MINIMUM SOLVENCY MARGIN OF A GENERAL INSURANCE COMPANY: PROPOSALS AND CURIOSITIES

ROBERTO DARIS
GIANNI BOSI

1998 GENERAL INSURANCE CONVENTION
AND
ASTIN COLLOQUIUM

GLASGOW, SCOTLAND: 7-10 OCTOBER 1998
Minimum solvency margin of a general insurance company: proposals and curiosities

Roberto DARIS - Gianni BOSI

Dipartimento di Matematica Applicata
"Bruno de Finetti", Università di Trieste, Italy

Summary

An analytical model is presented for the determination of the minimum solvency margin of a general insurance company. The technical risk proportional to the standard deviation of the aggregate claim amount and the financial risk represented by a multiplying factor are both considered. Further, the ruin probability criterion and the zero expected utility approach starting from a simple solvency condition are compared.
1 Model description

Denote by

\(U \) the required solvency margin,

\(P \) the risk premium income net of reinsurance,

\(\lambda \) the aggregate safety loading coefficient,

\(X \) the aggregate claim amount net of reinsurance.

\(j \) the rate of return on investment.

The solvency condition relative to a certain accounting period \([0,1]\) is represented by the following inequality:

\[
U(1 + j) + P(1 + \lambda)(1 + j) - X > 0.
\]

In this way, it is assumed that the premiums \(P \) are collected at time 0 and invested at the random rate \(j \), together with the solvency margin \(U \), in order to match the random aggregate claim amount \(X \) to be settled at time 1 or to be put into reserve for outstanding claims.

According to the ruin probability criterion, we choose as the minimum solvency margin \(U_{MIN} \) the minimum \(U \) satisfying the identity

\[
\Pr\{U(1 + j) + P(1 + \lambda)(1 + j) - X > 0\} = 1 - \epsilon,
\]

which is equivalent to

\[
\Pr\{U + P(1 + \lambda) \leq X - (U + P(1 + \lambda))j\} = \epsilon.
\]

Once the normal approximation for the independent random variables \(X \) and \(j \) (and then for the difference \(X - (U + P(1 + \lambda))j \)) has been assumed, we get

\[
\Pr\{U + P(1 + \lambda) \leq E(X) - (U + P(1 + \lambda))E(j) + \sigma [X - (U + P(1 + \lambda))j] Z\} = \epsilon,
\]

where \(Z \) is a normally distributed random variable with mean zero and standard deviation one.
If we denote by \(i \) the deterministic rate of inflation, and we let \(E(X) = P(1 + i) \), the identity (1) is equivalent to

\[
\frac{(1 + E(j))(U + P(1 + \lambda)) - P(1 + i)}{\sigma(X - (U + P(1 + \lambda))j)} = z_\epsilon, \tag{2}
\]

with \(z_\epsilon \) percentile of \(Z \) corresponding to the \(\epsilon \) ruin probability.

In order to determine \(U \), it is convenient to consider the property

\[
\sigma(X - (U + P(1 + \lambda))j) = \alpha [\sigma(X) + (U + P(1 + \lambda))\sigma(j)], \tag{3}
\]

with \(\sqrt{0.5} \leq \alpha \leq 1 \) (see appendix 1).

Putting (3) into (2), we finally obtain

\[
U = \frac{1}{1 + E(j) - \alpha z_\epsilon \sigma(j)} [\alpha z_\epsilon \sigma(X) + P(1 + i)] - P(1 + \lambda), \tag{4}
\]

and we choose

\[
U_{MIN} = \frac{1}{1 + E(j) - \sqrt{0.5} z_\epsilon \sigma(j)} \left[\sqrt{0.5} z_\epsilon \sigma(X) + P(1 + i) \right] - P(1 + \lambda) \tag{5}
\]

as the minimum\(^1\) solvency margin (i.e., the minimum safety reserve).

In particular, given \(\epsilon = 0.2\% \), we have

\[
U_{MIN} = \frac{1}{1 + E(j) - 2\sigma(j)} [2\sigma(X) + P(1 + i)] - P(1 + \lambda). \tag{6}
\]

In the sequel, \(c(j) \) will stand for the risk coefficient \(\frac{1}{1 + E(j) - 2\sigma(j)} \).

We note that it is reasonable to assume \(c(j) > 0 \). In fact, only a very risky investment can lead to \(2\sigma(j) - E(j) > 1 \).

From (6), we can observe that

\[
a) \text{ if } E(j) > 2\sigma(j) \text{ (riskless investment }\circ c(j) < 1) \quad U_{MIN} < [2\sigma(X) + P(i - \lambda)]
\]

\[
b) \text{ if } E(j) < 2\sigma(j) \text{ (risky investment }\circ c(j) > 1) \quad U_{MIN} > [2\sigma(X) + P(i - \lambda)]
\]

\(^1\)It is easy to prove that \(U \) is an increasing function of \(\alpha \).
c) if \(E(j) = 2\sigma(j) \) (neutral investment \(\circ c(j) = 1 \))

\[
U_{MIN} = [2\sigma(X) + P(i - \lambda)].
\]

In case b), for example, \(U_{MIN} \) should cover

1. the technical risk \(2\sigma(X) \),
2. the amount \(P(i - \lambda) \) (if \(i > \lambda \)),
3. the financial risk (measured by the multiplying factor \(c(j) \)).

In order to have some practical applications\(^2\) of this model, let us consider figure 1.

Figure 1

\[
\begin{align*}
P &= 84.42 \\
\lambda &= 3\% \\
i &= 3\% \\
\gamma &= 15\% \\
P_N &= 100 \\
\sigma(X) &= 9
\end{align*}
\]

<table>
<thead>
<tr>
<th>investment</th>
<th>(j)</th>
<th>(E(j))%</th>
<th>(\sigma(j))%</th>
<th>(c(j))</th>
<th>(U_{MIN})</th>
</tr>
</thead>
<tbody>
<tr>
<td>REAL ESTATE ASSETS</td>
<td>(j_1)</td>
<td>6</td>
<td>3</td>
<td>1</td>
<td>18</td>
</tr>
<tr>
<td>BONDS</td>
<td>(j_2)</td>
<td>5</td>
<td>10</td>
<td>1.17</td>
<td>35.85</td>
</tr>
<tr>
<td>EQUITIES</td>
<td>(j_3)</td>
<td>20</td>
<td>25</td>
<td>1.43</td>
<td>63.15</td>
</tr>
</tbody>
</table>

In the last column you can find the minimum solvency margin, expressed as percentage of \(P_N \) (premium income net of reinsurance), corresponding to three different kinds of investment.

\(^2\gamma \) is the expenses loading coefficient, and the assumption \(\sigma(X) = 9 \) allows us to compare \(U_{MIN} \) with the minimum solvency margin required by EC regulation ('73). For a practical estimation of \(\sigma(j) \) and \(\sigma(X) \), see Daris [3], Daykin, Pentikainen and Pesonen [4], and Rantala [5].
Figure 2 considers the more realistic case of mixed investments\(^3\).

\begin{table}
\centering
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline
\text{REA } & \alpha_1 & \% & \text{BON } & \alpha_2 & \% & \text{EQ } & \alpha_3 & \% & \text{E}(j) & \% & \sigma(j) & \% & c(j) & & U_{MIN} \\
\hline
10 & 80 & 10 & 6.6 & 8.38 & 1.11 & 29.55 & \\
10 & 65 & 25 & 8.85 & 8.92 & 1.09 & 27.45 & \\
20 & 40 & 40 & 11.2 & 10.78 & 1.11 & 29.55 & \\
0 & 80 & 20 & 8 & 9.43 & 1.12 & 30.60 & \\
0 & 70 & 30 & 9.5 & 10.25 & 1.12 & 30.60 & \\
0 & 60 & 40 & 11 & 11.66 & 1.14 & 32.70 & \\
0 & 50 & 50 & 12.5 & 13.46 & 1.16 & 34.80 & \\
\hline
\end{tabular}
\end{table}

We conclude our considerations about the previous model observing that (6) can be rewritten as follows:

\[U + \lambda P = 2c(j)\sigma(X) + \left[c(j) - \frac{1}{1+i}\right] E(X). \]

(7)

Observe that the aggregate safety amount \(U + \lambda P \), which is necessary to guarantee a solvency situation with probability 0.2\%, is a linear combination of \(\sigma(X) \) and \(E(X) \) with coefficients\(^4\) 2c(j) and \(c(j) - \frac{1}{1+i} \).

\(^3\)Once the independence of \(j_1, j_2 \) e \(j_3 \) has been assumed, \(\sigma(j) = \sqrt{\alpha_1^2\sigma^2(j_1) + \alpha_2^2\sigma^2(j_2) + \alpha_3^2\sigma^2(j_3)} \) holds. Since \(j_2 \) e \(j_3 \) are positively correlated in practice, it should be noted that \(U_{MIN} \) is underevaluated in the latter four cases.

\(^4\)Identity (7) generalizes \(U + \lambda P = z\sigma(X) \) in the case when the solvency condition \(U + P(1 + \lambda) - X > 0 \) is adopted (see Beard, Pentikainen and Pesonen [1]).
2 Expected utility approach

It may be interesting to compare the ruin probability criterion and the zero expected utility approach when the solvency condition is simply

\[U + P - X > 0. \]

In the first case, it is well known that, if a normal approximation for \(X \) is adopted, and \(P = E(X) \), then the condition \(\text{prob}\{U + P - X > 0\} = 1 - \epsilon \) leads to

\[U_{\text{MIN}} = z_\epsilon \sigma(X). \] (8)

On the other hand, if we consider, for example, the exponential utility function \(u(x) = B \left(1 - e^{-\frac{x}{B}}\right) \), the solvency margin \(U \) can be determined as the amount satisfying the following zero expected utility condition:

\[E \left(B \left(1 - e^{-\frac{U+P-X}{B}}\right)\right) = 0. \]

Under the previous assumptions, we can easily find

\[U = B \ln E \left(e^{-\frac{X}{B}} Z \right). \]

Once a second degree approximation for the cumulant generating function of \(\frac{X}{B} \) has been used, we may choose as the minimum solvency margin

\[U_{\text{MIN}} = \frac{1}{B} \frac{\sigma^2(X)}{2}, \] (9)

where \(\frac{1}{B} \) (equal to \(\frac{-u''(x)}{u'(x)} \)) is the well known risk aversion coefficient\(^5\).

The comparison of (8) and (9) yields to the following relation between \(\frac{1}{B} \) and \(z_\epsilon \):

\[\frac{1}{B} = \frac{2z_\epsilon}{\sigma(X)}. \] (10)

Therefore, if we assume a ruin probability equal to 0.3% and a standard deviation \(\sigma(X) \) equal to 6.5% of the premium income (net of reinsurance)

\(^5\)Even if we use a quadratic utility function, the same expression of \(U_{\text{MIN}} \) is obtained (see appendix 2).
P_N, or equivalently (from (8)), $U_{MIN} = 0.18P_N$, just like in EC regulation (see Campagne [2]), it is somewhat surprising that
\[
\frac{1}{B} \simeq 117P_N.
\]

Appendix 1

Let us show that, given two independent random variables X and Y, the following inequality holds:

\[
\sqrt{\frac{1}{2}} (\sigma(X) + \sigma(Y)) \leq \sigma(X + Y) \leq \sigma(X) + \sigma(Y). \tag{11}
\]

Since
\[
\sigma(X + Y) = \sqrt{\sigma^2(X + Y)} = \sqrt{\sigma^2(X) + \sigma^2(Y)}, \tag{12}
\]
and
\[
\sigma(X) + \sigma(Y) = \sqrt{(\sigma(X) + \sigma(Y))^2 - \sqrt{\sigma^2(X) + \sigma^2(Y) + 2\sigma(X)\sigma(Y)}}, \tag{13}
\]
we note that
\[
\sigma(X + Y) \leq \sigma(X) + \sigma(Y) \tag{14}
\]
(the equality holds only if $\sigma(X)$ and/or $\sigma(Y)$ are zero).

If $\sigma(X)$ and $\sigma(Y)$ are not zero, and we consider both (12) and (13), we obtain
\[
\sigma(X + Y) = \sqrt{k (\sigma(X) + \sigma(Y))}, \tag{15}
\]
with
\[
k = \frac{\sigma^2(X) + \sigma^2(Y)}{\sigma^2(X) + \sigma^2(Y) + 2\sigma(X)\sigma(Y)} \tag{16}
\]

By letting $h = \frac{\sigma(Y)}{\sigma(X)}$, we finally have
\[
\sqrt{k} = \sqrt{\frac{1 + h^2}{(1 + h)^2}}.
\]

It is the same if $h = \frac{\sigma(X)}{\sigma(Y)}$.
The function \(\sqrt{\frac{1+\delta^2}{(1+h)^2}} \), which is defined for \(h > 0 \), takes its minimum value \(\sqrt{\frac{1}{2}} \) for \(h = 1 \) (i.e., \(\sigma(X) = \sigma(Y) \)). Further, it tends to one as \(h \) diverges (i.e., \(|\sigma(X) - \sigma(Y)| \to +\infty \)).

Appendix 2

Given a quadratic utility function \(u(x) = x - \frac{x^2}{2B} \), which is defined for \(0 \leq x \leq B \), we look for the solvency margin \(U \) satisfying

\[
E \left((U + P - X) - \frac{(U + P - X)^2}{2B} \right) = 0
\]

The approximation \(X \approx P + \sigma(X)Z \), together with straightforward computations, leads to

\[
U^2 - 2BU + \sigma^2(X) = 0,
\]

with roots

\[
U_2 = B \left[1 + \sqrt{1 - \left(\frac{\sigma(X)}{B} \right)^2} \right] \approx \frac{1}{B} \frac{\sigma^2(X)}{2}
\]

Hence, we choose the positive root as the minimum solvency margin.

References

The square root has been approximated by \(1 - \frac{1}{2} \left(\frac{\sigma(X)}{B} \right)^2 \).