually improves its speed of response. Derivative 
action makes use of information regarding the rate of change of the variable, 
upon which the feedback is based. The usefulness of such information is obvious 
in the following familiar situation. Assume that you are driving a motor car in a 
stream of traffic and that a 5 m gap between your vehicle and the one in front is to 
be maintained. If the gap opens up to 10 m then under proportional control you 
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should accelerate. If, however, the vehicle in front is stationary and yours is 
travelling at 60 km/h, then you should be braking fairly sharply even though the 
gap is larger than desired. The difference in information is simply the rate of 
change of the gap. Its importance to improving the speed of response of an 
automatic control system is obvious. 

In a continuous-time system, the derivative component of the control action is 
based on the time rate of change, de(t)/dt, of the error, e(t), between desired and 
actual values of the controlled variable. In a discrete-time system the derivative is 
replaced by (e(k)–e(k–1))/T, so that a proportional plus integral plus 
derivative (PID) control strategy for the present profit sharing scheme is 

(33) 

Taking z-transforms 

(34) 

where kd is a constant to be selected. 
For l = 2 it can be shown that the transfer functions relating the cash flow and 

accumulated cash flow to unpredicted claims are 

(35) 

(36) 

The root locus diagram for PID profit sharing with l = 2, T = 1, kckp = ·25 
and kcki=·02254 is shown in Figure 11. The diagram might surprise many 
practitioners of automatic control who have been led to believe that the addition 
of derivative action always improves the speed of response of a system. Here it 
does not. Certainly as kd and hence the amount of derivative action is increased 
from zero, the root at ·382 moves towards the origin until it meets the root 
moving out from the origin. They meet at the breakaway point at z = ·1776. This 
would represent a speeding up of the system but for the effects of the other two 
roots. The two roots which start at z = ·809 for kd=0, move away from the origin 
as kd is increased. Moreover these roots dominate the response, since their effects 
remain long after those of the other two are negligible. 

Consequently, the addition of any derivative action at all leads to a slowing of 
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Figure 11. Root locus for PID profit sharing. 

the response. The gross amount of movement of the dominant roots may not 
look great, but it should be remembered that the point z = 1 corresponds to an 
infinite settling time. Since settling time varies exponentially with distance from 
the origin, even a small movement can have a large effect. Also, since the 
dominant roots break away from the real axis immediately kd becomes non-zero, 
any amount of derivative action will introduce oscillatory components to the 
response. 

For this system derivative action is undesirable. Why should this be so? The 
key to the answer lies in the time delay of I periods incurred in producing an 
estimate Consider again the previous example of driving a motor vehicle. 
Think of the adverse effect of introducing a time delay between the measurement 
of the distance between vehicles (or its rate of change) and the driver acting upon 
that information. Most drivers do not even rely on instantaneous information 
but make use of preview information by looking several cars ahead and 
predicting what the car in front of them will do before it actually happens. The 
dramatic improvements achievable using preview control are demonstrated and 
quantified in a different context by Balzer (1981). However, driving behind a 
large truck, for example, removes the preview information and reduces the 
quality of control markedly. The effect of a time delay is even more deleterious 
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than the removal of preview information. It is not surprising then that derivative 
action is not effective in the present system. 

10. CONCLUSIONS 

The profit/loss sharing scheme introduced by Baker & Benjamin (1980) has 
been subjected to further analyses, which give greater insight into its dynamic 
behaviour. Under the more demanding disturbance of a persisting stream of 
unpredicted claims, a significant non-zero accumulated cash flow is found to 
occur after steady state conditions are reached. The dynamic behaviour was then 
investigated using the root locus technique and improved. The addition of 
integral action was seen to drive the steady state value of the accumulated cash 
flow to the desirable value of zero. Finally derivative action was shown 
conclusively to offer no improvements due to the time delay present in the system. 
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APPENDIX A 

INDICATIVE RATIO FOR SETTLING TIME 

Texts dealing with the root locus method for continuous-time systems are 
widely available (for example, Dorf, 1980; Ogata, 1970). The same is not true for 
discrete-time systems. Hence this appendix addresses one aspect which does not 
appear to be covered adequately elsewhere. Familiarity with or ready access to 
the root locus method for continuous systems is assumed. 

For continuous-time systems the root locus is plotted in the complex s-plane. 
On this plane a line of constant settling time is a vertical line with a constant real 
part. More specifically, if Ts2 is the ± 2% settling time and if 

then 

(A1) 

(A2) 

The relationship between the s- and z-planes is the conformal mapping 

(A3) 

The magnitude of the complex variable z is then 

(A4) 

where Ts2 is the ±2% settling time of the continuous-time response of a 
continuous-time system of the same order and having the same response at the 
discrete sampling instants as the discrete system under study. Because the 
discrete response only exists at discrete instants in time, the following results can 
only be classed as indicative of the discrete settling times. For sampling periods 
which are short compared to the settling time, the error is negligible. For 
constant is constant. Hence a contour of constant Ts2 is a circle with centre 
z = 0, as shown in Figure 7, where the corresponding Ts2/T ratios are based on 
equation (A4). 

In the s-plane, the frequency of oscillation of an oscillatory response is entirely 
dependent upon the imaginary part ω of the root. Lines of constant frequency of 
oscillation are then horizontal lines in the s-plane. In the z-plane, equation (A3) 
implies that the angle of z is 

(A5) 

Consequently in the z-plane, lines of constant frequency of an oscillatory 
response become straight lines or rays radiating from the origin z = 0. Such lines 
are also shown in Figure 7. Rather than labelling them with the dimensionless 
parameter ω T, the ratio of Tp/T, where Tp is the period of oscillation, is used. 
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Clearly 

hence equation (A5) becomes 

313 

(A6) 

The values of Tp/T shown in Figure 7 are based on equation (A6). 
A long period of oscillation (which means a low frequency of oscillation) is 

desirable since the response will oscillate fewer times before reaching its steady 
state value. 
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APPENDIX B 

JUSTIFICATION FOR SELECTED ROOT LOCUS RULES 

This appendix has been added, at the suggestion of Sidney Benjamin, to assist 
those who do not have ready access to the suggested textbooks but who wish to 
see a justification for some of the rules used in constructing the root locus 
diagrams. I am also grateful for a novel justification of one of the rules. 

Rearranging the characteristic equation (17) leads to 

(B1) 

Magnitude and angle criteria. In general z will take complex values and hence P(z) 
will also. Taking the magnitude of each term in equation (B1) for a particular 
value Z1 of z, leads to 

(B2) 
or 

which is the Magnitude Criterion for any point z1 on the root locus. By taking the 
phase angle of each term in equation (B1) 

hence 

which is the Angle Criterion for a point Z1 on the root locus. 

(B3) 

Terminal points. P(z) can be expanded into the quotient of two products 
involving its zeros and poles, so that the characteristic equation (17) can be 
rewritten as 

where zi are the finite zeros and pi the poles of P(z). Consequently 

(B4) 

When K = 0, z = pi and hence the roots lie at the poles of P(z). Clearly the root 
locus begins at the poles of P(z). Similarly, when K = ∞ , z = zi or z = ∞ and the 
root locus ends at the finite zeros of P(z) or at infinity. 
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Portion on real axis. That the portion(s) of the root locus lying on the real axis 
must lie to the left of an odd number of poles plus finite zeros, follows 
immediately from the angle criterion. 

Symmetry about real axis. Complex roots of a polynomial can only appear in 
complex conjugate pairs. Consequently the root locus must be symmetric about 
the real axis. 

Paths to infinity. The number of infinite zeros of P(z) and hence the number N of 
paths to infinity on the root locus, is clearly equal to the number of poles minus 
the number of finite zeros. 

Asymptotes. At a very distant point on one of the paths to infinity, the angles 
from each pole and finite zero are essentially equal. Call this angle . The angle 
criterion then implies that at this point. 

Hence 

Derivation of the value for σ a, is not sufficiently brief to be included here. 

Breakaway points. Breakaway points obviously occur where there are multiple 
roots of the characteristic equation. Denoting the characteristic polynomial by 
f(z), the characteristic equation can be written as 

which will have multiple roots, when 

Noting that, on the root locus, z is a function of K 

Consequently, at a breakaway point dK/dz=0. (The possible multiplicity of 
roots at K = ∞ is of no consequence.) 

Tangents at breakaway points. These tangents are equally spaced over 360º; for 
example, two roots imply tangents perpendicular to the real axis and four roots, 
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an angle of 45º, etc. This result follows by taking a small departure from the real 
axis and noting that the angle criterion is only satisfied under the above 
circumstances. 

Other rules. Several other rules exist but will not be covered here. 




