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Summary 
A mathematical model of the dynamic behaviour of an insurance system with delayed profit/loss sharing 
feedback is developed. The model is then subjected to a disturbance input consisting of an isolated group 
of unpredicted claims and the dynamic responses of cash flow and accumulated cash flow determined. 
Increasing delays are seen to lead first to undesirable oscillatory responses and eventually to instability. 
where the responses become unbounded. Such behaviour is noted to be independent of the type of business 
and to be a property of the feedback mechanism and not related to the type of disturbance input. 

1. LIMITED PROBLEM AND ACTUARIAL SOLUTION 

Introduction 
1.1. THE present paper is the result of an approach by the second author to the 

first to see if certain problems arising from profit-sharing ‘group’ business could 
be placed in a wider theoretical context, which would allow greater insight into 
the fundamental mechanisms at work in the system. Although the problems arise 
from the control of profit-sharing group schemes they are similar to problems 
arising in the control of any insurance portfolio. 

1.2. The wider theoretical context of Control or Dynamic Systems Theory will 
be unfamiliar to most readers. Hence, in this part of the paper, we take the 
unusual step of first presenting the limited problem as first seen and its solution 
via an approach which will be familiar to actuaries. 

Having quickly assimilated the essential features of the problem the reader will 
then be able to progress more confidently to the next part, where the wider 
theoretical framework is presented. There, the standard control theory notation 
is used not for its own sake but because it is essential for progressing to later 
topics, especially those which are beyond the scope of this first introductory 
paper. 

Formulation and solution 

1.3. Define Ct = claims incurred in year t 
Pt = premium paid in year t 
k such that (1–k)Pt = margin for expenses; typically k = .8 
Zt = kPt–Ct = surplus for year t (1) 
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Gt = zt+zt–1+ . . . + Z1 = accumulated surplus to year t 
= zt+Gt–1 

Bt = ‘base’ premium for year t. 

(2) 

In the present example a base premium Bt is adjusted by subtracting a 
proportion h of the surplus accumulated to date. Typically h might be .5. Because 
there is a delay between occurrence and settlement of claims Gt–1 is used where l is 
the time delay. Consequently, 

(3) 

and, hence, from equations (1), (2) and (3) 

(4) 

which is a difference equation in the unknown Gt, the accumulated surplus. 
Ordinary finite difference methods lead to the following solutions: 

For l = 1, equation (4) becomes a first-order difference equation with solution 

(5) 

where f = 1 – kh = 1 – .8 x .5 = .6 typically. 
For I= 2, equation (4) becomes a second-order difference equation. If 4hk > 1, 

as is the case for h = .5 and k = .8, then the solution is 

(6) 

where 

(here) 
radians (here). 

1.4 Some insight can be gained by observing the reaction of accumulated 
surplus to a single pulse of incurred claims Ct. Consequently, put Bt=0 and 
C2 = C3 = . . . = 0 while leaving C1 non-zero. Under these conditions and for l = 1 

(7) 

which is a simple decay factor of .6 p.a. For l = 2 

(8) 

which is an oscillatory result with period years and a decay factor 
of .6325 p.a. 
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1.5. Results for larger values of l are most easily obtained directly by successive 
application of equation (4) as was done initially to obtain an extended set of 
numerical values. 

1.6. The oscillatory nature of the results for l 2, as shown in Figure 4 (page 
528) are disturbing. This concern led to the initial question of whether these 
results could be set in a wider theoretical context which would give greater insight 
into the fundamental mechanisms at work. 

2. CONTROL. THEORETIC APPROACH 

Introduction 
2.1. As will be seen more clearly later, a negative feedback control mechanism 

is in operation in the insurance system under consideration. Furthermore, the 
system is intrinsically dynamic since differential or, in this case, difference 
equations rather than algebraic ones are needed to describe the way in which the 
variables (premiums, claims, etc.) vary with time. An extensive body of know- 
ledge known as control theory or dynamic systems theory is available for 
analysing and predicting the dynamic behaviour of such systems. The purpose of 
this paper is to carry out some introductory analyses on an insurance system with 
delayed profit/loss-sharing feedback using some elementary control theoretic 
techniques. Some very basic and fundamental features will be seen to emerge. 

2.2 Nomenclature 
b(k) 
ci(k) 
cp(k) 
cu(k) 
ƒ(k) 
ƒa(k) 
g(k) 
k 
kc 
kp 
l 
p(k) 
pb(k) 
pƒ (k) 
pn(k) 
T 
z 

Level of business written in period k 
Claims incurred from business written in period k 
Claims paid in period k 
Unpredicted claims paid in period k 
Cash flow for period k 
Accumulated cash flow at end of period k 
Accumulated surplus at end of period k 
Integer indicating financial period 
Costs and profit factor 
Proportion of estimated surplus fed back 
Number of delay periods 
Premiums paid in period k 
Base premiums for period k 
Share of estimated accumulated surplus fed back 
Net premium income for period k 
Length of financial time period 
Transform parameter (complex variable) 

d (k – i) Kronecker delta at k–i 
V Frequency of sinusoidal response. 

Predicted value of variable. 
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Modelling philosophy and perspective 
2.3. The starting point of any control investigation is the development of a 

mathematical model of the dynamic system to be studied. An understanding of 
the concept of mathematical modelling is very important and will be elaborated 
upon briefly. A mathematical model must not be considered as some inviolate 
law of nature. It is simply a set of equations which describes the behaviour of the 
system with sufficient accuracy for the purpose at hand. What is sufficient one 
day may be too inaccurate or unnecessarily elaborate another. 

2.4. An example may help. Newton’s law of motion, force equals mass times 
acceleration, might be though to be a law of nature. However, if applied 
thoughtlessly to an aircraft it would predict continued acceleration to infinite 
speeds. One of the limiting phenomena present in the real situation but not 
modelled is wind resistance. Even with the latter included the model would still 
not be perfectly accurate. The simple f = ma model is only true if the mass is 
constant. For some types of calculations an aircraft might be considered to have 
constant mass. For others the weight reduction due to the continuous burning of 
fuel is important. Carried to the extreme, as it might be for space travel, effects 
arising from the special theory of relativity (such as mass increase with speed) 
could be included. 

2.5. Our approach here has been to use a relatively simple model which 
intentionally excludes various aspects of fine detail. Many such details will be 
taken up in later papers after the reader has come to terms with an approach 
which will be unfamiliar to most. Even with the chosen model some quite basic 
results can be demonstrated. 

2.6. Most real systems can be modelled in continuous time using differential 
equations, in discrete time using difference equations or as sampled-data or 
hybrid systems, in which the process to be controlled is acknowledged to be 
continuous but controlled on the basis of samples taken at discrete instants in 
time. In this paper a discrete time model is developed. If the time interval between 
successive values of the variables is one year, x(k) would denote the value of the 
variable x at the end of the kth financial year. It should be emphasized that the 
results presented here are equally valid for any time period and not just for 
annual figures. Although there are many introductory texts dealing with discrete- 
time systems theory, Cadzow (1973) is one of the few written with an interdiscip- 
linary or non-engineering audience in mind. Texts with a greater control theory 
content are referred to later. 

2.7. Two approaches to the analysis are possible. Classical control theory, 
which dates from the second world war and is still in widespread industrial use, is 
based on z-transform techniques and transfer functions (see later). State space 
(sometimes called modern) control theory, which dates from the 1960s, operates 
directly on the state equation (a vector difference equation which describes 
the system) with time domain techniques. The latter is more powerful but 
also more difficult for the neophyte. The former allows many important results 
to be demonstrated and is used in this introductory paper. Attention is also 
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restricted to linear systems with constant parameters (the coefficients in the 
equations). 

A structural model 
2.8. Figure 1 shows quite a general model of the structure of the system under 

consideration. It is similar to, but not identical with, the type of block diagrams 
drawn by control theorists. The latter would normally label the lines indicating 
the flow of information with the z-transforms of the variables concerned and then 
show in the boxes, the transfer functions relating these transformed variables. To 
facilitate comprehension we avoid these minor technicalities. 

2.9. The business written b(k) in period k flows in two directions; namely, into 
the section of the model describing premiums and into that describing claims. 
Consider the premium section first. The box labelled ‘Incurred claims predictor’ 
produces an estimate of the incurred claims. It represents the total of all 
claims which are likely to arise at any time from business written in period k. On 
the basis of this estimate the base premium pb(k) for this kth period is then 
determined. From this, a profit-sharing feedback pƒ(k) is subtracted, leaving the 
premium p(k) to be paid. After the margin for costs and profit has been allowed 
the net premium income pn(k) is available. The cash flow ƒ(k) for the period k is 
then simply pn(k) minus the actual claims paid cp(k) in that period. These are 
accumulated in a pool or ‘kitty’ to give the accumulated cash flowƒa(k) at the end 
of period k. 

2.10. From the accumulated cash flow ƒa(k), an estimate of the accumu- 
lated surplus at the end of the kth period is made. Note that is an estimate of 
the surplus after allowing for all claims incurred to period k, including those 
which have not been paid or even received. How much of this surplus is fed back 
as profit/loss sharing feedback Pƒ(k) is determined by the profit-sharing scheme. 

2.11. In the claims section of the model a prediction of the claims paid as a 
function of time is made from the business written. To this are added the 
unpredicted claims cu(k) for the period k, giving the claims cp(k) actually paid in 
that period. 

2.12. The points where addition or subtraction of variables (signals in the 
jargon) takes place are called summing points. The signal take off points where a 
signal divides into two are easily misunderstood. An analogy might be to think of 
them as electricity supply lines where, no matter what one might connect, the 240 V 
supply voltage does not change. They are certainly not analogous to water pipes 
where the flow divides between two branches. 

2.13. Whilst an actuarial reader might think of premiums as input and claims 
as output, a control theorist would classify unpredicted claims cu(k) as a distur- 
bance input to the system because he has no control over its behaviour. He would 
design a control strategy to minimize its effects. Base premium pb(k) and profit- 
sharing feedback pƒ(k) would be classed as control inputs and used to obtain or 
approach some specification of desired behaviour for the system. Here two 
controllers are present, namely the Base Premium Calculator and the Profit- 
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Sharing Scheme. Control via pƒ(k) is termed negative feedback control while that 
using the path from b(k) through to pb(k) is termed feedforward control. In 
general, negative feedback has the advantages of reducing the error between the 
actual value of a variable and its desired value following a disturbance, reducing 
the sensitivity of the system to changes in its parameters or constants, improving 
its speed of response and is ‘self-correcting’ in a sense. Feedforward control is 
generally less desirable as it is very sensitive to errors in the assumptions upon 
which it is based. It has no self-correcting mechanism if its predictions are wrong. 
This is not to say that it should not be used, clearly it is essential above, just that 
care should be taken in its use and more reliance placed on the feedback control 
mechanism. 

2.14. In classical control theory the block diagram is usually arranged so that 
the output is in fact the quantity to be controlled. This has not been done in 
Figure 1. Its output is accumulated cash flow ƒa(k), while the accumulated surplus 
g(k) is to be controlled. Unfortunately, g(k) cannot be measured because future 
claims remain unknown. The best that can be done is to use an estimate g(k) of 
g(k) for control purposes. Consequently, it is preferable to show the measurable 
quantity ƒa(k) as the output. 

2.15. A normal commercial percentage profit to the insurer is allowed in the 
‘Costs & profit’ subsystem, hence the desired value of the accumulated surplus 
g(k) is zero. 

2.16. For further information on introductory control systems theory the 
reader is referred to one of the multitude of texts, for example Dorf (1970) or 
Ogata (1970). 

Subsystem mathematical models 
2.17. In classical control theory a system is described mathematically by its 

transfer function. For the discrete time system with input sequence x(k) and 
output sequence y(k) for k = 0, 1, 2, . . , the discrete transfer function, H(z) say, is 
defined as the ratio of the z-transform Y(z) of the output to the z-transform X(z) 
of the input 

(11) 

where Z{ } denotes the z-transform, which is defined by 

(12) 

It is assumed that x(k) is zero for all negative time 

x(k) = 0 for k= –1,–2,–3,... (13) 

Mathematically, the z-transform is a rule by which a sequence of numbers is 
converted into a function of the complex variable z. The real power of the 
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z-transform is that it will convert a difference equation into an algebraic equation 
thus simplifying its solution. For further details, see for example Cadzow (1973). 

2.18. z–1 is often referred to as the backward shift operator because if y(k) is 
the sequence obtained by delaying the sequence x(k) by I time periods then it is 
simple to show that 

(14) 

The modelling of systems with pure time delays is thus greatly simplified by the 
use of the z-transform. 

2.19. The final general point to be made is most important. For certain 
technical reasons related to the z-transform the initial value of a variable is 
always assumed to be zero. Hence the numerical value of a variable at the kth 
time instant represents the change in that variable from its initial value at k = 0 
and not its absolute value. 

2.20. The remainder of this section presents the mathematical models used for 
only four subsystems, namely Costs and Profit, ‘Kitty’ or Pool, Accumulated 
Surplus Estimator and the Profit-Sharing Scheme. The subsystems related to 
claims and base premium are intentionally left unspecified at this stage to 
emphasize that what follows is totally independent of them; another significant 
point. 

Costs and profit model 
2.20.1. The simplest model for costs and profits is that they are a fixed 

percentage of premium paid. Consequently, the net premiums p,(k) for the 
financial period k after costs and profit are 

(15) 

where the constant k, will be in the range 0 < kc < 1. The numerical value used 
later is kc = .8. The transfer function for this subsystem is then simply 

(16) 

‘Kitty’ or pool 
2.20.2 The ‘kitty’ or pool is the fund in which all the cash flows ƒ(k) up to and 

including period k are accumulated. The accumulated cash flow ƒa(k) at the end 
of period k is 

(17) 

Taking its z-transform and using equation (14) gives 
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Hence the transfer function is 

(18) 

provided that the initial conditions are zero. In this paper the effect of interest 
earned (or payable) on a positive (or negative) accumulated cash flow is neg- 
lected. 

Profit-Sharing scheme 
2.20.3 The intuitively obvious approach is to feedback a simple proportion kp 

of the estimated accumulated surplus (k). The control theorist would call this 
proportional action and would suspect that such a simple approach may not 
provide all of the desirable features for which he might normally aim. He would 
expect to have to at least consider the addition of integral and possibly derivative 
actions. However, for the moment assume that the profit-sharing feedback is 
given by 

whence 

(19) 

(20) 

Since the true value of g(k) is uncertain a suitable arrangement might be to 
feedback 50% of what the surplus is currently estimated to be. This figure is used 
in the later numerical examples. 

Accumulated surplus estimator 
2.20.4.1. Herein lies one of the intrinsic difficulties associated with the dynamic 

control of an insurance system. Claims often take a long time to come in and 
some take a long time to be settled. In some classes of business, 25% of the 
incurred claims may be unreported and/or unpaid after two years, while with 
‘long tail’ business the situation may be even worse. 

2.20.4.2. Several approaches are obviously possible. In this paper we begin to 
analyse a strategy which might colloquially be termed a ‘wait and see’ approach. 
In practice most companies would experience difficulties in having final figures 
from year (k – 1) available for use in year k. In any case there may be a sufficient 
number of unpaid claims to render those figures undesirable for profit-sharing 
feedback. The ‘wait and see’ or time-delayed approach amounts to saying that 
for I time periods after the premium is paid the accumulated cash flow is an 
unreliable predictor of accumulated surplus and hence at any time k, the value 
from the (k – l)th period, should be used for profit-sharing feedback. Essentially, 
then, 

Pf(k) = kpfa(k–l), 0<kp<1 (21) 
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and hence 
Pf(z) = kpz–l Fa(z). (22) 

It should be noted that, by implication, the estimated accumulated surplus (k) is 

(k) = fa(k – l) (23) 

Response to an isolated group of unpredicted claims 
2.21. In the remainder of the paper attention is restricted to considering the 

response of the system to an isolated group or ‘spike’ of unexpected paid claims 
cu(k). A control theorist would normally also look at other patterns of unpre- 
dicted claims, such as ‘step’ and ‘ramp’ inputs. During the following analysis the 
level of business written will be assumed to remain unchanged. Consequently, 
from the discussion on zero initial conditions in § 2.19 it is clear that b(k) is zero 
for all k. Under this condition the relationship between unpredicted paid claims 
and either cash flow f(k) or accumulated cash flow fa(k), as shown in the block 
diagrams in Figures 2(a) and (b) respectively, can be extracted directly from 
Figure 1. 

(a) Effect on cash flow 

(b) Effect on accumulated cash flow 

Figure 2. Effect of unpredicted claims. 
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2.22. By the simple technique of block diagram reduction (see any of the 
previously mentioned texts) the transfer functions become 

and 

(24) 

(25) 

What happens if there is a group of unpredicted claims in one isolated year or 
period? For convenience make that period k = 0 and let the unpredicted paid 
claims total one unit (which could be millions of pounds or some other con- 
venient quantity). Mathematically, 

cu(k) = (k) 

where (k) is the Kronecker delta 

(26) 

which leads to the convenient result 

Cu(z) = 1. (27) 

Consequently, from equations (24) and (25) the z-transforms of the cash flow and 
the accumulated cash flow are 

and 

2.23. Important conclusions can now be drawn about the steady state values, 
to which f(k) and fa(k) will settle down ask increases and approaches infinity. Use 
is made of the Final Value Theorem which follows directly from the definition in 
equation (12) which states that the final value x( ) of a sequence x(k) as k is 
given by 

(30) 

provided that (z – 1)X(z) is analytic for z 1. Here, the final values of the cash 
flow f( ) and the accumulated cash flow fa( ) are 

(31) 
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provided that kckp ≠ 0 and that (z–1)F(z) and (z–1)Fa(z) are analytic for all 
|z| 1. Consequently, the cash flow and the accumulated cash flow will even- 

tually reach the desired value of zero after isolated unpredicted claims, provided 
that certain conditions are met. These mathematical conditions are equivalent to 
the control system being stable. As will be seen briefly later and more fully in a 
subsequent publication, there is a limiting value of l beyond which the system is 
unstable. 

2.24. The time histories of the responses are obtained by inverse z-transforma- 
tion. For example when l=1 

and 

from which 

(33) 

and 
fa(k) = –(1–kckp)k (34) 

which can also be seen in this case by inspecting the series expansions in terms of 
z–1, For kc=·8 and kp=·5, equations (33) and (34) become 

f(k) = –1·667 δ 6(k) + ·667 (·6)k 
fa(k) = –(·6)k 

which are shown in Figures 3 and 4, together with results for time delays of l=2 
and 5. 

2.25. The oscillatory results for l=2 arise as follows. From equations (28) and 
(29) for l = 2 

and 

2.26. The roots of z2–z + kckp = 0 will be a complex conjugate pair whenever 
kckp>·25. Under such conditions, which would seem to be normal for the 
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insurance system considered, the response will be oscillatory rather than mono- 
tonic. Inverse transformation leads to relatively complicated expressions which 
will not be included here. Essentially, they are simply a sinusoidal waveform of 
frequency 

(35) 

multiplied by a decaying envelope generated by .For T=1 year (annual 
figures) and for kckp=·4, the frequency is v=·105 cycles per year which corre- 
sponds to a period of 9·54 years. The envelope is (·6325)k, which is only a slightly 
slower decay than that seen for l=1. The numerical results for l=2 and l=5 were 
obtained by the direct division technique, which avoids inversion. 

Comments on responses and conclusions 
2.27. For a delay of one period the dynamic response of both cash flow and 

accumulated cash flow are seen to be fairly satisfactory. Remember, however, 
that we are dealing with the limited situation involving only one isolated group of 
unpredicted claims and of no change in the level of business written. The effects 
of the disturbance still take approximately seven periods to be eliminated (for 
kckp = ·4). 

2.28. When the delay is increased to two periods, the responses become oscilla- 
tory and overshoot. No recovery of the loss is attempted for two periods. Then it is 
over-collected in the next four periods resulting in the insurer having to repay some 
of it in following periods. This is not a situation with which either party would be 
happy. The overall settling time is extended by about one or two periods. 

2.29. As a general principle, the introduction of time delays into a feedback 
loop is known to have a destabilizing effect. This is clearly demonstrated using 
l=5, where the system becomes completely unstable with ever-increasing oscil- 
lations in both f(k) and fa(k). The first positive peak in fa(k) is already one third 
greater than the initial disturbance. Mathematically, both will diverge to infinity! 
In practice, one or other of the parties would withdraw from the scheme well 
before that point. 

2.30. It is important to note that l=5 does not imply a delay of 5 years. The use of 
quarterly feedback and a delay time of only 2 years results in l=8, which is clearly 
completely unstable. In fact, for kckp=·4, the first positive peak in fa(k) is fa(17) = 
2.52, which is already two and a half times the initial isolated disturbance after 
only 4¼ years. Progressive negative and positive swings increase without bound. 

2.31. It is equally important to realize that the above results are independent of 
the type of business, its claims model and base premiums. Furthermore, stability 
and instability are properties of the system itself and not related in any way to the 
nature of the disturbance input sequence cu(k). 

2.32. The preceding results arose from a positive spike of unexpected claims. 
The insured may well be more interested in the effect of lower than expected 
claims. This can be seen by simply inverting the time histories in Figures 3 and 4. 
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Figure 3. Effect of isolated unpredicted claims on cash flow. 
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Figure 4. Effect of isolated unpredicted claims on accumulated cash flow 
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