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ABSTRACT 

By the definition of generalized assurances and annuities, the relation 
is shown to be the simplest member of a family of relations in which 

the present value of the capital and interest repayments is equated to the original 
amount of a loan. When the force of interest is constant over time, the relation 
takes the simple form above, but when the force is a polynomial in time, the 
interest payments become a series of annuities, the payments on which increase 
over time at different rates. 

1. INTRODUCTION 

In the equation 

(1.1) 

the ‘status’ function s(t) has generally been considered a step function, falling 
from unity to zero upon the occurrence of some event (e.g. in the usual notation s 
can be etc.); and δ is the constant force of interest. 

The equation (1.1) is in fact the simplest representative of a family of equations 
relating the capital repayments and the interest repayments on a loan. 

Consider a loan advanced at time 0. There can later be further loans, or some 
repayments, and the timing and amounts of these extra loans or repayments can 
be stochastic. The random variable s(t) represents the capital outstanding at time 
t. We define generalized assurances, under which payments are proportional to 
changes in the function s(t), and generalized annuities, the payments on which 
are proportional to the function s(t). The relationship between the expected 
present values of the capital repayments (the generalized assurances) and interest 
payments (a sum of generalized annuities) provides the generalization of (1.1). 
Only if the force is constant do we obtain the simple formula (1.1). 

The well-known formula 1 = As + däs can only be derived for constant δ , but 
the formula remains valid for general functions s(t) by suitable definitions of As 
and äs. 

2. OVERVIEW 

The principal result (equation 2.5) is derived in this section. Proofs are 
detailed in section 3 and the Appendices, whilst section 4 provides some simple 
examples. 

555 

Richard Kwan
JIA  111  (1984)  555-564



556 Generalized Annuities and Assurances 

The force of interest at time t is denoted by δ (t). We then define 

and f(t) = exp (– ∆ (t)), so that f(t) is the discounting factor from time t to time 0. 
Finally, s(t) is the amount of capital outstanding at time t on a putative loan 
advanced at time 0. 

Integration by parts yields 

Here, so that (2.1) becomes 

(2.1) 

Assuming that f(t)s(t) → 0 as t → ∞ (i.e. the discounted value of the outstanding 
capital s(t) tends to zero as the time t tends to infinity), and that the integrals 
converge, 

(2.2) 

i.e. (2.3) 

The first term on the left side of (2.3), PV s, represents the present value of the 
capital repayments*, and the second term, PVINTs, the present value of the 
continuously payable interest payments. The term on the right side is the initial 
amount of the loan. 

For brevity we define the following quantities. For our purposes j can be 
restricted to the non-negative integers. The notation for the expected values is 
consistent with conventional actuarial notation when j= 0 or 1 (Neill, 1977). 

* Usually the function s(t) will be a step function, in which case let dsi be the jump in s at ti. Then 

For a whole life assurance on the life of(x), for example, PVAx is the present value of a payment of 1 
upon death, with expected value Ax. 

would normally be calculated as 

which, when s(t) is {0,1} valued, reduces to 

The general validity of taking the expectation operator under the integral sign in this way is shown in 
Appendix 1. 
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When j = 0, we simply write 

Assuming δ (t) to have the Taylor expansion (2.2) becomes 

(2.4) 

Taking expected values (over possible realizations of s(t)) then yields 

(2.5) 

For constant force of interest over time and s(0) fixed at unity this equation 
reduces to (1.1). 

The force of interest is assumed deterministic in this paper. In general, though, 
both δ (t) and s(t) will be stochastic, although they should be stochastic in such a 
way that the integrals above exist with probability one, and preferably in such a 
way that their expected values exist. It is quite feasible that s(t) and δ (t) are not 
independent: for instance, a decision to repay capital, or borrow more, will 
depend upon changes in the interest rate charged on the outstanding loan, viz. 

δ (t). 
SECTION 3 

For most actuarial applications, the upper limit of the integrals in (2.2) will be 
finite, and independent of the particular realization s(t). An example is that of an 
assurance on an individual’s life: s(t) = 1 as long as the person lives, and falls to 
zero upon his death, so that s(t) will certainly vanish after the end of the life table 
used. Let the upper limit of the integrals be T; precisely, let T be such that 

almost certainly, 

where almost certainly means with probability one, and will be abbreviated to 
a·c. If no such T exists, we shall say that ‘T is infinite’. 

3.1. Finite T 
For finite T, sufficient conditions for (2.2) to be true are that s(t) be of bounded 

variation on [0,T], and δ (t) be integrable on [0,T]. For then f(t) is continuous on 
[0,T] (provided δ is not allowed to assume infinite values on a non-null set), the 
integrals in (2.2) exist, and relation (2.2) is true (Moran, 1968 p. 218). In order 
that finite expected values exist for these integrals, however, the following 
stronger condition is imposed: 

C. 1. There is a K such that, with probability one, the total variation of s(t) on 
[0,T] is not greater than K; i.e., 

sup 
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where the supremum is taken over all finite sets of points ti such that 

0 t1 t2 < . . . < tm T, (3.1) 

for any positive integral m. 
This is stronger than requiring s(t) to be of bounded variation on [O,T] almost 

certainly, for then K could vary with the realization of s(t). Now f(t) being 
continuous on the closed interval [O,T] implies that it is bounded on that interval, 
say |f(t)| M. Then 

and this bound is independent of the realization s(t), so that s exists and is finite. 
It can be similarly shown that PV s has a finite expected value-this is done in 

Appendix 2. 
Suppose now that the force of interest δ (t) has a Taylor expansion which 

includes the real interval [O,T] in the interior of its circle of convergence 
(regarding t as a complex variable).* Then the Taylor series is integrable on [0,T], 
and converges uniformly to the function δ (t) on [O,T], so that we can interchange 
the order of integration and summation in PVINTs in (2.2) to yield 

(2.4) 

(Brand, 1955 pps 416,405). 
Taking expectations in (2.4) again yields 

(2.5) 

Convergence of the infinite series in this last expression is also shown in 
Appendix 2. 

3.2. Infinite T 
In actuarial work this situation would normally only arise in the consideration 

of contingent assurances. If the lives die in the wrong order, nothing is paid on the 
assurance, and the status never falls to zero. 

The force of interest is assumed to have a positive infimum for sufficiently large 

C.2. There is a number δ 0 such that 

sufficiently large. 

‡ This assumption is stronger than it appears, because in fact it requires that the interval [ – T,T] lie 
within the circle of convergence. It could be weakened by centring the Taylor series at T/2, or 
equivalently by changing the time origin so that the original loan were granted at time -T/2, and s(t) 
vanished on [T/2, ∞ ); then the radius of convergence of the Taylor series would only need to exceed 
T/2, not T. The algebra would proceed as above. 

The condition is trivially satisfied when δ is a finite polynomial, the radius of convergence of which 
is infinite. 
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We further assume the analogue of the condition imposed upon s(t) when T was 
finite: 

C.3. There is a number L1 such that the total variation of s over [0, ∞ ) is less 
than L1, almost certainly. The expression (3.1) given in C. 1 remains valid, save 
for the omission of the final inequality tm T. 

Finally, the following weak assumption is imposed to ensure that s(t) has a 
bound which does not depend on the realization s(t): 

C.4. There exist numbers L2 and t0 such that 

|s(t0)| L2, a.c. 

That PV s, and PV are convergent and have well-defined expected values 
under these assumptions is shown in Appendix 3. 

In particular, if δ is a finite polynomial in t (with the coefficient of the highest 
power oft positive to ensure that C.2 holds), the expressions (2.4) and (2.5) are 
valid. 

SECTION 4 

4.1. Example 1 
Consider the annuity increasing continuously over time, payable continuously 

to (x) while he lives, and ceasing upon his death. The payment at time t is t · dt, 
and the function s(t)= t until death, whereupon it drops to zero. The 
corresponding generalized assurance consists of an annuity of – 1 p.a. payable 
continuously until death, followed by a lump sum payment of t0 paid upon death 
at time t0. 

if T is the end of the life table used,* 

where the status function x(t) is unity while (x) lives, and zero thereafter. 

assuming that the Taylor expansion has the interval [O,T] inside its circle of 
convergence. Thus (2.3) becomes 

Taking expectations of this last equation, we obtain 

* If ds(T) has a non-zero probability of being finite, s(t) needs to be continuous from the right at T. 
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If δ is constant this reduces to the well-known equation (See 
Neill, 1977 p. 102). 

4.2, Example 2 
When δ is a constant, the relation 

is obtained by constraining s(t) to jump or fall at integral values oft. Formally, 
we need to define a new ‘status’ s* thus: 

V integral t > 0 

(s(t) must be continuous from the right if we use this definition, so that ifs falls at 
an integral time t, s*(t) also falls at t) 

ds*(t) = 0 otherwise. 

Then 

upon defining . 

There are of course analogues of this expression when s(t) is constrained to fall or 
jump at intervals other than annual. 
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APPENDIX 1 

We show that 

(A1.1) 

when s(t) is a step function with a finite limit n to the possible number of steps. We 
infer the validity of (Al. 1) for most functions s(t) of interest in actuarial science. 

We appeal to a result from Doob (1967). Let ω 1, ω 2, . . . , ω n denote the times of 
the first, second, . . . , nth steps of s(t), and let ω be the vector of these step times. 
The function s(t, ω ) is then the value of s(t) when step times occur at times ω i (we 
should strictly use different symbols for the two functions s(t) and s(t, ω )). The 
symbols t and ω correspond to those used in Doob. The imposition of a finite 
maximum on the number of steps is a convenience to simplify the proof, but 
represents no real restriction for actuarial work. A simple example will illustrate 
before we proceed with the proof. 

Example A1.1. Consider an annuity of 2 p.a. payable continuously while a 
group of four people all remain alive, reducing to 1 p.a. while three of them 
survive, and zero thereafter. Then 

s(t, ω ) = 2 if t < ω 1, 
1 if ω 1 < t < ω 2, and 
0 otherwise, 

where ω 1 and ω 2 are respectively the times of the first and second deaths. 
The question of the measurability of the function s(t, ω ) reduces to consider- 

ation of the measurability of the union of finitely many sets of the form 
{(t, ω ): s(t, ω ) = constant}, relative to the measure which is the product of the 
Lebesque measure on the t axis, and the measure induced on the ω space by the 
joint probability distribution of the ω i. Any such set is measurable because it is 
the union of finitely many sets of the form {(t, ω ): t < ω 1 < ω 2 < . . . < ω n }, 
{(t, ω ): ω ) < t < ω 2 < . . . < ω n}, etc., each of which is measurable. 

The function s(t, ω) is then measurable, whence f(t)·s(t, ω ) · tj is also measur- 
able, the two product functions being continuous, which means that the 
stochastic process 

is measurable (Doob, 1967 p. 62; f(t)·st, ω )·tj corresponds to Doob’s x1( ω )). 
Conditions C.3 (which is equivalent to C.1 for finite T) and C.4 ensure that the 
bound on s(t, ω ) applies independently of the realization s(t) (see Appendix 3) so 
that the conditions for Doob’s Theorem 2.7 are satisfied, and the interchange of 
the order of the expectation and integration operators is justified. 

The proof hinges on the measurability of the function s(t, ω). In actuarial work, 
this function will usually take the form of a step function; even in more 
complicated cases, it will often assume the form of a product of a measurable 
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function and a step function, which is itself measurable (for instance, s(t) is the 
product of a step function and the function g(t) = t in example 4.1). It is difficult 
to imagine a situation arising in actuarial work to which Doob’s result would not 

apply. 

APPENDIX 2 

T is finite throughout this appendix, and any relations are to be interpreted as 
being almost certainly true. 

We first show that has a finite expected value. 
From condition C.1, choosing the partition {0,t,T}, we have 

Since |f(t)| ≤ M, 

This bound applies regardless of the realization s(t), so that exists and is 
finite. 

Next, we show that is convergent. 
δ (t) is continuous on the closed interval [O,T], because this interval lies within 

the circle of convergence, and therefore δ (t) is bounded on [O,T]. Now 

so that a similar argument to that above shows that PVINTs is bounded, and the 
bound does not depend on the realization s(t). Thus the expected value of 
PVINTs exists and is finite. 

(A2.1) 

The magnitude of the last term in (A2.1) can be made arbitrarily small by 
choosing N sufficiently large, by the uniform convergence of the Taylor series to 
δ (t). The expected value of this term can likewise be made arbitrarily small, so 
that 

and the right side of this equation converges. 
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APPENDIX 3 

T is infinite in this appendix, and again any relation in this Appendix is true 
almost certainly. We show first that PV exists and has finite expected value. 

From C2 there is an r ≤ 0 such that 

Then, for u ≥ r, 

From C.3, 

(A3.1) 

Thus the integral defining PV converges almost certainly, by the analogue for 
integrals of Cauchy’s convergence criterion for series (see, i.a., Brand (1955). 

Concerning the expected value A,, first consider 

and this bound applies independently of the realization s(t), so that PV has a 
finite expected value. 

Similarly, let 

The function f(t) is bounded on [0,r], being continuous on that closed interval; 

say 

Then independently of the sample function s(t), so that again the 
expected value exists and is finite. Thus exists and is finite. 

The proof that exists and has finite expectation is similar, but we need 
the following preliminary result. 

For t0 satisfying C.4, 

|s(t)| = |s(t)–s(t0)+s(t0)| 
≤ |s(t)–s(t0)| + |s(t0)| 
≤ L1 + L2, by C.3 and C.4, 
= L’, say. 
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Then 
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This, again, shows the almost certain convergence of by the integral 
analogue of Cauchy’s convergence criterion for series. 

Analogously to the reasoning above for PV let 

and 
Then 
and 
so that exists and is finite. 
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